MA515 HOMEWORK \#5

Due Wednesday, October 3

1. Exercise 7.28
2. Exercise 7.29
3. Exercise 7.34
4. Let us assume we have an LP of the form

$$
\begin{gathered}
\max z=c^{T} x \\
\text { s.t. } A x=b \\
\quad x \geq O
\end{gathered}
$$

(a) Let \bar{x} be a feasible point. Prove that \bar{x} is a basic feasible solution if and only if it is a vertex (using our earlier definition of vertex involving $N(\bar{x})$).
(b) Assume that we have a basic feasible solution \bar{x} associated with some basis B, and that we also have some basic direction \bar{w} associated with B and nonbasic $s \in N$. For convenience, let us also assume that $\bar{x}_{j}>0$ for each $j \in B$ and that \bar{w} is not nonnegative. So when we consider the ray $\bar{x}+t \bar{w}, t \geq 0$, we will discover some leaving variable $x_{r}, r \in B$. Prove that $B^{\prime}=(B \cup\{s\}) \backslash\{r\}$ is a basis; i.e., prove that the columns of $A_{B^{\prime}}$ are linearly independent.

