MA515 EXAM #2

INSTRUCTIONS: This is a take-home exam. You may use my course notes, the course text, and your course notes, but no other source of information or assistance, human or non-human. You may certainly see me if you have questions. Your answers are due Monday, October 14, at 4:00 pm — give them directly to me or slide them under my office door.

1. An affine combination of points $v^1, \ldots, v^m \in \mathbf{R}^n$ is a linear combination

$$\lambda_1 v^1 + \dots + \lambda_m v^m$$

for which we also require

$$\lambda_1 + \dots + \lambda_n = 1.$$

Let $S = \{v^1, \ldots, v^m\}$ be a subset of \mathbb{R}^n . Define S to be affinely independent if there is no linear combination

$$\lambda_1 v^1 + \dots + \lambda_m v^m = O$$

for which

$$\lambda_1 + \dots + \lambda_m = 0$$

other than $\lambda_1 = \cdots = \lambda_m = 0$.

- (a) Prove that the set S is affinely independent if and only if there is no element of S that can be written as an affine combination of the remaining elements of S.
- (b) Prove that the set S is affinely independent if and only if the following subset of \mathbf{R}^{n+1} is linearly independent:

$$\left\{ \left[\begin{array}{c} v^1 \\ 1 \end{array} \right], \dots, \left[\begin{array}{c} v^m \\ 1 \end{array} \right] \right\}$$

(c) Prove that the set S is affinely independent if and only if the set

$$\{v^1 - v^m, \dots, v^{m-1} - v^m\} \subset \mathbf{R}^n$$

is linearly independent.

2. Here is way to use a theorem of the alternatives to find a new proof of a result that we already know. Let $P \subset \mathbf{R}^n$ be a polytope. Suppose $V = \{v^1, \ldots, v^m\}$ is a finite subset of P such that for every $c \in \mathbf{R}^n$ there is at least one point in V at which the function $c^T x$ attains its maximum value over P. Prove that every point p in P is a convex combination of the points in V by applying a theorem of the alternatives to the following system:

$\left[\begin{array}{c}v^1\\1\end{array}\right]$	· · · ·	v^m 1	$\left] \lambda = \right]$	$\left[\begin{array}{c}p\\1\end{array}\right]$
		$\lambda \ge 0$	0	

3. Consider the linear programs (P) and (P(u)):

$$\max c^T x \qquad \max c^T x$$

s.t. $Ax = b$ s.t. $Ax = b + u$
 $x \ge O$ $x \ge O$
 (P) $(P(u))$

Assume that (P) has an optimal objective function value z^* . Suppose that there exists a vector y^* and a positive real number ε such that the optimal objective function value $z^*(u)$ of (P(u)) equals $z^*+u^Ty^*$ whenever $||u|| < \varepsilon$. Prove that y^* is an optimal solution to the dual of (P). Suggestion: Let \overline{y} be optimal for the dual of (P) and use a previous homework problem (Exercise 7.29) to (eventually) show $\overline{y} = y^*$.

- 4. Exercise 7.30.
- 5. Exercise 7.33.