Transformation Matrices

1. Translation by the vector (p, q):
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Note: If (p,q) = (0,0), then this is just the identity matrix.

2. Counterclockwise rotation by the angle § about the point (p, q):
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where ¢ = cosd and s = sin §.

Note: If § = 0, then this is just the identity matrix.

3. Reflection across the line pz + qy = r, where without loss of generality we can assume
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4. Glide reflection across the line px + qy = r using the translation (tq, —tp), where
without loss of generality we can assume p* + ¢ = 1:
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Note: If ¢ = 0 then this is just a pure reflection.



