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1 References

The textbook for this course is Jon Lee, A First Course in Combinatorial Optimization,
Cambridge, 2004. Four good references for linear programming are

1. Dimitris Bertsimas and John N. Tsitsiklis, Introduction to Linear Optimization,
Athena Scientific.

2. Vašek Chvátal, Linear Programming, W.H. Freeman.

3. George L. Nemhauser and Laurence A. Wolsey, Integer and Combinatorial Optimiza-
tion, Wiley.

4. Christos H. Papadimitriou and Kenneth Steiglitz, Combinatorial Optimization: Algo-
rithms and Complexity, Prentice Hall.

I used some material from these sources in writing these notes. Also, some of the exercises
were provided by Jon Lee and Francois Margot.

Exercise 1.1 Find as many errors in these notes as you can and report them to me. �
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2 Exercises: Matrix Algebra

It is important to have a good understanding of the content of a typical one-semester un-
dergraduate matrix algebra course. Here are some exercises to try. Note: Unless otherwise
specified, all of my vectors are column vectors. If I want a row vector, I will transpose a
column vector.

Exercise 2.1 Consider the product C = AB of two matrices A and B. What is the formula
for cij, the entry of C in row i, column j? Explain why we can regard the ith row of C as
a linear combination of the rows of B. Explain why we can regard the jth column of C as
a linear combination of the columns of A. Explain why we can regard the ith row of C as a
sequence of inner products of the columns of B with a common vector. Explain why we can
regard the jth column of C as a sequence of inner products of the rows of A with a common
vector. Consider the block matrices[

A B
C D

]
and

[
E F
G H

]
.

Assume that the number of columns of A and C equals the number of rows of E and F , and
that the number of columns of B and D equals the number of rows of G and H. Describe
the product of these two matrices. �

Exercise 2.2 Associated with a matrix A are four vector spaces. What are they, how can
you find a basis for each, and how are their dimensions related? Give a “natural” basis for
the nullspace of the matrix [A|I], where A is an m × n matrix and I is an m × m identity
matrix concatenated onto A. �

Exercise 2.3 Suppose V is a set of the form {Ax : x ∈ Rk}, where A is an n × k matrix.
Prove that V is also a set of the form {y ∈ Rn : By = O} where B is an � × n matrix, and
explain how to find an appropriate matrix B. Conversely, suppose V is a set of the form
{y ∈ Rn : By = O}, where B is an � × n matrix. Prove that V is also a set of the form
{Ax : x ∈ Rk}, where A is an n × k matrix, and explain how to find an appropriate matrix
A. �

Exercise 2.4 Consider a linear system of equations, Ax = b. What are the various elemen-
tary row operations that can be used to obtain an equivalent system? What does it mean
for two systems to be equivalent? �

Exercise 2.5 Consider a linear system of equations, Ax = b. Describe the set of all solutions
to this system. Explain how to use Gaussian elimination to determine this set. Prove that
the system has no solution if and only if there is a vector y such that yT A = OT and yT b �= 0.
�
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Exercise 2.6 If x ∈ Rn, what is the definition of ‖x‖1? Of ‖x‖2? Of ‖x‖∞? For fixed
matrix A (not necessarily square) and vector b, explain how to minimize ‖Ax − b‖2. Note:
From now on in these notes, if no subscript appears in the notation ‖x‖, then the norm ‖x‖2

is meant. �

Exercise 2.7 Consider a square n × n matrix A. What is the determinant of A? How
can it be expressed as a sum with n! terms? How can it be expressed as an expansion by
cofactors along an arbitrary row or column? How is it affected by the application of various
elementary row operations? How can it be determined by Gaussian elimination? What does
it mean for A to be singular? Nonsingular? What can you tell about the determinant of A
from the dimensions of each of the four vector spaces associated with A? The determinant
of A describes the volume of a certain geometrical object. What is this object? �

Exercise 2.8 Consider a linear system of equations Ax = b where A is square and nonsin-
gular. Describe the set of all solutions to this system. What is Cramer’s rule and how can
it be used to find the complete set of solutions? �

Exercise 2.9 Consider a square matrix A. When does it have an inverse? How can Gaussian
elimination be used to find the inverse? How can Gauss-Jordan elimination be used to find
the inverse? Suppose ej is a vector of all zeroes, except for a 1 in the jth position. What does
the solution to Ax = ej have to do with A−1? What does the solution to xT A = eT

j have to
do with A−1? Prove that if A is a nonsingular matrix with integer entries and determinant
±1, then A−1 is also a matrix with integer entries. Prove that if A is a nonsingular matrix
with integer entries and determinant ±1, and b is a vector with integer entries, then the
solution to Ax = b is an integer vector. �

Exercise 2.10 What is LU factorization? What is QR factorization, Gram-Schmidt or-
thogonalization, and their relationship? �

Exercise 2.11 What does it mean for a matrix to be orthogonal? Prove that if A is or-
thogonal and x and y are vectors, then ‖x− y‖2 = ‖Ax−Ay‖2; i.e., multiplying two vectors
by A does not change the Euclidean distance between them. �

Exercise 2.12 What is the definition of an eigenvector and an eigenvalue of a square matrix?
The remainder of the questions in this problem concern matrices over the real numbers, with
real eigenvalues and eigenvectors. Find a square matrix with no eigenvalues. Prove that if
A is a symmetric n×n matrix, there exists a basis for Rn consisting of eigenvectors of A. �
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Exercise 2.13 What does it mean for a symmetric matrix A to be positive semi-definite?
Positive definite? If A is positive definite, describe the set {x : xT Ax ≤ 1}. What is the
geometrical interpretation of the eigenvectors and eigenvalues of A with respect to this set?
�

Exercise 2.14 Suppose E is a finite set of vectors in Rn. Let V be the vector space spanned
by the vectors in E. Let I = {S ⊆ E : S is linearly independent}. Let C = {S ⊆ E : S is
linearly dependent, but no proper subset of S is linearly dependent}. Let B = {S ⊆ E : S
is a basis for V }. Prove the following:

1. ∅ ∈ I.

2. If S1 ∈ I, S2 ∈ I, and card S2 > card S1, then there exists an element e ∈ S2 \ S1 such
that S1 ∪ {e} ∈ I.

3. If S ∈ I and S ∪ {e} is dependent, then there is exactly one subset of S ∪ {e} that is
in C.

4. If S1 ∈ B and S2 ∈ B, then card S1 = card S2.

5. If S1 ∈ B, S2 ∈ B, and e1 ∈ S1, then there exists an element e2 ∈ S2 such that
(S1 \ {e1}) ∪ {e2} ∈ B.

6. If S1 ∈ C, S2 ∈ C, e ∈ S1 ∩ S2, and e′ ∈ S1 \ S2, then there is a set S3 ∈ C such that
S3 ⊆ (S1 ∪ S2) \ {e} and e′ ∈ S3.

�
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3 Polytopes

3.1 Convex Combinations and V-Polytopes

Definition 3.1 Let v1, . . . , vm be a finite set of points in Rn and λ1, . . . , λm ∈ R. Then

m∑
j=1

λjv
j

is called a linear combination of v1, . . . , vm. If λ1, . . . , λm ≥ 0 then it is called a nonnegative
(or conical) combination. If λ1 + · · · + λm = 1 then it is called an affine combination. If
both λ1, . . . , λm ≥ 0 and λ1 + · · · + λm = 1 then it is called convex combination. Note: We
will regard an empty linear or nonnegative combination as equal to the point O, but will not
consider empty affine or convex combinations.

Exercise 3.2 Give some examples of linear, nonnegative, affine, and convex combinations
in R1, R2, and R3. Include diagrams. �

Definition 3.3 A subset S ⊆ Rn is a subspace (respectively, cone, affine set, convex set)
if it is closed under all linear (respectively, nonnegative, affine, convex) combinations of its
elements. Note: This implies that subspaces and cones must contain the point O.

Exercise 3.4 Give some examples of subspaces, cones, affine sets, and convex sets in R1,
R2, and R3. �

Exercise 3.5 Is the empty set a subspace, a cone, an affine set, a convex set? Is Rn a
subspace, a cone, an affine set, a convex set? �

Exercise 3.6 Prove that a subset S ⊆ Rn is affine if and only if it is a set of the form L+x,
where L is a subspace and x ∈ Rn. �

Exercise 3.7 Are the following sets subspaces, cones, affine sets, convex sets?

1. {x ∈ Rn : Ax = O} for a given matrix A.

2. {x ∈ Rn : Ax ≤ O} for a given matrix A.

3. {x ∈ Rn : Ax = b} for a given matrix A and vector b.

4. {x ∈ Rn : Ax ≤ b} for a given matrix A and vector b.
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Proposition 3.8 A subset S ⊆ Rn is a subspace (respectively, a cone, an affine set, a
convex set) if and only it is closed under all linear (respectively, nonnegative, affine, convex)
combinations of pairs of elements.

Proof. Exercise. �

Proposition 3.9 The intersection of any collection of subspaces (respectively, cones, affine
sets, convex sets) is a subspace (respectively, cone, affine set, convex set).

Proof. Exercise. �

Definition 3.10 Let V ⊆ Rn. Define the linear span (respectively, cone, affine span, convex
hull) of V , denoted span V (respectively, cone V , aff V , conv V ) to be the intersection of all
subspaces (respectively, cones, affine sets, convex sets) containing V ,

span V =
⋂{S : V ⊆ S, S is a subspace},

cone V =
⋂{S : V ⊆ S, S is a cone},

aff V =
⋂{S : V ⊆ S, S is an affine set},

conv V =
⋂{S : V ⊆ S, S is a convex set}.

Lemma 3.11 For all V ⊆ Rn, the set span V (respectively, cone V , aff V , conv V ) is a
subspace (respectively, cone, affine set, convex set).

