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1 Radians

Suppose you have a circle of radius 1. Its circumference is C = 2πr = 2π, which is a bit
bigger than 6.2.

Problem 1.1 Explain why the formula for the circumference of a circle provides the defi-
nition of π.

The measure of a central angle that cuts off a piece (intercepts an arc) of the circumference
of length 1 is called a radian. In general, the measure of an angle that intercepts an arc of
the circumference having length ` is said to have measure ` radians. Therefore, there are
2π radians around the center of a circle and we can convert back and forth between degrees
and radians by

θ(in radians) =
π

180◦
θ(in degrees)

θ(in degrees) =
180◦

π
θ(in radians)
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Using radians makes many formulas look “nicer.” For example, Suppose C is a circle of
radius r. The length ` of an arc intercepted by a central angle θ is given by

` = rθ (if θ is measured in radians)

` =
π

180◦
rθ (if θ is measured in degrees)

So the radian measure of the central angle is the ratio of the length of the arc and the radius.

Problem 1.2 Propose an analogous definition of the measure of a solid angle where three,
four, or more planes meet at common vertex of a polyhedron, and explain why your definition
is reasonable. Then look up the official name and definition of solid angle measure.

2 Trigonometric Functions in the Analytic Model E2

A circle of radius one is called a unit circle. A unit circle with center at the origin of the
Cartesian plane is often called the unit circle. The trigonometric functions sine, cosine,
tangent, secant, cosecant, and cotangent, can be defined using the unit circle.

Let α be the radian measure of an angle. Place a ray r from the origin along the x axis. If
α ≥ 0, rotate the ray by α radians in the counterclockwise direction.
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If α < 0, rotate the ray by |α| radians in the clockwise direction.

Determine the point (x, y) where r intersects the unit circle. We define

cos α = x

and
sin α = y.

Define also

tan α =
sin α

cos α
.

sec α =
1

cos α
,

3



csc α =
1

sin α
,

cot α =
cos α

sin α
.

Problem 2.1 Use the definitions for the sine, cosine, and tangent functions to evaluate
sin α, cos α and tan α when α equals

1. 0

2. π
2

3. π

4. 3π
2

5. 2π

6. π
3

7. π
4

8. π
6

9. nπ
3

for all possible integer values of n

10. nπ
4

for all possible integer values of n

11. nπ
6

for all possible integer values of n

Problem 2.2 Drawing on the definitions for the sine and cosine functions, sketch the graphs
of the functions f(α) = sin α and f(α) = cos α, and explain how you can deduce these
naturally from the unit circle definition,

Problem 2.3 Continuing to think about the unit circle definition, complete the following
formulas and give brief explanations, including a diagram, for each.

1. sin(−α) = − sin(α).
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2. cos(−α) =

3. sin(π + α) =

4. cos(π + α) =

5. sin(π − α) =

6. cos(π − α) =

7. sin(π/2 + α) =

8. cos(π/2 + α) =

9. sin(π/2− α) =

10. cos(π/2− α) =

11. sin2(α) + cos2(α) =

Solution. (Diagrams omitted.)

1. sin(−α) = − sin(α).

2. cos(−α) = cos α.

3. sin(π + α) = − sin(α).

4. cos(π + α) = − cos(α).

5. sin(π − α) = sin(α).

6. cos(π − α) = − cos(α).

7. sin(π/2 + α) = cos(α).

8. cos(π/2 + α) = − sin(α).

9. sin(π/2− α) = cos(α).

10. cos(π/2− α) = sin(α).

11. sin2(α) + cos2(α) = 1.

5



Problem 2.4 Use GeoGebra to make a sketch of the unit circle to illustrate what you have
learned so far.

Problem 2.5 Use the sine and cosine functions to determine the coordinates of the vertices
of the following. In each case except the last two, choose one vertex to be the point (1, 0).

