MA515 EXAM \#2

INSTRUCTIONS: This is a take-home exam. You may use my course notes, the course text, and your course notes, but no other source of information or assistance, human or nonhuman. You may certainly see me if you have questions. Your answers are due Wednesday, November 1, at 4:00 pm - give them directly to me or slide them under my office door.

1. Let $P \subset \mathbf{R}^{n}$ be a polytope. Suppose $V=\left\{v^{1}, \ldots, v^{m}\right\}$ is a finite subset of P such that for every $c \in \mathbf{R}^{n}$ there is at least one point in V at which the function $c^{T} x$ attains its maximum value. Prove that every point p in P is a convex combination of the points in V by applying a theorem of the alternatives to the following system:

$$
\begin{gathered}
{\left[\begin{array}{ccc}
v^{1} & \cdots & v^{m} \\
1 & \cdots & 1
\end{array}\right] \lambda=\left[\begin{array}{l}
p \\
1
\end{array}\right]} \\
\lambda \geq O
\end{gathered}
$$

2. Assume that you have used the simplex method to find an optimal solution to the linear program

$$
\begin{array}{cc}
& \max c^{T} x \\
\text { (P) } \quad \text { s.t. } A x=b \\
& x \geq O
\end{array}
$$

Assume that A has full row rank and that $\bar{y}^{T}=c_{B}^{T} A_{B}^{-1}$ is associated with the final optimal basis B. Prove that \bar{y} is optimal for the dual (D) of (P) :

$$
\text { (D) } \quad \begin{aligned}
& \min y^{T} b \\
& \text { s.t. } y^{T} A \geq c^{T}
\end{aligned}
$$

Suggestion: Show that \bar{y} is feasible for (D) and satisfies complementary slackness.
3. Consider the linear programs (P) and $(P(u))$:

$$
\begin{array}{cc}
\max c^{T} x & \max c^{T} x \\
\text { s.t. } A x=b & \text { s.t. } A x=b+u \\
x \geq O & x \geq O \\
(P) & (P(u))
\end{array}
$$

Assume that (P) has an optimal objective function value z^{*}. Suppose that there exists a vector y^{*} and a positive real number ε such that the optimal objective function value
$z^{*}(u)$ of $(P(u))$ equals $z^{*}+u^{T} y^{*}$ whenever $\|u\|<\varepsilon$. Prove that y^{*} is an optimal solution to the dual of (P). Suggestion: Let \bar{y} be optimal for the dual of (P) and use a previous homework problem (Exercise 10.7) to (eventually) show $\bar{y}=y^{*}$.
4. An affine combination of points $v^{1}, \ldots, v^{m} \in \mathbf{R}^{n}$ is a linear combination

$$
\lambda_{1} v^{1}+\cdots+\lambda_{m} v^{m}
$$

for which we also require

$$
\lambda_{1}+\cdots+\lambda_{n}=1
$$

Let $S=\left\{v^{1}, \ldots, v^{m}\right\}$ be a subset of \mathbf{R}^{n}. Define S to be affinely independent if there is no linear combination

$$
\lambda_{1} v^{1}+\cdots+\lambda_{m} v^{m}=O
$$

for which

$$
\lambda_{1}+\cdots+\lambda_{m}=0
$$

other than $\lambda_{1}=\cdots=\lambda_{m}=0$.
(a) Prove that the set S is affinely independent if and only if there is no element of S that can be written as an affine combination of the remaining elements of S.
(b) Prove that the set S is affinely independent if and only if the following subset of \mathbf{R}^{n+1} is linearly independent:

$$
\left\{\left[\begin{array}{c}
v^{1} \\
1
\end{array}\right], \ldots,\left[\begin{array}{c}
v^{m} \\
1
\end{array}\right]\right\}
$$

(c) Prove that the set S is affinely independent if and only if the set

$$
\left\{v^{1}-v^{m}, \ldots, v^{m-1}-v^{m}\right\} \subset \mathbf{R}^{n}
$$

is linearly independent.
5. Exercise (Linear over $G F(2) \nRightarrow$ graphic) on the top of page 54 of the text. That is to say, prove that there is no graph G such that the graphic matroid associated with G is isomorphic to the Fano matroid. Suggestion: Try explicitly and systematically to construct a graph G with 7 edges having the same independent sets as the Fano matroid.