Proof. Exercise. �

Lemma 3.12 “Linear/nonnegative/affine/convex combinations of lin-
ear/nonnegative/affine/convex combinations are linear/nonnegative/affine/convex combina-
tions.”

Proof. Exercise. �

Proposition 3.13 Let V ⊆ Rn. Then span V (respectively, cone V , aff V , conv V equals
the set of all linear (respectively, nonnegative, affine, convex) combinations of elements of
V .

Proof. Exercise. �
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Lemma 3.14 Let v1, . . . , vm ∈ Rn. Let A be the matrix[
v1 · · · vm

1 · · · 1

]

That is to say, A is created by listing the points vi as columns and then appending a row of 1’s.
Let v ∈ Rn. Then v equals the convex combination

∑m
i=1 λiv

i if and only if λ = [λ1, . . . , λm]T

is a solution of

A




λ1
...

λm


 =

[
v
1

]

λ1, . . . , λm ≥ 0

Proof. Exercise. �

Exercise 3.15 What can you say about the rank of the matrix A in the previous problem?
�

Theorem 3.16 (Carathéodory) Suppose x is a convex combination of v1, . . . , vm ∈ Rn,
where m > n + 1. Then x is also a convex combination of a subset of {v1, . . . , vm} of
cardinality at most n + 1.

Proof. Suggestion: Think about the matrix A in the previous two problems. Assume that
the columns associated with positive values of λi are linearly dependent. What can you do
now? �

Definition 3.17 A V-polytope is the convex hull of a finite collection of points in Rn.

Exercise 3.18 Exercise 3.19 Construct some examples of V-polytopes in R, R2, and
R3. �

Is the empty set a V-polytope? �

Exercise 3.20 In each of the following cases describe conv V .

1. V = {[±1,±1,±1]} ⊂ R3.

2. V = {[1, 0, 0], [0, 1, 0], [0, 0, 1]} ⊂ R3.

3. V = {[±1, 0, 0], [0,±1, 0], [0, 0,±1]} ⊂ R3.

4. V = {0,±1
2
,±2

3
,±3

4
, . . .} ⊂ R.
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Theorem 3.21 (Radon) Let V = {v1, . . . , vm} ⊆ Rn. If m > n + 1 then there exists a
partition V1, V2 of V such that conv V1 ∩ conv V2 �= ∅. �

Proof. Exercise. �

Theorem 3.22 (Helly) Let V = {V1, . . . , Vm} be a family of m convex subsets of Rn with
m ≥ n+1. If every subfamily of n+1 sets in V has a nonempty intersection, then ∩m

i=1Vi �= ∅.
�

Proof. Exercise. �
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3.2 Linear Inequalities and H-Polytopes

Definition 3.23 Let a ∈ Rn and b0 ∈ R. Then aT x = b0 is called a linear equation, and
aT x ≤ b0 and aT x ≥ b0 are called linear inequalities.

Further, if a �= O, then the set {x ∈ Rn : aT x = b0} is called a hyperplane, the sets
{x ∈ Rn : aT x ≤ b0} and {x ∈ Rn : aT x ≥ b0} are called closed halfspaces , and the sets
{x ∈ Rn : aT x < b0} and {x ∈ Rn : aT x > b0} are called open halfspaces.

Exercise 3.24 Why do we require a �= O in the definitions of hyperplanes and halfspaces?
�

Definition 3.25 A subset S ⊆ Rn is bounded if there exists a number M ∈ R such that
‖x‖ ≤ M for all x ∈ S.

Definition 3.26 We can represent systems of a finite collection of linear equations or linear
inequalities in matrix form. For example, the system

a11x1 + · · · + a1nxn ≤ b1
...

am1x1 + · · · + amnxn ≤ bm

can be written compactly as
Ax ≤ b

where

A =




a11 · · · a1n
...

...
...

am1 · · · amn




and

b =




b1
...

bm




A subset of Rn of the form {x ∈ Rn : Ax ≤ b} is called an H-polyhedron. A bounded
H-polyhedron is called an H-polytope.

Exercise 3.27 Construct some examples of H-polyhedra and H-polytopes in R, R2, and
R3. �

Exercise 3.28 Is the empty set an H-polytope? Is Rn an H-polyhedron? �
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Exercise 3.29 Prove that a subset of Rn described by a finite collection of linear equations
and inequalities is an H-polyhedron. �

Exercise 3.30 In each case describe the H-polyhedron P = {x : Ax ≤ b} where A and b
are as given.

1.

A =




1 0 0
0 1 0
0 0 1

−1 0 0
0 −1 0
0 0 −1




b =




1
1
1
1
1
1




2.

A =




1 1 1
−1 1 1

1 −1 1
−1 −1 1

1 1 −1
−1 1 −1

1 −1 −1
−1 −1 −1




b =




1
1
1
1
1
1




�
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3.3 H-Polytopes are V-Polytopes

Definition 3.31 Suppose P = {x ∈ Rn : Ax ≤ b} is an H-polytope and x ∈ P . Partition
the linear inequalities into two sets: those that x satisfies with equality (the tight or bind-
ing inequalities) and those that x satisfies with strict inequality (the slack or nonbinding
inequalities):

A1x ≤ b1 where A1x = b1,
A2x ≤ b2 where A2x < b2.

Define N(x) to be the linear space that is the nullspace of the matrix A1; i.e., the solution
space to A1x = O. Even though this is not an official term in the literature, we will call
N(x) the nullspace of x (with respect to the system defining P ). �

Definition 3.32 Let P be an H-polytope and x ∈ P such that dim N(x) = 0. Then x is
called a vertex of P . �

Lemma 3.33 No two different vertices of an H-polytope have the same set of tight inequal-
ities. �

Proposition 3.34 If P is an H-polytope then P has a finite number of vertices. �

Lemma 3.35 Let P = {x ∈ Rn : Ax = b} be an H-polytope and x ∈ P such that x is not a
vertex. Choose any nonzero w ∈ N(x) and consider the line x+ tw. Then there is a positive
value of t for which x + tw is in P and has more tight constraints than x. Similarly, there
is a negative value of t for which x + tw is in P and has more tight constraints than x. �

Theorem 3.36 (Minkowski) Every H-polytope P is the convex hull of its vertices. Hence
every H-polytope is a V-polytope. Suggestion: Prove this by induction on the number of slack
inequalities for a point x ∈ P . �

Exercise 3.37 Determine the vertices of the polytope in R2 described by the following
inequalities:

x1 + 2x2 ≤ 120
x1 + x2 ≤ 70

2x1 + x2 ≤ 100
x1 ≥ 0
x2 ≥ 0

�
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Exercise 3.38 Determine the vertices of the polytope in R3 described by the following
inequalities:

x1 + x2 ≤ 1
x1 + x3 ≤ 1
x2 + x3 ≤ 1

x1 ≥ 0
x2 ≥ 0
x3 ≥ 0

�

Exercise 3.39 Consider the polytope in R9 described by the following inequalities:

x11 + x12 + x13 = 1
x21 + x22 + x23 = 1
x31 + x32 + x33 = 1
x11 + x21 + x31 = 1
x12 + x22 + x32 = 1
x13 + x23 + x33 = 1

x11 ≥ 0
x12 ≥ 0
x13 ≥ 0
x21 ≥ 0
x22 ≥ 0
x23 ≥ 0
x31 ≥ 0
x32 ≥ 0
x33 ≥ 0

Find at least one vertex. �
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3.4 V-Polytopes are H-Polytopes

In order to prove the converse of the result in the previous section, i.e., to prove that every
V-polytope is an H-polytope, we will need to invoke a procedure called Fourier-Motzkin
elimination, which will be discussed later. What we need to know about this procedure for
the moment is that whenever we have a polyhedron P described by a system of inequalities
in the variables, say, x1, . . . , xn, we can eliminate one or more variables of our choosing, say,
xk+1, . . . , xn, to obtain a new system of inequalities describing the projection of P onto the
subspace associated with x1, . . . , xk.

Theorem 3.40 (Weyl) If P is a V-polytope, then it is an H-polytope.

Proof. Assume P = conv {v1, . . . , vm}. Consider P ′ = {(r, x) :
∑m

i=1 riv
i − x =

O,
∑m

i=1 ri = 1, r ≥ O}. Then P ′ = {(r, x) :
∑m

i=1 riv
i−x ≤ O,

∑m
i=1 riv

i+x ≥ O,
∑m

i=1 ri ≤
1,

∑m
i=1 ri ≥ 1, r ≥ O}. Then a description for P in terms of linear inequalities is obtained

from that of P ′ by using Fourier-Motzkin elimination to eliminate the variables r1, . . . , rm.
Finally, we note that every V-polytope is necessarily a bounded set—we can, for example,
bound the norm of any feasible point x in terms of the norms of v1, . . . , vm: if x =

∑m
i=1 riv

i

with
∑m

i=1 ri = 1 and ri ≥ 0 for all i = 1, . . . ,m, then

‖x‖ =

∥∥∥∥∥
m∑

i=1

riv
i

∥∥∥∥∥

≤
m∑

i=1

ri‖vi‖

≤
m∑

i=1

‖vi‖.

�

Exercise 3.41 Experiment with the online demo of “polymake,” www.math.tu-
berlin.de/polymake, which can convert between descriptions of polytopes as V-polytopes
and as H-polytopes. �
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4 Theorems of the Alternatives

4.1 Systems of Equations

Let’s start with a system of linear equations:

Ax = b.

Suppose you wish to determine whether this system is feasible or not. One reasonable
approach is to use Gaussian elimination. If the system has a solution, you can find a
particular one, x. (You remember how to do this: Use elementary row operations to put
the system in row echelon form, select arbitrary values for the independent variables and
use back substitution to solve for the dependent variables.) Once you have a feasible x (no
matter how you found it), it is straightforward to convince someone else that the system is
feasible by verifying that Ax = b.