1. A regular triangle with vertices having a distance of 1 from the origin.

Solution. (1, 0), (cos 120◦, sin 120◦) = (−1/2,
√

3/2), (cos 240◦, sin 240◦) = (−1/2,−
√

3/2).

2. A regular square with vertices having a distance of 1 from the origin.

3. A regular pentagon with vertices having a distance of 1 from the origin.

Solution. (1, 0), (cos 72◦, sin 72◦), (cos 144◦, sin 144◦), (cos 216◦, sin 216◦), (cos 288◦, sin 288◦).

4. A regular hexagon with vertices having a distance of 1 from the origin.

Solution. (1, 0), (cos 60◦, sin 60◦) = (1/2,
√

3/2), (cos 120◦, sin 120◦) = (−1/2,
√

3/2),
(cos 180◦, sin 180◦) = (−1, 0), (cos 240◦, sin 240◦) = (−1/2,−

√
3/2), (cos 300◦, sin 300◦) =

(1/2,−
√

3/2).

5. A regular heptagon with vertices having a distance of 3 from the origin.

6. A regular n-gon with vertices having a distance of r from the origin.

Problem 2.6 Confirm the above calculations by entering the coordinates of the above points
into GeoGebra.

Problem 2.7 Here is perhaps a more familiar way to define sine and cosine for an acute
angle α: Take any right triangle for which one of the angles measures α. Then sin α is the
ratio of the lengths of the opposite side and the hypotenuse, and cos α is the ratio of the
lengths of the adjacent side and the hypotenuse. Explain why this definition gives the same
result as the unit circle.

Problem 2.8 Describe a procedure to determine the rectangular coordinates (x, y) of a
point from its polar coordinates (r, θ) and justify why it works.
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Problem 2.9 Look up the definitions of cylindrical and spherical coordinates.

1. Justify the following conversion from cylindrical coordinates (r, θ, z) to rectangular
coordinates (x, y, z).

x = r cos θ
y = r sin θ
z = z

2. Justify the following conversion from spherical coordinates (r, θ, φ) to rectangular co-
ordinates (x, y, z).

x = r cos θ sin φ
y = r sin θ sin φ
z = r cos φ

3 Trigonometric Identities

Problem 3.1 In this problem we will use the triangle pictured below. In this triangle all
angles have measure less than 90◦; however, the results hold true for general triangles.

The lengths of BC, AC and AB are a, b and c, respectively. Segment AD has length c′ and
DB length c′′. Segment CD is the altitude of the triangle from C, and has length h.
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The usual formula for the area of a triangle is 1
2
(base)(height), as you probably already know.

1. Prove that area (4ABC) = 1
2
bc sin A.

Solution. sin A = h
b
, so h = b sin A. area4ABC = 1

2
hc = 1

2
bc sin A.

2. What is a formula for area (4ABC) using sin B? Using sin C? (Note: you will have
to use the altitude from A or B).

Solution.

area (4ABC) =
1

2
ac sin B =

1

2
ab sin C

3. What is the relationship of these formulas to the SAS triangle congruence criterion?

Solution. Since the triangle is determined up to congruence by SAS, then so is its
area, and the formulas show exactly how—the area is half of the product of the two
sides and the sine of the included angle.

Problem 3.2 Using the same triangle, the Law of Sines is:
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sin A

a
=

sin B

b
=

sin C

c
.

1. We showed that the area of this triangle was given by three different formulas. What
are they?

Solution.

area (4ABC) =
1

2
bc sin A =

1

2
ac sin B =

1

2
ab sin C.

2. From these three formulas, prove the Law of Sines.

Solution. Divide the above equations through by 1
2
abc.

Problem 3.3 The Law of Cosines is:

a2 = b2 + c2 − 2bc cos A.

Using the above triangle:

1. Show that c′ = b cos A.

Solution. Observe that cos A = c′/b from triangle 4ACD.

