1 Counting Warm-Ups

1.1 Some Definitions

The Cartesian product of two sets X and Y is the set

$$
X \times Y=\{(x, y): x \in X, y \in Y\} .
$$

That is, it is the set of all ordered pairs where the first coordinate comes from X and the second coordinate comes from Y.

A relation between two sets X and Y is any subset of $X \times Y$. That is, it is any subset of ordered pairs, where the first coordinates are drawn from X and the second coordinates are drawn from Y. The domain of a relation S is the set of first coordinates in the relation; i.e.,

$$
\operatorname{Domain}(S)=\{x \in X:(x, y) \in S \text { for some } y \in Y\} .
$$

The range of a relation S is the set of second coordinates in the relation; i.e.,

$$
\operatorname{Range}(S)=\{y \in Y:(x, y) \in S \text { for some } x \in X\}
$$

Here are my high school teacher's definitions: A ficklepicker of a relation is a first coordinate that appears in more than one ordered pair of the relation. A function is a relation with no ficklepickers.

If f is a function, then we write, for example, $y_{1}=f\left(x_{1}\right)$ to mean that the ordered pair $\left(x_{1}, y_{1}\right)$ is in the function. When we write $f: X \longrightarrow Y$ is a function, we mean that the domain of f is the entire set X, and the range of f is contained in (but not necessarily equal to) Y.

A function $f: X \longrightarrow Y$ is one-to-one or an injection if no element of the range is paired with more than one element of X. A function $f: X \longrightarrow Y$ is onto or a surjection if its range is all of Y. A function $f: X \longrightarrow Y$ is one-to-one and onto or a bijection if it is both one-to-one and onto.

1.2 Some Counting Questions

When we write $|X|=m$, we mean that X is a finite set that contains exactly m elements; i.e., the cardinality of X is m.

1. If $|X|=m$ and $|Y|=n$, how many relations between X and Y are there?
2. If $|X|=m$ and $|Y|=n$, how many functions $f: X \longrightarrow Y$ are there?
3. Suppose $|X|=m,|Y|=n$. Try to fill in the following table by giving a formula for the number of functions $f: X \longrightarrow Y$ in each case:

	Injections	Surjections	Bijections
$m<n$			
$m=n$			
$m>n$			