If the system is infeasible, Gaussian elimination will detect this also. For example, con-
sider the system

x1 + x2 + x3 + x4 = 1
2x1 − x2 + 3x3 = −1

8x1 + 2x2 + 10x3 + 4x4 = 0

which in matrix form looks like 


1 1 1 1 1
2 −1 3 0 −1
8 2 10 4 0


 .

Perform elementary row operations to arrive at a system in row echelon form:




1 0 0
0 1 0
0 −2 1







1 0 0
−2 1 0
−8 0 1







1 1 1 1 1
2 −1 3 0 −1
8 2 10 4 0


 =




1 1 1 1 1
0 −3 1 −2 −3
0 0 0 0 −2


 ,

which implies




1 0 0
−2 1 0
−4 −2 1







1 1 1 1 1
2 −1 3 0 −1
8 2 10 4 0


 =




1 1 1 1 1
0 −3 1 −2 −3
0 0 0 0 −2


 .

Immediately it is evident that the original system is infeasible, since the resulting equivalent
system includes the equation 0x1 + 0x2 + 0x3 + 0x4 = −2.

14



This equation comes from multiplying the matrix form of the original system by the third
row of the matrix encoding the row operations: [−4,−2, 1]. This vector satisfies

[
−4 −2 1

] 


1 1 1 1
2 −1 3 0
8 2 10 4


 =

[
0 0 0 0

]

and [
−4 −2 1

] 


1
−1

0


 = −2.

In matrix form, we have found a vector y such that yT A = O and yT b �= 0. Gaussian
elimination will always produce such a vector if the original system is infeasible. Once you
have such a y (regardless of how you found it), it is easy to convince someone else that the
system is infeasible.

Of course, if the system is feasible, then such a vector y cannot exist, because otherwise
there would also be a feasible x, and we would have

0 = OT x = (yT A)x = yT (Ax) = yT b �= 0,

which is impossible. (Be sure you can justify each equation and inequality in the above
chain.) We have established our first Theorem of the Alternatives:

Theorem 4.1 Either the system
(I) Ax = b

has a solution, or the system

(II)
yT A = OT

yT b �= 0

has a solution, but not both.

As a consequence of this theorem, the following question has a “good characterization”:
Is the system (I) feasible? I will not give an exact definition of this concept, but roughly
speaking it means that whether the answer is yes or no, there exists a “short” proof. In this
case, if the answer is yes, we can prove it by exhibiting any particular solution to (I). And
if the answer is no, we can prove it by exhibiting any particular solution to (II).

Geometrically, this theorem states that precisely one of the alternatives occurs:

1. The vector b is in the column space of A.

2. There is a vector y orthogonal to each column of A (and hence to the entire column
space of A) but not orthogonal to b.

15



4.2 Fourier-Motzkin Elimination — A Starting Example

Now let us suppose we are given a system of linear inequalities

Ax ≤ b

and we wish to determine whether or not the system is feasible. If it is feasible, we want to
find a particular feasible vector x; if it is not feasible, we want hard evidence!

It turns out that there is a kind of analog to Gaussian elimination that works for systems
of linear inequalities: Fourier-Motzkin elimination. We will first illustrate this with an
example:

(I)

x1 − 2x2 ≤ −2
x1 + x2 ≤ 3

x1 ≤ 2
−2x1 + x2 ≤ 0
−x1 ≤ −1
8x2 ≤ 15

Our goal is to derive a second system (II) of linear inequalities with the following properties:

1. It has one fewer variable.

2. It is feasible if and only if the original system (I) is feasible.

3. A feasible solution to (I) can be derived from a feasible solution to (II).

(Do you see why Gaussian elimination does the same thing for systems of linear equations?)
Here is how it works. Let’s eliminate the variable x1. Partition the inequalities in (I) into
three groups, (I−), (I+), and (I0), according as the coefficient of x1 is negative, positive, or
zero, respectively.

(I−)
−2x1 + x2 ≤ 0
−x1 ≤ −1

(I+)
x1 − 2x2 ≤ −2
x1 + x2 ≤ 3

x1 ≤ 2
(I0) 8x2 ≤ 15

For each pair of inequalities, one from (I−) and one from (I+), multiply by positive
numbers and add to eliminate x1. For example, using the first inequality in each group,

(1
2
)(−2x1 + x2 ≤ 0)

+(1)(x1 − 2x2 ≤ −2)
−3

2
x2 ≤ −2
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System (II) results from doing this for all such pairs, and then also including the in-
equalities in (I0):

(II)

−3
2
x2 ≤ −2

3
2
x2 ≤ 3

1
2
x2 ≤ 2

−2x2 ≤ −3
x2 ≤ 2
0x2 ≤ 1
8x2 ≤ 15

The derivation of (II) from (I) can also be represented in matrix form. Here is the
original system: 



1 −2 −2
1 1 3
1 0 2

−2 1 0
−1 0 −1

0 8 15




Obtain the new system by multiplying on the left by the matrix that constructs the
desired nonnegative combinations of the original inequalities:




1 0 0 1/2 0 0
0 1 0 1/2 0 0
0 0 1 1/2 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0
0 0 0 0 0 1







1 −2 −2
1 1 3
1 0 2

−2 1 0
−1 0 −1

0 8 15




=




0 −3/2 −2
0 3/2 3
0 1/2 2
0 −2 −3
0 1 2
0 0 1
0 8 15




.

To see why the new system has the desired properties, let’s break down this process a bit.
First scale each inequality in the first two groups by positive numbers so that each coefficient
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of x1 in (I−) is −1 and each coefficient of x1 in (I+) is +1.

(I−)
−x1 + 1

2
x2 ≤ 0

−x1 ≤ −1
(I+)

x1 − 2x2 ≤ −2
x1 + x2 ≤ 3

x1 ≤ 2
(I0) 8x2 ≤ 15

Isolate the variable x1 in each of the inequalities in the first two groups.

(I−)
1
2
x2 ≤ x1

1 ≤ x1
(I+)

x1 ≤ 2x2 − 2
x1 ≤ −x2 + 3

x1 ≤ 2
(I0) 8x2 ≤ 15

For each pair of inequalities, one from (I−) and one from (I+), create a new inequality
by “sandwiching” and then eliminating x1. Keep the inequalities in (I0).

(IIa)

{
1
2
x2

1

}
≤ x1 ≤




2x2 − 2
−x2 + 3

2




8x2 ≤ 15

−→ (IIb)

1
2
x2 ≤ x1 ≤ 2x2 − 2

1
2
x2 ≤ x1 ≤ −x2 + 3

1
2
x2 ≤ x1 ≤ 2

1 ≤ x1 ≤ 2x2 − 2
1 ≤ x1 ≤ −x2 + 3

1 ≤ x1 ≤ 2
8x2 ≤ 15

−→ (IIc)

1
2
x2 ≤ 2x2 − 2

1
2
x2 ≤ −x2 + 3

1
2
x2 ≤ 2

1 ≤ 2x2 − 2
1 ≤ −x2 + 3

1 ≤ 2
8x2 ≤ 15

−→ (II)

−3
2
x2 ≤ −2

3
2
x2 ≤ 3

1
2
x2 ≤ 2

−2x2 ≤ −3
x2 ≤ 2
0x2 ≤ 1
8x2 ≤ 15

Observe that the system (II) does not involve the variable x1. It is also immediate that
if (I) is feasible, then (II) is also feasible. For the reverse direction, suppose that (II) is
feasible. Set the variables (in this case, x2) equal to any specific feasible values (in this case
we choose a feasible value x2). From the way the inequalities in (II) were derived, it is
evident that

max

{
1
2
x2

1

}
≤ min




2x2 − 2
−x2 + 3

2


 .
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So there exists a specific value x1 of x1 such that

{
1
2
x2

1

}
≤ x1 ≤




2x2 − 2
−x2 + 3

2




8x2 ≤ 15

We will then have a feasible solution to (I).
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4.3 Showing our Example is Feasible

From this example, we now see how to eliminate one variable (but at the possible considerable
expense of increasing the number of inequalities). If we have a solution to the new system, we
can determine a value of the eliminated variable to obtain a solution of the original system.
If the new system is infeasible, then so is the original system.

From this we can tackle any system of inequalities: Eliminate all of the variables one by
one until a system with no variables remains! Then work backwards to determine feasible
values of all of the variables.

In our previous example, we can now eliminate x2 from system (II):


2/3 2/3 0 0 0 0 0
2/3 0 2 0 0 0 0
2/3 0 0 0 1 0 0
2/3 0 0 0 0 0 1/8
0 2/3 0 1/2 0 0 0
0 0 2 1/2 0 0 0
0 0 0 1/2 1 0 0
0 0 0 1/2 0 0 1/8
0 0 0 0 0 1 0







0 −3/2 −2
0 3/2 3
0 1/2 2
0 −2 −3
0 1 2
0 0 1
0 8 15




=




0 0 2/3
0 0 8/3
0 0 2/3
0 0 13/24
0 0 1/2
0 0 5/2
0 0 1/2
0 0 3/8
0 0 1




.

Each final inequality, such as 0x1 + 0x2 ≤ 2/3, is feasible, since the left-hand side is zero
and the right-hand side is nonnegative. Therefore the original system is feasible. To find
one specific feasible solution, rewrite (II) as

{4/3, 3/2} ≤ x2 ≤ {2, 4, 15/8} .

We can choose, for example, x2 = 3/2. Substituting into (I) (or (IIa)), we require

{3/4, 1} ≤ x1 ≤ {1, 3/2, 2} .