2. Observe the obvious fact that c′′ = c− c′.

Solution. This is clear from the diagram.

3. Verify that h2 = b2 − (c′)2.

Solution. This follows from the Pythagorean Theorem applied to triangle 4ACD.
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4. Apply the Pythagorean Theorem to triangle 4CDB, then use the facts above to make
the appropriate substitutions to prove the Law of Cosines.

Solution.
a2 = h2 + (c′′)2

= b2 − (c′)2 + (c− c′)2

= b2 − (c′)2 + c2 − 2cc′ + (c′)2

= b2 + c2 − 2cc′

= b2 + c2 − 2bc cos A.

5. What happens when you apply the Law of Cosines in the case that 6 A is a right angle?

Solution. In this case cos A = 0 and you get a2 = b2 + c2, which is the Pythagorean
Theorem.

Problem 3.4 Suppose for a triangle you are given the lengths of the three sides. How can
you determine the measures of the three angles?

Problem 3.5 Suppose for a triangle you are given the lengths of two sides and the measure
of the included angle. How can you determine the length of the other side, and the measures
of the other two angles?

Problem 3.6 Suppose for a triangle you are given the measures of two angles and the length
of the included side. How can you determine the measure of the other angle, and the lengths
of the other two sides?

Problem 3.7 Assume that you have triangle 4ABC such that the coordinates of the three
(distinct) points A, B, and C are (0, 0), (x1, y1), and (x2, y2), respectively. Use the Law of
Cosines and the distance formula to prove that

cos A =
x1x2 + y1y2√

x2
1 + y2

1

√
x2

2 + y2
2

.

10



Solution. Beginning with a2 = b2 + c2 − 2bc cos A, solve for cos A.

cos A =
b2 + c2 − a2

2bc

=
(x2

1 + y2
1) + (x2

2 + y2
2)− [(x2 − x1)

2 + (y2 − y1)
2]

2
√

x2
1 + y2

1

√
x2

2 + y2
2

=
x2

1 + y2
1 + x2

2 + y2
2 − (x2

2 − 2x1x2 + x2
1 + y2

2 − 2y1y2 + y2
1)

2
√

x2
1 + y2

1

√
x2

2 + y2
2

=
x1x2 + y1y2√

x2
1 + y2

1

√
x2

2 + y2
2

.

It is an easy extension to determine the angle formed by three points when the vertex of the
angle is not the origin. Assume that you have triangle 4ABC such that the coordinates of
the three (distinct) points A, B, and C are (x3, y3), (x1, y1), and (x2, y2), respectively. Let
x′1 = x1 − x3, x′2 = x2 − x3, y′1 = y1 − y3, and y′2 = y2 − x3. Then

cos A =
x′1x

′
2 + y′1y

′
2√

x′21 + y′21

√
x′22 + y′22

.

Problem 3.8 Assume that A and B are two points on the unit circle centered at the origin,
with respective coordinates (x1, y1) and (x2, y2). Draw the line segments OA and OB. Let
α be the angle that OA makes with the positive x-axis, and β be the angle that OB makes
with the positive x-axis.
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1. From Problem 3.7 we know that

cos(6 AOB) =
x1x2 + y1y2√

x2
1 + y2

1

√
x2

2 + y2
2

From this, prove that

cos(β − α) = cos α cos β + sin α sin β.
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Solution. Use the fact that (x1, y1) = (cos α, sin α) and x2
1+y2

1 = 1, and the analogous
facts about β.

2. Replace α with −α in the previous equation to prove

cos(β + α) = cos β cos α− sin β sin α.

Solution. cos(β +α) = cos(β− (−α)) = cos(−α) cos β +sin(−α) sin β = cos α cos β−
sin α sin β.

3. Replace β with π/2− γ and α with −δ in the previous equation to prove

sin(γ + δ) = sin γ cos δ + cos γ sin δ.

