MA515 Homework \#8 Due Wednesday, November 10

Problems to hand in:

1. Problem (Finding a negative-weight dicycle), p. 77.
2. Read the definition of a matrix being totally unimodular in the beginning of Section 0.8. Do the following:
(a) Prove that if any one of the following matrices are totally unimodular, then they all are:
i. A.
ii. $-A$.
iii. A^{T}.
iv. $[A, A]$ (two copies of A side by side).
v. $[A, I]$ (a copy of A and a copy of I side by side).
(b) Assume that a matrix A is such that
i. Every entry of A is either 0,1 , or -1 .
ii. Every column of A contains at most two nonzero entries.
iii. The rows of A can be partitioned into two subsets R_{1} and R_{2} with the property that for every column of A with two nonzero entries, if the two entries have the same sign then one is in R_{1} and the other is in R_{2}, and if the two entries have opposite signs, then both are in R_{1} or both are in R_{2}.
Prove that A is totally unimodular. Suggestion: Modify the proof of the first theorem on page 44.
(c) Problem (Unimodularity and pivoting), p. 43.
(d) An undirected graph is bipartite if its vertices can be partitioned into two subsets V_{1} and V_{2} such that every edge of G has one endpoint in V_{1} and the other in V_{2}. The vertex-edge incidence matrix of an undirected graph G is the matrix B, with rows indexed by the vertices of G, the columns indexed by the edges of G, and the entry in row v column e being 1 if v is an endpoint of e and 0 otherwise.
i. Prove that an undirected graph is bipartite if and only if it contains no cycles with an odd number of edges.
ii. Prove or disprove: An undirected graph is bipartite if and only if its vertexedge incidence matrix is totally unimodular.

Problems to work but not hand in:

1. Carefully go through the proof of Dijkstra's algorithm in the book, pp. 79-81.
2. Exercise (Bellman-Ford Algorithm), p. 76. Now apply Floyd-Warshall to this graph.