So we could choose x1 = 1, and we have a feasible solution (1, 3/2) to (I).
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4.4 An Example of an Infeasible System

Now let’s look at the system:

(I)

x1 − 2x2 ≤ −2
x1 + x2 ≤ 3

x1 ≤ 2
−2x1 + x2 ≤ 0
−x1 ≤ −1
8x2 ≤ 11

Multiplying by the appropriate nonnegative matrices to successively eliminate x1 and x2, we
compute: 



1 0 0 1/2 0 0
0 1 0 1/2 0 0
0 0 1 1/2 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0
0 0 0 0 0 1







1 −2 −2
1 1 3
1 0 2

−2 1 0
−1 0 −1

0 8 11




=




0 −3/2 −2
0 3/2 3
0 1/2 2
0 −2 −3
0 1 2
0 0 1
0 8 11




(II)

and 


2/3 2/3 0 0 0 0 0
2/3 0 2 0 0 0 0
2/3 0 0 0 1 0 0
2/3 0 0 0 0 0 1/8
0 2/3 0 1/2 0 0 0
0 0 2 1/2 0 0 0
0 0 0 1/2 1 0 0
0 0 0 1/2 0 0 1/8
0 0 0 0 0 1 0







0 −3/2 −2
0 3/2 3
0 1/2 2
0 −2 −3
0 1 2
0 0 1
0 8 11
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=




0 0 2/3
0 0 8/3
0 0 2/3
0 0 1/24
0 0 1/2
0 0 5/2
0 0 1/2
0 0 −1/8
0 0 1




(III)

Since one inequality is 0x1+0x2 ≤ −1/8, the final system (III) is clearly infeasible. Therefore
the original system (I) is also infeasible. We can go directly from (I) to (III) by collecting
together the two nonnegative multiplier matrices:




2/3 2/3 0 0 0 0 0
2/3 0 2 0 0 0 0
2/3 0 0 0 1 0 0
2/3 0 0 0 0 0 1/8
0 2/3 0 1/2 0 0 0
0 0 2 1/2 0 0 0
0 0 0 1/2 1 0 0
0 0 0 1/2 0 0 1/8
0 0 0 0 0 1 0







1 0 0 1/2 0 0
0 1 0 1/2 0 0
0 0 1 1/2 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0
0 0 0 0 0 1




=




2/3 2/3 0 2/3 0 0
2/3 0 2 4/3 0 0
2/3 1 0 1/3 1 0
2/3 0 0 1/3 0 1/8
1/2 2/3 0 1/3 1/2 0
1/2 0 2 1 1/2 0
1/2 1 0 0 3/2 0
1/2 0 0 0 1/2 1/8
0 0 1 0 1 0




= M.

You can check that M(I) = (III). Since M is a product of nonnegative matrices, it will itself
be nonnegative. Since the infeasibility is discovered in the eighth inequality of (III), this
comes from the eighth row of M , namely, [1/2, 0, 0, 0, 1/2, 1/8]. You can now demonstrate
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directly to anyone that (I) is infeasible using these nonnegative multipliers:

(1
2
)(x1 − 2x2 ≤ −2)

+(1
2
)(−x1 ≤ −1)

+(1
8
)(8x2 ≤ 11)

0x1 + 0x2 ≤ −1
8

In particular, we have found a nonnegative vector y such that yT A = OT but yT b < 0.
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4.5 Fourier-Motzkin Elimination in General

Often I find that it is easier to understand a general procedure, proof, or theorem from a
few good examples. Let’s see if this is the case for you.

We begin with a system of linear inequalities

(I)
n∑

j=1

aijxj ≤ bi, i = 1, . . . ,m.

Let’s write this in matrix form as
Ax ≤ b

or
Aix ≤ bi, i = 1, . . . ,m

where Ai represents the ith row of A.
Suppose we wish to eliminate the variable xk. Define

I− = {i : aik < 0}
I+ = {i : aik > 0}
I0 = {i : aik = 0}

For each (p, q) ∈ I− × I+, construct the inequality

− 1

apk

(Apx ≤ bp) +
1

aqk

(Aqx ≤ bq).

By this I mean the inequality

(
− 1

apk

Ap +
1

aqk

Aq

)
x ≤ − 1

apk

bp +
1

aqk

bq. (1)

System (II) consists of all such inequalities, together with the original inequalities in-
dexed by the set I0.

It is clear that if we have a solution (x1, . . . , xn) to (I), then (x1, . . . , xk−1, xk+1, . . . , xn)
satisfies (II). Now suppose we have a solution (x1, . . . , xk−1, xk+1, . . . , xn) to (II). Inequal-
ity (1) is equivalent to

1

apk

(bp −
∑
j �=k

apjxj) ≤ 1

aqk

(bq −
∑
j �=k

aqjxj).
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As this is satisfied by (x1, . . . , xk−1, xk+1, . . . , xn) for all (p, q) ∈ I− × I+, we conclude that

max
p∈I−


 1

apk

(bp −
∑
j �=k

apjxj)


 ≤ min

q∈I+


 1

aqk

(bq −
∑
j �=k

aqjxj)


 .

Choose xk to be any value between these maximum and minimum values (inclusive). Then
for all (p, q) ∈ I− × I+,

1

apk

(bp −
∑
j �=k

apjxj) ≤ xk ≤ 1

aqk

(bq −
∑
j �=k

aqjxj).

Now it is not hard to see that (x1, . . . , xk−1, xk, xk+1, . . . , xn) satisfies all the inequalities in
(I). Therefore (I) is feasible if and only if (II) is feasible.

Observe that each inequality in (II) is a nonnegative combination of inequalities in (I),
so there is a nonnegative matrix Mk such that (II) is expressible as Mk(Ax ≤ b). If we
start with a system Ax ≤ b and eliminate all variables sequentially via nonnegative matrices
M1, . . . ,Mn, then we will arrive at a system of inequalities of the form 0 ≤ b′i, i = 1, . . . ,m′.
This system is expressible as M(Ax ≤ b), where M = Mn · · ·M1. If no b′i is negative, then
the final system is feasible and we can work backwards to obtain a feasible solution to the
original system. If b′i is negative for some i, then let yT = M i (the ith row of M), and we
have a nonnegative vector y such that yT A = OT and yT b < 0.

This establishes a Theorem of the Alternatives for linear inequalities:

Theorem 4.2 Either the system
(I) Ax ≤ b

has a solution, or the system

(II)
yT A = OT

yT b < 0
y ≥ O

has a solution, but not both.

Note that the “not both” part is the easiest to verify. Otherwise, we would have a feasible
x and y satisfying

0 = OT x = (yT A)x = yT (Ax) ≤ yT b < 0,

which is impossible.
As a consequence of this theorem, we have a good characterization for the question: Is

the system (I) feasible? If the answer is yes, we can prove it by exhibiting any particular
solution to (I). If the answer is no, we can prove it by exhibiting any particular solution to
(II).
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4.6 More Alternatives

There are many Theorems of the Alternatives, and we shall encounter more later. Most of
the others can be derived from the one of the previous section and each other. For example,

Theorem 4.3 Either the system

(I)
Ax ≤ b
x ≥ O

has a solution, or the system

(II)
yT A ≥ OT

yT b < 0
y ≥ O

has a solution, but not both.

Proof. System (I) is feasible if and only if the following system is feasible:

(I ′)

[
A
−I

]
x ≤

[
b
O

]

System (II) is feasible if and only if the following system is feasible:

(II ′)

[
yT wT

] [
A
−I

]
= OT

[
yT wT

] [
b
O

]
< 0[

yT wT
]
≥

[
OT OT

]

Equivalently,
yT A − wT = OT

yT b < O
y,w ≥ O

Now apply Theorem 4.2 to the pair (I ′), (II ′). �
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4.7 Exercises: Systems of Linear Inequalities

Exercise 4.4 Discuss the consequences of having one or more of I−, I+, or I0 being empty
during the process of Fourier-Motzkin elimination. Does this create any problems? �

Exercise 4.5 Fourier-Motzkin elimination shows how we can start with a system of linear
inequalities with n variables and obtain a system with n − 1 variables. Explain why the
set of all feasible solutions of the second system is a projection of the set of all feasible
solutions of the first system. Consider a few examples where n = 3 and explain how you can
classify the inequalities into types I−, I+, and I0 geometrically (think about eliminating the
third coordinate). Explain geometrically where the new inequalities in the second system
are coming from. �

Exercise 4.6 Consider a given system of linear constraints. A subset of these constraints
is called irredundant if it describes the same feasible region as the given system and no
constraint can be dropped from this subset without increasing the set of feasible solutions.

Find an example of a system Ax ≤ b with three variables such that when x3, say, is
eliminated, the resulting system has a larger irredundant subset than the original system.
That is to say, the feasible set of the resulting system requires more inequalities to describe
than the feasible set of the original system. Hint: Think geometrically. Can you find such
an example where the original system has two variables? �

Exercise 4.7 Use Fourier-Motzkin elimination to graph the set of solutions to the following
system:

+x1 + x2 + x3 ≤ 1
+x1 + x2 − x3 ≤ 1
+x1 − x2 + x3 ≤ 1
+x1 − x2 − x3 ≤ 1
−x1 + x2 + x3 ≤ 1
−x1 + x2 − x3 ≤ 1
−x1 − x2 + x3 ≤ 1
−x1 − x2 − x3 ≤ 1

What is this geometrical object called? �

Exercise 4.8 Prove the following Theorem of the Alternatives: Either the system

Ax ≥ b
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has a solution, or the system
yT A = OT

yT b > 0
y ≥ O

has a solution, but not both. �

Exercise 4.9 Prove the following Theorem of the Alternatives: Either the system

Ax ≥ b
x ≥ O

has a solution, or the system
yT A ≤ OT

yT b > 0
y ≥ O

has a solution, but not both. �

Exercise 4.10 Prove or disprove: The system

(I) Ax = b

has a solution if and only if each of the following systems has a solution:

(I ′) Ax ≤ b (I ′′) Ax ≥ b

�

Exercise 4.11 (The Farkas Lemma). Derive and prove a Theorem of the Alternatives for
the following system:

Ax = b
x ≥ O

Give a geometric interpretation of this theorem when A has two rows. When A has three
rows. �

Exercise 4.12 Give geometric interpretations to other Theorems of the Alternatives that
we have discussed. �
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Exercise 4.13 Derive and prove a Theorem of the Alternatives for the system

n∑
j=1

aijxj ≤ bi, i ∈ I1

n∑
j=1

aijxj = bi, i ∈ I2

xj ≥ 0, j ∈ J1

xj unrestricted, j ∈ J2

where (I1, I2) is a partition of {1, . . . ,m} and (J1, J2) is a partition of {1, . . . , n}. �

Exercise 4.14 Derive and prove a Theorem of the Alternatives for the system

Ax < b.