Solution.

cos(β + α) = cos β cos α− sin β sin α
cos(π/2− γ − δ) = cos(π/2− γ) cos(−δ)− sin(π/2− γ) sin(−δ)

sin(γ + δ) = sin γ cos δ + cos γ sin δ

4. Replace δ with −δ in the previous equation to prove

sin(γ − δ) = sin γ cos δ − cos γ sin δ.

Solution. sin(γ − δ) = sin(γ + (−δ)) = sin γ cos(−δ) + cos γ sin(−δ) = sin γ cos δ −
cos γ sin δ.
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The above four formulas are the trigonometric angle sum and angle difference formulas.

Problem 3.9 Prove the double angle formulas:

sin(2α) = 2 sin α cos α.

cos(2α) = cos2 α− sin2 α = 2 cos2 α− 1 = 1− 2 sin2 α.

Solution. Set γ = α and δ = α in the formula for sin(γ + δ), and set β = α in the formula
for cos(α + β). Then use sin2 α + cos2 α = 1.

Problem 3.10 Prove the half angle formulas for angle 0 ≤ β ≤ π
2
.

sin(β/2) =

√
1− cos β

2
.

cos(β/2) =

√
1 + cos β

2
.

Set α = β
2

in the second two formulas for cos(2α) and then solve for cos(β
2
) and sin(β

2
).
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4 Rotations

Problem 4.1 Now assume that we have a circle of radius r, that point A has coordinates
(x1, y1) = (r cos θ, r sin θ), and that we wish to rotate it by φ about the origin, obtaining the
point B = (x2, y2) = (r cos(θ + φ), r sin(θ + φ)).

1. Prove that
(x2, y2) = (x1 cos φ− y1 sin φ, x1 sin φ + y1 cos φ).

Solution. x2 = r cos(θ + φ) = r[cos θ cos φ− sin θ sin φ] = r cos θ cos φ− r sin θ sin φ =
x1 cos φ− y1 sin φ.

y2 = r sin(θ + φ) = r[sin θ cos φ + cos θ sin φ] = r sin θ cos φ + r cos θ sin φ = y1 cos φ +
x1 sin φ.

2. Conclude that:
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The matrix for the rotation centered at the origin by the angle φ is[
c −s
s c

]

where c = cos φ and s = sin φ.

That is to say, prove that [
x2

y2

]
=

[
c −s
s c

] [
x1

y1

]
.

Problem 4.2 Find the matrices for the rotations about the origin by each angle φ, 0 ≤ φ <
360◦, that is a multiple of 90 degrees.

Problem 4.3 Find the matrices for the rotations about the origin by each angle φ, 0 ≤ φ <
360◦, that is a multiple of 45 degrees.

Problem 4.4 Find the matrices for the rotations about the origin by each angle φ, 0 ≤ φ <
360◦, that is a multiple of 30 degrees.
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5 Complex Numbers

Any complex number z = a + bi can be represented by a point (a, b) in the Cartesian plane.
The real number a is called the real part of z, and the real number (not including the i)
is called the imaginary part of z. But you can set r =

√
a2 + b2 and find θ such that

cos θ = a/r and sin θ = b/r. That is, (r, θ) are polar coordinates for the point (a, b). Then
z = r(cos θ + i sin θ). The angle θ is called the argument of z, denoted arg z, and the length
r is called the modulus of z, denoted |z|. Note: Sometimes r(cos θ + i sin θ) is written rcis θ.

Problem 5.1 Suppose z1 = a1 + ib1 and z2 = a2 + ib2, corresponding to the points P1 =
(a1, b1) and P2 = (a2, b2), respectively, in the Cartesian plane. Explain how to find z = z1+z2

geometrically. Explain how to find z = z1 − z2 geometrically.

Solution (for addition): Draw segments OP1 and OP2, and “complete the parallelogram,”
The fourth point of the parallelogram will be the point for z1 + z2.

