MA515 Homework \#6

Due Monday, October 17

1. My course notes, problems 9.6, 9.7, 9.8, 9.12.
2. Consider the linear programs (P) and $(P(u))$:

$$
\begin{array}{cc}
\max c^{T} x & \max c^{T} x \\
\text { s.t. } A x=b & \text { s.t. } A x=b+u \\
x \geq O & x \geq O \\
(P) & (P(u))
\end{array}
$$

Assume that (P) has an optimal objective function value z^{*}. Suppose that there exists a vector y^{*} and a positive real number ε such that the optimal objective function value $z^{*}(u)$ of $(P(u))$ equals $z^{*}+u^{T} y^{*}$ whenever $\|u\|<\varepsilon$. Prove that y^{*} is an optimal solution to the dual of (P).