�

29



5 More on Vertices

Proposition 5.1 Suppose P = {x ∈ Rn : Ax ≤ b} is a polytope and x ∈ P . Then x is a
vertex of P if and only if the set of normal vectors of the binding inequalities for x spans Rn

(i.e., span {ai : aiT x = bi} = Rn, where ai denotes row i of A).

Definition 5.2 Suppose S ⊆ Rn, x ∈ P , and there exists c ∈ Rn such that x is the unique
maximizer of the linear function cT x over S. Then x is called an exposed point of of the set
S.

Proposition 5.3 Every vertex of a polytope P is an exposed point.

Proof. Exercise. �

Lemma 5.4 Suppose P is a polytope, c ∈ Rn, and x ∈ P maximizes cT x over P . Assume
that

x =
m∑

j=1

λjv
j,

where v1, . . . , vm are vertices of P and λ1, . . . , λm are all strictly positive. Then vj maximizes
cT x over P , j = 1, . . . ,m.

Proof. Exercise. �

Proposition 5.5 Every exposed point of a polytope is a vertex.

Proof. Exercise. �

Definition 5.6 Suppose S ⊆ Rn and x ∈ S such that x �∈ conv (S \ {x}). Then x is called
an extreme point of the set S.

Proposition 5.7 Let x be a point in a polytope P . Then x is a vertex if and only if it is an
extreme point.

Proof. Exercise. �

Exercise 5.8 Give an example of a convex set S and a point x ∈ S such that x is an extreme
point but not an exposed point. �

Proposition 5.9 Let V be a finite set and P = conv V . Then every vertex of P is in V .

Proof. Exercise �
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6 Introduction to Linear Programming

6.1 Example

Consider a hypothetical company that manufactures gadgets and gewgaws.

1. One kilogram of gadgets requires 1 hour of labor, 1 unit of wood, 2 units of metal, and
yields a net profit of 5 dollars.

2. One kilogram of gewgaws requires 2 hours of labor, 1 unit of wood, 1 unit of metal,
and yields a net profit of 4 dollars.

3. Available are 120 hours of labor, 70 units of wood, and 100 units of metal.

What is the company’s optimal production mix? We can formulate this problem as the
linear program

max z = 5x1 + 4x2

s.t. x1 + 2x2 ≤ 120
x1 + x2 ≤ 70

2x1 + x2 ≤ 100
x1, x2 ≥ 0

In matrix notation, this becomes

max
[

5 4
] [

x1

x2

]

s.t.




1 2
1 1
2 1




[
x1

x2

]
≤




120
70

100




[
x1

x2

]
≥

[
0
0

]

which is a problem of the form
max cT x

s.t. Ax ≤ b
x ≥ O

We can determine the solution of this problem geometrically. Graph the set of all points
that satisfy the constraints. Draw some lines for which the objective function assumes a
constant value (note that these are all parallel). Find the line with the highest value of
z that has nonempty intersection with the set of feasible points. In this case the optimal
solution is (30, 40) with optimal value 310.
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A

D

B
C

O(0,0)

A(0,60)

B(20,50)

C(30,40) (optimal)

O

D(50,0)

5x+4y=310

6.2 Definitions

A linear function is a function of the form a1x1 + · · · + anxn, where a1, . . . , an ∈ R. A
linear equation is an equation of the form a1x1 + · · · + anxn = β, where a1, . . . , an, β ∈ R.
If there exists at least one nonzero aj, then the set of solutions to a linear equation is called
a hyperplane. A linear inequality is an inequality of the form a1x1 + · · · + anxn ≤ β or
a1x1 + · · · + anxn ≥ β, where a1, . . . , an, β ∈ R. If there exists at least one nonzero aj, then
the set of solutions to a linear inequality is called a halfspace. A linear constraint is a linear
equation or linear inequality.

A linear programming problem is a problem in which a linear function is to be maximized
(or minimized), subject to a finite number of linear constraints. A feasible solution or feasible
point is a point that satisfies all of the constraints. If such a point exists, the problem is
feasible; otherwise, it is infeasible . The set of all feasible points is called the feasible region
or feasible set. The objective function is the linear function to be optimized. An optimal
solution or optimal point is a feasible point for which the objective function is optimized. The
value of the objective function at an optimal point is the optimal value of the linear program.
In the case of a maximization (minimization) problem, if arbitrarily large (small) values of
the objective function can be achieved, then the linear program is said to be unbounded.
More precisely, the maximization (minimization) problem is unbounded if for all M ∈ R
there exists a feasible point x with objective function value greater than (less than) M .
Note: It is possible to have a linear program that has bounded objective function value but
unbounded feasible region, so don’t let this confusing terminology confuse you. Also note
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that an infeasible linear program has a bounded feasible region.

Exercise 6.1 Graphically construct some examples of each of the following types of two-
variable linear programs:

1. Infeasible.

2. With a unique optimal solution.

3. With more than one optimal solution.

4. Feasible with bounded feasible region.

5. Feasible and bounded but with unbounded feasible region.

6. Unbounded.

�

A linear program of the form

max
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj ≤ bi, i = 1, . . . , m

xj ≥ 0, j = 1, . . . , n

which, in matrix form, is
max cT x

s.t. Ax ≤ b
x ≥ O

is said to be in standard form. For every linear program there is an equivalent one in standard
form (begin thinking about this).

6.3 Back to the Example

Suppose someone approached the Gadget and Gewgaw Manufacturing Company (GGMC),
offering to purchase the company’s available labor hours, wood, and metal, at $1.50 per
hour of labor, $1 per unit of wood, and $1 per unit of metal. They are willing to buy
whatever amount GGMC is willing to sell. Should GGMC sell everything? This is mighty
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tempting, because they would receive $350, more than what they would gain by their current
manufacturing plan. However, observe that if they manufactured some gadgets instead, for
each kilogram of gadgets they would lose $4.50 from the potential sale of their resources
but gain $5 from the sale of the gadgets. (Note, however, that it would be better to sell
their resources than make gewgaws.) So they should not accept the offer to sell all of their
resources at these prices.

Exercise 6.2 In the example above, GGMC wouldn’t want to sell all of their resources at
those prices. But they might want to sell some. What would be their best strategy? �

Exercise 6.3 Suppose now that GGMC is offered $3 for each unit of wood and $1 for each
unit of metal that they are willing to sell, but no money for hours of labor. Explain why
they would do just as well financially by selling all of their resources as by manufacturing
their products. �

Exercise 6.4 In general, what conditions would proposed prices have to satisfy to induce
GGMC to sell all of their resources? If you were trying to buy all of GGMC’s resources as
cheaply as possible, what problem would you have to solve? �

Exercise 6.5 If you want to purchase just one hour of labor, or just one unit of wood, or
just one unit of metal, from GGMC, what price in each case must you offer to induce GGMC
to sell? �

6.4 Exercises: Linear Programs

Exercise 6.6 Consider the following linear program (P ):

max z = x1 + 2x2

s.t. 3x1 + x2 ≤ 3 (1)
x1 + x2 ≤ 3/2 (2)

x1 ≥ 0 (3)
x2 ≥ 0 (4)

1. Graph the feasible region.

2. Locate the optimal point(s).

3. Explain why the four constraints have the following respective outer normal vectors
(an outer normal vector to a constraint is perpendicular to the defining line of the
constraint and points in the opposite direction of the shaded side of the constraint):
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(1) [3, 1]T .

(2) [1, 1]T .

(3) [−1, 0]T .

(4) [0,−1]T .

Explain why the gradient of the objective function is the vector [1, 2]T . For each corner
point of the feasible region, compare the outer normals of the binding constraints at
that point (the constraints satisfied with equality by that point) with the gradient of z.
From this comparison, how can you tell geometrically if a given corner point is optimal
or not?

4. Vary the objective function coefficients and consider the following linear program:

max z = c1x1 + c2x2

s.t. 3x1 + x2 ≤ 3
x1 + x2 ≤ 3/2

x1, x2 ≥ 0

Carefully and completely describe the optimal value z∗(c1, c2) as a function of the pair
(c1, c2). What kind of function is this? Optional: Use some software such as Maple to
plot this function of two variables.

5. Vary the right hand sides and consider the following linear program:

max z = x1 + 2x2

s.t. 3x1 + x2 ≤ b1

x1 + x2 ≤ b2

x1, x2 ≥ 0

Carefully and completely describe the optimal value z∗(b1, b2) as a function of the pair
(b1, b2). What kind of function is this? Optional: Use some software such as Maple to
plot this function of two variables.

6. Find the best nonnegative integer solution to (P ). That is, of all feasible points for
(P ) having integer coordinates, find the one with the largest objective function value.