Another way of viewing this is to think of
−→
OP1 and

−→
OP2 as directed segments representing

vectors. Add them by placing the tail of
−→
OP2 at the head of

−→
OP1.

For the subtraction
−→
OP1 −

−→
OP2, add the negative of

−→
OP2.

To add two complex numbers P1 = x1 + iy1 and P2 = x2 + iy2 geometrically, draw
segments OP1 and OP2 and complete the parallelogram.

To subtract two complex numbers P1 = x1 + iy1 and P2 = x2 + iy2 geometrically, let
P3 = −P2, draw segments OP1 and OP3, and complete the parallelogram.

Problem 5.2 Suppose z1 = r1cis θ1 and z2 = r2cis θ2, corresponding to the points P1, P2

in the Cartesian plane with polar coordinates (r1, θ1), (r2, θ2), respectively. Explain how to
find z = z1z2 geometrically. Explain how to find z = z1/z2 geometrically.

Solution: Preliminary to this, it might be helpful to think about multiplication of real
numbers in the following way: Think of the x-axis in the plane, and real numbers represented
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by segments from the origin to points on this number line. When multiplying by a negative
number, rotate 180◦ first, then multiply (scale) by the absolute value.

Use polar coordinates to write z1 = r1 cos θ1+ir1 sin θ1 and z2 = r2 cos θ2+ir1 sin θ2. Calculate

z1z2 = (r1 cos θ1 + ir1 sin θ1)(r2 cos θ2 + ir2 sin θ2)
= r1r2(cos θ1 cos θ2 − sin θ1 sin θ2 + i(sin θ1 cos θ2 + cos θ1 sin θ2))
= r1r2(cos(θ1 + θ2) + i sin(θ1 + θ2)).

Interpretation: Draw segments OP1 and OP2. So you need to construct a segment OP such
that its angle with respect to the positive x-axis is the sum θ1 + θ2 of the angles associated
with OP1 and OP2, and the distance of P from O is the product r1r2 of the distances OP1

and OP2.

To multiply two complex numbers P1 = r1(cos θ1+i sin θ1) and P2 = r2(cos θ2+i sin θ2)
geometrically, add the angles (arguments) θ1 + θ2 and multiply the lengths (moduli)
r1r2.

To divide two complex numbers P1 = r1(cos θ1 + i sin θ1) and P2 = r2(cos θ2 + i sin θ2)
geometrically, subtract the angles (arguments) θ1−θ2 and divide the lengths (moduli)
r1/r2.

Problem 5.3 Prove the following:

Let w = r(cos φ + i sin φ). Then the function f(z) = wz rotates the complex plane
counterclockwise by the angle φ and then scales it by a factor of r.

Problem 5.4 From what you learned in the previous exercise,

1. Explain geometrically what multiplying by i does.

2. Show geometrically that i2 = −1.
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Solution: The point i = 0+1i corresponds to the point P with Cartesian coordinates
(1, 0). The angle of OP with respect to the positive x-axis is π/2, and the distance
OP is 1. Multiplying i by itself thus results in a point Q such that the angle of OQ
with respect to the positive x-axis is π, and the distance OQ is 1. So Q = (−1, 0),
which corresponds to the complex number −1 + 0i = −1.

3. Find three complex numbers such that z3 = 1.

4. Find three complex numbers such that z3 = 27.

5. Find four complex numbers such that z4 = 1.

6. Find four complex numbers such that z4 = 1
16

.

7. Find six complex numbers such that z6 = 1.

8. Find two complex numbers such that z2 = i.

9. Find three complex numbers such that z3 = 8i.

10. Explain how to calculate zn for any particular complex number z, where n is a positive
integer.

11. Explain how to find all solutions to any equation of the form zn = z0 where n is a
positive integer and z0 is a particular complex number.

