MA341 - Homework \#6
 Due Wednesday, April 2, in class

1. Find all solutions to $z^{4}=-81$. Your answers should be exact, not approximations, and should not be left in the form of sines or cosines. Show your work.
2. Find one solution to $z^{3}=4 \sqrt{2}+(4 \sqrt{2}) i$. Your answer should be exact, not an approximation, and should not be left in the form of sines or cosines. Hint: Use the half-angle formulas somewhere. Show your work.
3. Exercise 7.3.15. Suggestion: You may use the fact that if you are solving a system of the form

$$
\begin{aligned}
a_{1} x+b_{1} y & =c_{1} \\
a_{2} x+b_{2} y & =c_{2}
\end{aligned}
$$

and if $a_{1} b_{2}-a_{2} b_{1} \neq 0$, then there exists a solution (x, y) and it is unique.
4. Exercise 7.3.16. See the above suggestion.
5. Suppose $A_{1}\left(x_{1}, y_{1}, z_{1}\right)$ and $A_{2}\left(x_{2}, y_{2}, z_{2}\right)$ are two points on a sphere of radius r centered at $O(0,0,0)$. Find a formula for the distance between A_{1} and A_{2} along an arc of a great circle on the surface of the sphere. Hint: Consider the central angle $\angle A_{1} O A_{2}$ and its cosine.