�
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Exercise 6.7 Consider the following linear program (P ):

max z = −x1 − x2

s.t. x1 ≤ 1/2 (1)
x1 − x2 ≤ −1/2 (2)

x1 ≥ 0 (3)
x2 ≥ 0 (4)

Answer the analogous questions as in Exercise 6.6. �

Exercise 6.8 1. Consider the following linear program (P ):

max z = 2x1 + x2

s.t. x1 ≤ 2 (1)
x2 ≤ 2 (2)

x1 + x2 ≤ 4 (3)
x1 − x2 ≤ 1 (4)

x1 ≥ 0 (5)
x2 ≥ 0 (6)

Associated with each of the 6 constraints is a line (change the inequality to equality in
the constraint). Consider each pair of constraints for which the lines are not parallel,
and examine the point of intersection of the two lines. Call this pair of constraints a
primal feasible pair if the intersection point falls in the feasible region for (P ). Call
this pair of constraints a dual feasible pair if the gradient of the objective function can
be expressed as a nonnegative linear combination of the two outer normal vectors of
the two constraints. (The motivation for this terminology will become clearer later
on.) List all primal-feasible pairs of constraints, and mark the intersection point for
each pair. List all dual-feasible pairs of constraints (whether primal-feasible or not),
and mark the intersection point for each pair. What do you observe about the optimal
point(s)?

2. Repeat the above exercise for the GGMC problem.
�

Exercise 6.9 We have observed that any two-variable linear program appears to fall into
exactly one of three categories: (1) those that are infeasible, (2) those that have unbounded
objective function value, and (3) those that have a finite optimal objective function value.
Suppose (P ) is any two-variable linear program that falls into category (1). Into which of
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the other two categories can (P ) be changed if we only alter the right hand side vector b?
The objective function vector c? Both b and c? Are your answers true regardless of the
initial choice of (P )? Answer the analogous questions if (P ) is initially in category (2). In
category (3). �

Exercise 6.10 Find a two-variable linear program

(P )
max cT x

s.t. Ax ≤ b
x ≥ O

with associated integer linear program

(IP )
max cT x

s.t. Ax ≤ b
x ≥ O and integer

such that (P ) has unbounded objective function value, but (IP ) has a finite optimal objective
function value. Note: “x integer” means that each coordinate xj of x is an integer. �

Exercise 6.11 Prove the following: For each positive real number d there exists a two-
variable linear program (P ) with associated integer linear program (IP ) such that the entries
of A, b, and c are rational, (P ) has a unique optimal solution x∗, (IP ) has a unique optimal
solution x∗, and the Euclidean distance between x∗ and x∗ exceeds d. Can you do the same
with a one-variable linear program? �

Exercise 6.12 Find a subset S of R2 and a linear objective function cT x such that the
optimization problem

max cT x
s.t. x ∈ S

is feasible, has no optimal objective function value, but yet does not have unbounded objec-
tive function value. �

Exercise 6.13 Find a quadratic objective function f(x), a matrix A with two columns, and
a vector b such that the optimization problem

max f(x)
s.t. Ax ≤ b

x ≥ O

has a unique optimal solution, but not at a corner point. �
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Exercise 6.14 (Chvátal problem 1.5.) Prove or disprove: If the linear program

(P )
max cT x

s.t. Ax ≤ b
x ≥ O

is unbounded, then there is a subscript k such that the linear program

max xk

s.t. Ax ≤ b
x ≥ O

is unbounded. �

Exercise 6.15 (Bertsimas and Tsitsiklis problem 1.12.) Consider a set S ⊆ Rn described
by the constraints Ax ≤ b. The ball with center y ∈ Rn and radius r ∈ R+ is defined as
{x ∈ Rn : ‖x − y‖ ≤ r}. Construct a linear program to solve the problem of finding a ball
with the largest possible radius that is entirely contained within the set S. �
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7 Duality

In this section we will learn that associated with a given linear program is another one, its
dual, which provides valuable information about the nature of the original linear program.

7.1 Economic Motivation

The dual linear program can be motivated economically, algebraically, and geometrically.
You have already seen an economic motivation in Section 6.3. Recall that GGMC was
interested in producing gadgets and gewgaws and wanted to solve the linear program

max z = 5x1 + 4x2

s.t. x1 + 2x2 ≤ 120
x1 + x2 ≤ 70

2x1 + x2 ≤ 100
x1, x2 ≥ 0

Another company (let’s call it the Knickknack Company, KC) wants to offer money for
GGMC’s resources. If they are willing to buy whatever GGMC is willing to sell, what prices
should be set so that GGMC will end up selling all of its resources? What is the minimum
that KC must spend to accomplish this? Suppose y1, y2, y3 represent the prices for one hour
of labor, one unit of wood, and one unit of metal, respectively. The prices must be such
that GGMC would not prefer manufacturing any gadgets or gewgaws to selling all of their
resources. Hence the prices must satisfy y1 + y2 + 2y3 ≥ 5 (the income from selling the
resources needed to make one kilogram of gadgets must not be less than the net profit from
making one kilogram of gadgets) and 2y1 +y2 +y3 ≥ 4 (the income from selling the resources
needed to make one kilogram of gewgaws must not be less than the net profit from making
one kilogram of gewgaws). KC wants to spend as little as possible, so it wishes to minimize
the total amount spent: 120y1 + 70y2 + 100y3. This results in the linear program

min 120y1 + 70y2 + 100y3

s.t. y1 + y2 + 2y3 ≥ 5
2y1 + y2 + y3 ≥ 4

y1, y2, y3 ≥ 0
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In matrix form, this is

min
[

120 70 100
] 


y1

y2

y3




s.t.

[
1 1 2
2 1 1

] 


y1

y2

y3


 ≥

[
5
4

]




y1

y2

y3


 ≥




0
0
0




or

min
[

y1 y2 y3

] 


120
70
100




s.t.
[

y1 y2 y3

] 


1 2
1 1
2 1


 ≥

[
5 4

]



y1

y2

y3


 ≥




0
0
0




If we represent the GGMC problem and the KC problem in the following compact forms,
we see that they are “transposes” of each other.

1 2 120
1 1 70
2 1 100
5 4 max

1 1 2 5
2 1 1 4

120 70 100 min

GGMC KC

7.2 The Dual Linear Program

Given any linear program (P) in standard form

(P )
max cT x

s.t. Ax ≤ b
x ≥ O
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or

max
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj ≤ bi, i = 1, . . . , m

xj ≥ 0, j = 1, . . . , n

its dual is the LP

(D)
min yT b

s.t. yT A ≥ cT

y ≥ O

or
min bT y

s.t. AT y ≥ c
y ≥ O

or

min
m∑

i=1

biyi

s.t.
m∑

i=1

aijyi ≥ cj, j = 1, . . . , n

yi ≥ 0, i = 1, . . . , m

Note the change from maximization to minimization, the change in the direction of the
inequalities, the interchange in the roles of objective function coefficients and right-hand
sides, the one-to-one correspondence between the inequalities in Ax ≤ b and the variables
in (D), and the one-to-one correspondence between the inequalities in yT A ≥ cT and the
variables in (P ). In compact form, the two problems are transposes of each other:

A b
cT max

(P )

AT c
bT min

(D)

By the way, the problem (P ) is called the primal problem. It has been explained to me
that George Dantzig’s father made two contributions to the theory of linear programming:
the word “primal,” and George Dantzig. Dantzig had already decided to use the word “dual”
for the second LP, but needed a term for the original problem.
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7.3 The Duality Theorems

One algebraic motivation for the dual is given by the following theorem, which states that
any feasible solution for the dual LP provides an upper bound for the value of the primal
LP:

Theorem 7.1 (Weak Duality) If x is feasible for (P ) and y is feasible for (D), then
cT x ≤ yT b.

Proof. cT x ≤ (yT A)x = yT (Ax) ≤ yT b. �

Example 7.2 The prices (1, 2, 3) are feasible for KC’s problem, and yield an objective
function value of 560, which is ≥ 310. �

As an easy corollary, if we are fortunate enough to be given x and y feasible for (P ) and
(D), respectively, with equal objective function values, then they are each optimal for their
respective problems:

Corollary 7.3 If x and y are feasible for (P ) and (D), respectively, and if cT x = yT b, then
x and y are optimal for (P ) and (D), respectively.

Proof. Suppose x̂ is any feasible solution for (P ). Then cT x̂ ≤ yT b = cT x. Similarly, if ŷ
is any feasible solution for (D), then ŷT b ≥ yT b. �

Example 7.4 The prices (0, 3, 1) are feasible for KC’s problem, and yield an objective
function value of 310. Therefore, (30, 40) is an optimal solution to GGMC’s problem, and
(0, 3, 1) is an optimal solution to KC’s problem. �

Weak Duality also immediately shows that if (P ) is unbounded, then (D) is infeasible:

Corollary 7.5 If (P ) has unbounded objective function value, then (D) is infeasible. If (D)
has unbounded objective function value, then (P ) is infeasible.

Proof. Suppose (D) is feasible. Let y be a particular feasible solution. Then for all
x feasible for (P ) we have cT x ≤ yT b. So (P ) has bounded objective function value if
it is feasible, and therefore cannot be unbounded. The second statement is proved similarly. �

Suppose (P ) is feasible. How can we verify that (P ) is unbounded? One way is if we
discover a vector w such that Aw ≤ O, w ≥ O, and cT w > 0. To see why this is the case,
suppose that x is feasible for (P ). Then we can add a positive multiple of w to x to get
another feasible solution to (P ) with objective function value as high as we wish.

Perhaps surprisingly, the converse is also true, and the proof shows some of the value of
Theorems of the Alternatives.
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Theorem 7.6 Assume (P ) is feasible. Then (P ) is unbounded (has unbounded objective
function value) if and only if the following system is feasible:

(UP )
Aw ≤ O
cT w > 0
w ≥ O

Proof. Suppose x is feasible for (P ).
First assume that w is feasible for (UP ) and t ≥ 0 is a real number. Then

A(x + tw) = Ax + tAw ≤ b + O = b
x + tw ≥ O + tO = O

cT (x + tw) = cT x + tcT w

Hence x+tw is feasible for (P ), and by choosing t appropriately large, we can make cT (x+tw)
as large as desired since cT w is a positive number.