Problem 5.5 Show that if we map or identify the complex number x + iy = rcis θ with the
2× 2 matrix [

rc −rs
rs rc

]
, equivalently,

[
x −y
y x

]
,

where c = cos θ and s = sin θ, then we can add and multiply complex numbers by simply
adding and multiplying their associated matrices. Thus, this set of matrices is a representa-
tion of, or isomorphic to, the complex numbers.

Note also that the subset of matrices of the form[
x 0
0 x

]

is isomorphic to the set of real numbers.
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We have seen that radians are a natural unit for getting a nice formula for the length of a
circular arc: ` = rθ if θ is the central angle measured in radians, r is the radius of the circle,
and ` is the length of the arc. Another motivation for expressing angles is radians is the
Taylor series formulas for sine and cosine:

For angle x measured in radians:

sin x =
x

1!
− x3

3!
+

x5

5!
− x7

7!
+ · · ·

cos x =
1

0!
− x2

2!
+

x4

4!
− x6

6!
+ · · ·

Problem 5.6 Derive these Taylor series.

Solution: Let f(x) = sin x. Then

f(0)x0/0! + f ′(0)x/1! + f ′′(0)x2/2! + f ′′′(0)x3/3! + f (4)(0)x4/4! + f (5)(0)x5/5! + f (6)(0)x6/6! + · · ·

= sin(0)/0! + cos(0)x/1!− sin(0)x2/2!− cos(0)x3/3! + sin(0)x4/4! + cos(0)x5/5!− sin(0)x6/6!− · · ·

=
x

1!
− x3

3!
+

x5

5!
− x7

7!
+ · · ·

Let f(x) = cos x. Then

f(0)x0/0! + f ′(0)x/1! + f ′′(0)x2/2! + f ′′′(0)x3/3! + f (4)(0)x4/4! + f (5)(0)x5/5! + f (6)(0)x6/6! + · · ·

= cos(0)/0!− sin(0)x/1!− cos(0)x2/2! + sin(0)x3/3! + cos(0)x4/4!− sin(0)x5/5!− cos(0)x6/6! + · · ·

=
1

0!
− x2

2!
+

x4

4!
− x6

6!
+ · · ·

Problem 5.7 Sum the squares of the above series to verify that sin2 x + cos2 x = 1.
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This might remind you of the Taylor series for ex:

ex =
1

0!
+

x

1!
+

x2

2!
+

x3

3!
+

x4

4!
+

x5

5!
+

x6

6!
+

x7

7!
+ · · ·

Problem 5.8 Derive this Taylor series.

Solution: Let f(x) = ex. Then

f(0)x0/0! + f ′(0)x/1! + f ′′(0)x2/2! + f ′′′(0)x3/3! + f (4)(0)x4/4! + f (5)(0)x5/5! + f (6)(0)x6/6! + · · ·

= e0/0! + e0x/1! + e0x2/2! + e0x3/3! + e0x4/4! + e0x5/5! + e0x6/6! + · · ·

=
1

0!
+

x

1!
+

x2

2!
+

x3

3!
+

x4

4!
+

x5

5!
+

x6

6!
+

x7

7!
+ · · ·

Problem 5.9 Use the above series to show that eaeb = ea+b.

From substitution (and some observations about convergence), one gets the beautiful formula
for all complex numbers x:

eix = cos x + i sin x

In particular, setting x = π yields an expression containing the perhaps five most important
constants in mathematics:
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eiπ + 1 = 0

These formulas provide a connection between two representations for complex numbers on
the one hand, and Cartesian and polar coordinates on the other. Any complex number rcisθ
can now also be written reiθ. Because r1e

iθ1r2e
iθ2 = r1r2e

i(θ1+θ2) we have another way to
see that to multiply two complex numbers we add the angles (arguments) and multiply the
lengths (moduli).

Problem 5.10 Suppose z = z1z2 where z1 = eiθ1 and z2 = eiθ2 . Use Problem 5.9 to prove
the angle sum formulas for sine and cosine.
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