MA515 Homework #4 Due Wednesday, September 28

Let us assume we have an LP in the form

$$\max z = c^T x$$

s.t. $Ax = b$
 $x \ge O$

where the matrix A has full row rank as a result of inserting slack variables. We can represent the data in the form of a tableau T. For example, here is the tableau for the GGMC problem:

x_1	x_2	x_3	x_4	x_5	-z	
1	2	1	0	0	0	120
1	1	0	1	0	0	70
2	1	0	0	1	0	100
5	4	0	0	0	1	0

Each row represents an equation. For example, the first row represents the equation $x_1 + 2x_2 + x_3 = 120$ and the last row represents the equation $5x_1 + 4x_2 - z = 0$ (which is equivalent to $z = 5x_1 + 4x_2$.) Note the identity matrix associated with the columns for the slack variables and the column -z.

Now suppose we are interested in focusing our attention on a different basis for the column space of A, say, $B = \{1, 2, 5\}$. We can perform row operations on the tableau T to result in a tableau T' with an identity matrix in the columns associated with the new basis (and the column labeled by -z):

x_1	x_2	x_3	x_4	x_5	-z	
1	0	-1	2	0	0	20
0	1	1	-1	0	0	50
0	0	1	-3	1	0	10
0	0	1	-6	0	1	-300

The rows of T' represent a set of four equations equivalent to the original four equations of T.

- 1. How can you easily read off the associated basic solution \overline{x} from T'? Why does this work in general?
- 2. How can you easily read off the associated basic directions from T'? Why does this work in general?

- 3. How can you easily read off the costs of the associated basic directions from T'? Why does this work in general?
- 4. When contemplating a pivot, how can we determine the entering variable from T'? Why does this work in general?
- 5. When contemplating a pivot, how can we determine whether the LP has unbounded objective function value from T'? Why does this work in general?
- 6. When contemplating a pivot, how can we perform the ratio test using the data in T'? Why does this work in general?
- 7. How can you easily read off the vector \overline{y} from T'? Why does this work in general?