Conversely, suppose that (P ) has unbounded objective function value. Then by Corol-
lary 7.5, (D) is infeasible. That is, the following system has no solution:

yT A ≥ cT

y ≥ O

or
AT y ≥ c
y ≥ O

By the Theorem of the Alternatives proved in Exercise 4.9, the following system is feasible:

wT AT ≤ OT

wT c > 0
w ≥ O

or
Aw ≤ O
cT w > 0
w ≥ O

Hence (UP ) is feasible. �

Example 7.7 Consider the LP:

(P )

max 100x1 + x2

s.t. − 2x1 + 3x2 ≤ 1
x1 − 2x2 ≤ 2
x1, x2 ≥ 0
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The system (UP ) in this case is:

−2w1 + 3w2 ≤ 0
w1 − 2w2 ≤ 0

100w1 + w2 > 0
w1, w2 ≥ 0

One feasible point for (P ) is x = (1, 0). One feasible solution to (UP ) is w = (2, 1). So
(P ) is unbounded, and we can get points with arbitrarily high objective function values by
x + tw = (1 + 2t, t), t ≥ 0, which has objective function value 100 + 201t. �

There is an analogous theorem for the unboundedness of (D) that is proved in the obvi-
ously similar way:

Theorem 7.8 Assume (D) is feasible. Then (D) is unbounded if and only if the following
system is feasible:

(UD)
vT A ≥ OT

vT b < 0
v ≥ O

The following highlights an immediate corollary of the proof:

Corollary 7.9 (P ) is feasible if and only if (UD) is infeasible. (D) is feasible if and only
if (UP ) is infeasible.

Let’s summarize what we now know in a slightly different way:

Corollary 7.10 If (P ) is infeasible, then either (D) is infeasible or (D) is unbounded. If
(D) is infeasible, then either (P ) is infeasible or (P ) is unbounded.

We now turn to a very important theorem, which is part of the strong duality theorem,
that lies at the heart of linear programming. This shows that the bounds on each other’s
objective function values that the pair of dual LP’s provides are always tight.

Theorem 7.11 Suppose (P ) and (D) are both feasible. Then (P ) and (D) each have finite
optimal objective function values, and moreover these two values are equal.
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Proof. We know by Weak Duality that if x and y are feasible for (P ) and (D), respectively,
then cT x ≤ yT b. In particular, neither (P ) nor (D) is unbounded. So it suffices to show that
the following system is feasible:

(I)

Ax ≤ b
x ≥ O

yT A ≥ cT

y ≥ O
cT x ≥ yT b

For if x and y are feasible for this system, then by Weak Duality in fact it would have to be
the case that cT x = yT b.

Let’s rewrite this system in matrix form:




A O
O −AT

−cT bT




[
x
y

]
≤




b
−c
0




x, y ≥ O

We will assume that this system is infeasible and derive a contradiction. If it is not feasible,
then by Theorem 4.3 the following system has a solution v, w, t:

(II)

[
vT wT t

] 


A O
O −AT

−cT bT


 ≥

[
OT OT

]

[
vT wT t

] 


b
−c
0


 < 0

v, w, t ≥ O

So we have
vT A − tcT ≥ OT

−wT AT + tbT ≥ OT

vT b − wT c < 0
v, w, t ≥ O

Case 1: Suppose t = 0. Then
vT A ≥ OT

Aw ≤ O
vT b < cT w
v,w ≥ O
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Now we cannot have both cT w ≤ 0 and vT b ≥ 0; otherwise 0 ≤ vT b < cT w ≤ 0, which is a
contradiction.

Case 1a: Suppose cT w > 0. Then w is a solution to (UP ), so (D) is infeasible by
Corollary 7.9, a contradiction.

Case 1b: Suppose vT b < 0. Then v is a solution to (UD), so (P ) is infeasible by
Corollary 7.9, a contradiction.

Case 2: Suppose t > 0. Set x = w/t and y = v/t. Then

Ax ≤ b
x ≥ O

yT A ≥ cT

y ≥ O
cT x > yT b

Hence we have a pair of feasible solutions to (P ) and (D), respectively, that violates Weak
Duality, a contradiction.

We have now shown that (II) has no solution. Therefore, (I) has a solution. �

Corollary 7.12 Suppose (P ) has a finite optimal objective function value. Then so does
(D), and these two values are equal. Similarly, suppose (D) has a finite optimal objective
function value. Then so does (P ), and these two values are equal.

Proof. We will prove the first statement only. If (P ) has a finite optimal objective function
value, then it is feasible, but not unbounded. So (UP ) has no solution by Theorem 7.6.
Therefore (D) is feasible by Corollary 7.9. Now apply Theorem 7.11. �

We summarize our results in the following central theorem, for which we have already
done all the hard work:

Theorem 7.13 (Strong Duality) Exactly one of the following holds for the pair (P ) and
(D):

1. They are both infeasible.

2. One is infeasible and the other is unbounded.

3. They are both feasible and have equal finite optimal objective function values.

Corollary 7.14 If x and y are feasible for (P ) and (D), respectively, then x and y are
optimal for (P ) and (D), respectively, if and only if cT x = yT b.

Corollary 7.15 Suppose x is feasible for (P ). Then x is optimal for (P ) if and only if there
exists y feasible for (D) such that cT x = yT b. Similarly, suppose y is feasible for (D). Then
y is optimal for (D) if and only if there exists x feasible for (P ) such that cT x = yT b.
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7.4 Comments on Good Characterization

The duality theorems show that the following problems for (P ) have “good characteriza-
tions.” That is to say, whatever the answer, there exists a “short” proof.

1. Is (P ) feasible? If the answer is yes, you can prove it by producing a particular feasible
solution to (P ). If the answer is no, you can prove it by producing a particular feasible
solution to (UD).

2. Assume that you know that (P ) is feasible. Is (P ) unbounded? If the answer is yes,
you can prove it by producing a particular feasible solution to (UP ). If the answer is
no, you can prove it by producing a particular feasible solution to (D).

3. Assume that x is feasible for (P ). Is x optimal for (P )? If the answer is yes, you can
prove it by producing a particular feasible solution to (D) with the same objective
function value. If the answer is no, you can prove it by producing a particular feasible
solution to (P ) with higher objective function value.

7.5 Complementary Slackness

Suppose x and y are feasible for (P ) and (D), respectively. Under what conditions will cT x
equal yT b? Recall the chain of inequalities in the proof of Weak Duality:

cT x ≤ (yT A)x = yT (Ax) ≤ yT b.

Equality occurs if and only if both cT x = (yT A)x and yT (Ax) = yT b. Equivalently,

yT (b − Ax) = 0

and
(yT A − cT )x = 0.

In each case, we are requiring that the inner product of two nonnegative vectors (for example,
y and b − Ax) be zero. The only way this can happen is if these two vectors are never both
positive in any common component. This motivates the following definition: Suppose x ∈ Rn

and y ∈ Rm. Then x and y satisfy complementary slackness if

1. For all j, either xj = 0 or
∑m

i=1 aijyi = cj or both; and

2. For all i, either yi = 0 or
∑n

j=1 aijxj = bi or both.
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Theorem 7.16 Suppose x and y are feasible for (P ) and (D), respectively. Then cT x = yT b
if and only if x, y satisfy complementary slackness.

Corollary 7.17 If x and y are feasible for (P ) and (D), respectively, then x and y are
optimal for (P ) and (D), respectively, if and only if they satisfy complementary slackness.

Corollary 7.18 Suppose x is feasible for (P ). Then x is optimal for (P ) if and only if there
exists y feasible for (D) such that x, y satisfy complementary slackness. Similarly, suppose
y is feasible for (D). Then y is optimal for (D) if and only if there exists x feasible for (P )
such that x, y satisfy complementary slackness.

Example 7.19 Consider the optimal solution (30, 40) of GGMC’s problem, and the prices
(0, 3, 1) for KC’s problem. You can verify that both solutions are feasible for their respective
problems, and that they satisfy complementary slackness. But let’s exploit complementary
slackness a bit more. Suppose you only had the feasible solution (30, 40) and wanted to verify
optimality. Try to find a feasible solution to the dual satisfying complementary slackness.
Because the constraint on hours is not satisfied with equality, we must have y1 = 0. Because
both x1 and x2 are positive, we must have both dual constraints satisfied with equality. This
results in the system:

y1 = 0
y2 + 2y3 = 5
y2 + y3 = 4

which has the unique solution (0, 3, 1). Fortunately, all values are also nonnegative. Therefore
we have a feasible solution to the dual that satisfies complementary slackness. This proves
that (30, 40) is optimal and produces a solution to the dual in the bargain. �

7.6 Duals of General LP’s

What if you want a dual to an LP not in standard form? One approach is first to transform it
into standard form somehow. Another is to come up with a definition of a general dual that
will satisfy all of the duality theorems (weak and strong duality, correspondence between
constraints and variables, complementary slackness, etc.). Both approaches are related.

Here are some basic transformations to convert an LP into an equivalent one:

1. Multiply the objective function by −1 and change “max” to “min” or “min” to “max.”

2. Multiply an inequality constraint by −1 to change the direction of the inequality.
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3. Replace an equality constraint
n∑

j=1

aijxj = bi

with two inequality constraints
n∑

j=1

aijxj ≤ bi

−
n∑

j=1

aijxj ≤ −bi

4. Replace a variable that is nonpositive with a variable that is its negative. For example,
if xj is specified to be nonpositive by xj ≤ 0, replace every occurrence of xj with −x̂j

and require x̂j ≥ 0.

5. Replace a variable that is unrestricted in sign with the difference of two nonnegative
variables. For example, if xj is unrestricted (sometimes called free), replace every
occurrence of xj with x+

j − x−
j and require that x+

j and x−
j be nonnegative variables.

Using these transformations, every LP can be converted into an equivalent one in standard
form. By equivalent I mean that a feasible (respectively, optimal) solution to the original
problem can be obtained from a feasible (respectively, optimal) solution to the new problem.
The dual to the equivalent problem can then be determined. But you can also apply the
inverses of the above transformations to the dual and get an appropriate dual to the original
problem.

