MA515 Homework \#4
 Due Wednesday, September 28

Let us assume we have an LP in the form

$$
\begin{gathered}
\max z=c^{T} x \\
\text { s.t. } A x=b \\
x \geq O
\end{gathered}
$$

where the matrix A has full row rank as a result of inserting slack variables. We can represent the data in the form of a tableau T. For example, here is the tableau for the GGMC problem:

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	$-z$	
1	2	1	0	0	0	120
1	1	0	1	0	0	70
2	1	0	0	1	0	100
5	4	0	0	0	1	0

Each row represents an equation. For example, the first row represents the equation $x_{1}+$ $2 x_{2}+x_{3}=120$ and the last row represents the equation $5 x_{1}+4 x_{2}-z=0$ (which is equivalent to $z=5 x_{1}+4 x_{2}$.) Note the identity matrix associated with the columns for the slack variables and the column $-z$.

Now suppose we are interested in focusing our attention on a different basis for the column space of A, say, $B=\{1,2,5\}$. We can perform row operations on the tableau T to result in a tableau T^{\prime} with an identity matrix in the columns associated with the new basis (and the column labeled by $-z$):

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	$-z$	
1	0	-1	2	0	0	20
0	1	1	-1	0	0	50
0	0	1	-3	1	0	10
0	0	1	-6	0	1	-300

The rows of T^{\prime} represent a set of four equations equivalent to the original four equations of T.

1. How can you easily read off the associated basic solution \bar{x} from T^{\prime} ? Why does this work in general?
2. How can you easily read off the associated basic directions from T^{\prime} ? Why does this work in general?
3. How can you easily read off the costs of the associated basic directions from T^{\prime} ? Why does this work in general?
4. When contemplating a pivot, how can we determine the entering variable from T^{\prime} ? Why does this work in general?
5. When contemplating a pivot, how can we determine whether the LP has unbounded objective function value from T^{\prime} ? Why does this work in general?
6. When contemplating a pivot, how can we perform the ratio test using the data in T^{\prime} ? Why does this work in general?
7. How can you easily read off the vector \bar{y} from T^{\prime} ? Why does this work in general?
