Transformation Matrices

1. Translation by the vector (p, q) :

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & p \\
0 & 1 & q \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Note: If $(p, q)=(0,0)$, then this is just the identity matrix.
2. Counterclockwise rotation by the angle δ about the point (p, q) :

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
c & -s & -p c+q s+p \\
s & c & -p s-q c+q \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

where $c=\cos \delta$ and $s=\sin \delta$.
Note: If $\delta=0$, then this is just the identity matrix.
3. Reflection across the line $p x+q y=r$, where without loss of generality we can assume $p^{2}+q^{2}=1$:

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
1-2 p^{2} & -2 p q & 2 p r \\
-2 p q & 1-2 q^{2} & 2 q r \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

4. Glide reflection across the line $p x+q y=r$ using the translation ($t q,-t p$), where without loss of generality we can assume $p^{2}+q^{2}=1$:

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
1-2 p^{2} & -2 p q & 2 p r+t q \\
-2 p q & 1-2 q^{2} & 2 q r-t p \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Note: If $t=0$ then this is just a pure reflection.