Try some concrete examples for yourself, and then dive into the proof of the following
theorem:

Theorem 7.20 The following is a pair of dual LP’s:

(P )

max
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj ≤ bi, i ∈ I1

n∑
j=1

aijxj ≥ bi, i ∈ I2

n∑
j=1

aijxj = bi, i ∈ I3

xj ≥ 0, j ∈ J1

xj ≤ 0, j ∈ J2

xj unrestricted in sign, j ∈ J3

(D)

min
m∑

i=1

biyi

s.t.
m∑

i=1

aijyi ≥ cj, j ∈ J1

m∑
i=1

aijyi ≤ cj, j ∈ J2

m∑
i=1

aijyi = cj, j ∈ J3

yi ≥ 0, i ∈ I1

yi ≤ 0, i ∈ I2

yi unrestricted in sign, i ∈ I3
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where (I1, I2, I3) is a partition of {1, . . . , m} and (J1, J2, J3) is a partition of {1, . . . , n}.

Proof. Rewrite (P ) in matrix form:

max c1T x1 + c2T x2 + c3T x3

s.t.




A11 A12 A13

A21 A22 A23

A31 A32 A33







x1

x2

x3




≤
≥
=




b1

b2

b3




x1 ≥ O
x2 ≤ O

x3 unrestricted

Now make the substitutions x̂1 = x1, x̂2 = −x2 and x̂3 − x̂4 = x3:

max c1T x̂1 − c2T x̂2 + c3T x̂3 − c3T x̂4

s.t.




A11 −A12 A13 −A13

A21 −A22 A23 −A23

A31 −A32 A33 −A33







x̂1

x̂2

x̂3

x̂4




≤
≥
=




b1

b2

b3




x̂1, x̂2, x̂3, x̂4 ≥ O

Transform the constraints:

max c1T x̂1 − c2T x̂2 + c3T x̂3 − c3T x̂4

s.t.




A11 −A12 A13 −A13

−A21 A22 −A23 A23

A31 −A32 A33 −A33

−A31 A32 −A33 A33







x̂1

x̂2

x̂3

x̂4


 ≤




b1

−b2

b3

−b3




x̂1, x̂2, x̂3, x̂4 ≥ O

Take the dual:

min b1T ŷ1 − b2T ŷ2 + b3T ŷ3 − b3T ŷ4

s.t.




AT
11 −AT

21 AT
31 −AT

31

−AT
12 AT

22 −AT
32 AT

32

AT
13 −AT

23 AT
33 −AT

33

−AT
13 AT

23 −AT
33 AT

33







ŷ1

ŷ2

ŷ3

ŷ4


 ≥




c1

−c2

c3

−c3




ŷ1, ŷ2, ŷ3, ŷ4 ≥ O
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Transform the constraints:

min b1T ŷ1 − b2T ŷ2 + b3T ŷ3 − b3T ŷ4

s.t.




AT
11 −AT

21 AT
31 −AT

31

AT
12 −AT

22 AT
32 −AT

32

AT
13 −AT

23 AT
33 −AT

33







ŷ1

ŷ2

ŷ3

ŷ4




≥
≤
=




c1

c2

c3




ŷ1, ŷ2, ŷ3, ŷ4 ≥ O

Transform the variables by setting y1 = ŷ1, y2 = −ŷ2, and y3 = ŷ3 − ŷ4:

min b1T y1 + b2T y2 + b3T y3

s.t.




AT
11 AT

21 AT
31

AT
12 AT

22 AT
32

AT
13 AT

23 AT
33







y1

y2

y3




≥
≤
=




c1

c2

c3




y1 ≥ O
y2 ≤ O

y3 unrestricted

Write this in summation form, and you have (D). �

Whew! Anyway, this pair of dual problems will satisfy all of the duality theorems,
so it was probably worth working through this generalization at least once. We say that
(D) is the dual of (P ), and also that (P ) is the dual of (D). Note that there is still a
one-to-one correspondence between the variables in one LP and the “main” constraints (not
including the variable sign restrictions) in the other LP. Hillier and Lieberman (Introduction
to Operations Research) suggest the following mnemonic device. Classify variables and
constraints of linear programs as standard (S), opposite (O), or bizarre (B) as follows:

Maximization Problems

Variables Constraints
S ≥ 0 ≤
O ≤ 0 ≥
B unrestricted in sign =

Minimization Problems

Variables Constraints
S ≥ 0 ≥
O ≤ 0 ≤
B unrestricted in sign =

Then in the duality relationship, standard variables are paired with standard constraints,
opposite variables are paired with opposite constraints, and bizarre variables are paired with
bizarre constraints. If we express a pair of dual linear programs in compact form, labeling
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columns according to the type of variable and rows according to the type of constraint, we
see that they are still transposes of each other:

S O B
S A11 A12 A13 b1

O A21 A22 A23 b2

B A31 A32 A33 b3

c1T c2T c3T max

(P )

S O B
S A11 A21 A31 c1

O A12 A22 A32 c2

B A13 A23 A33 c3

b1T b2T b3T min

(D)

Example 7.21 The following is a pair of dual linear programs:

(P ) (D)

max 3x1 −2x2 +4x4 +5x5

s.t. x1 +x2 ≥ 3
x1 −x2 +x3 −x4 +x5 = 10

−6x1 +2x3 +4x4 +x5 ≤ 2
9x2 −11x4 ≥ 0

x1, x5 ≥ 0
x2, x3 ≤ 0

x4 unrestricted in sign

min 3y1 +10y2 +2y3

s.t. y1 +y2 −6y3 ≥ 3
y1 −y2 +9y4 ≤ −2

y2 +2y3 ≤ 0
−y2 +4y3 −11y4 = 4

y2 +y3 ≥ 5
y1, y4 ≤ 0

y2 unrestricted in sign
y3 ≥ 0

S O O B S
O 1 1 0 0 0 3
B 1 −1 1 −1 1 10
S −6 0 2 4 1 2
O 0 9 0 −11 0 0

3 −2 0 4 5 max

O B S O
S 1 1 −6 0 3
O 1 −1 0 9 −2
O 0 1 2 0 0
B 0 −1 4 −11 4
S 0 1 1 0 5

3 10 2 0 min

�

Here are some special cases of pairs of dual LP’s:

(P )
max cT x

s.t. Ax ≤ b
(D)

min yT b
s.t. yT A = cT

y ≥ O
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and

(P )
max cT x

s.t. Ax = b
x ≥ O

(D)
min yT b

s.t. yT A ≥ cT

Exercise 7.22 Suppose (P ) and (D) are as given in Theorem 7.20. Show that the appro-
priate general forms of (UP ) and (UD) are:

(UP )

n∑
j=1

aijwj ≤ 0, i ∈ I1

n∑
j=1

aijwj ≥ 0, i ∈ I2

n∑
j=1

aijwj = 0, i ∈ I3

n∑
j=1

cjwj > 0

wj ≥ 0, j ∈ J1

wj ≤ 0, j ∈ J2

wj unrestricted in sign, j ∈ J3

(UD)

m∑
i=1

aijvi ≥ 0, j ∈ J1

m∑
i=1

aijvi ≤ 0, j ∈ J2

m∑
i=1

aijvi = 0, j ∈ J3

m∑
i=1

bivi < 0

vi ≥ 0, i ∈ I1

vi ≤ 0, i ∈ I2

vi unrestricted in sign, i ∈ I3

�

7.7 Geometric Motivation of Duality

We mentioned in the last section that the following is a pair of dual LP’s:

(P )
max cT x

s.t. Ax ≤ b
(D)

min yT b
s.t. yT A = cT

y ≥ O

What does it mean for x and y to be feasible and satisfy complementary slackness for
this pair of LP’s? The solution y to (D) gives a way to write the objective function vector
of (P ) as a nonnegative linear combination of the outer normals of the constraints of (P ).
In effect, (D) is asking for the “cheapest” such expression. If x does not satisfy a constraint
of (P ) with equality, then the corresponding dual variable must be zero by complementary
slackness. So the only outer normals used in the nonnegative linear combination are those
for the binding constraints (the constraints satisfied by x with equality).

We have seen this phenomenon when we looked at two-variable linear programs earlier.
For example, look again at Exercise 6.8. Every dual-feasible pair of constraints corresponds

53



to a particular solution to the dual problem (though there are other solutions to the dual
as well), and a pair of constraints that is both primal-feasible and dual feasible corresponds
to a pair of solutions to (P ) and (D) that satisfy complementary slackness and hence are
optimal.

7.8 Exercises: Duality

Note: By e is meant a vector consisting of all 1’s.

Exercise 7.23 Consider the classic diet problem: Various foods are available, each unit
of which contributes a certain amount toward the minimum daily requirements of various
nutritional needs. Each food has a particular cost. The goal is to choose how many units of
each food to purchase to meet the minimum daily nutritional requirements, while minimizing
the total cost. Formulate this as a linear program, and give an “economic interpretation” of
the dual problem. �

Exercise 7.24 Find a linear program (P ) such that both (P ) and its dual (D) are infeasible.
�

Exercise 7.25 Prove that the set S = {x : Ax ≤ b, x ≥ O} is unbounded if and only if
S �= ∅ and the following system is feasible:

Aw ≤ O
w ≥ O
w �= O

Note: By w ≥ O, w �= O is meant that every component of w is nonnegative, and at least
one component is positive. A solution to the above system is called a feasible direction for S.
Draw some examples of two variable regions to illustrate how you can find the set of feasible
directions geometrically. �

Exercise 7.26 Prove that if the LP

max cT x
s.t. Ax ≤ b

x ≥ O

is unbounded, then the LP
max eT x

s.t. Ax ≤ b
x ≥ O

is unbounded. What can you say about the converse of this statement? �
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Exercise 7.27 Suppose you use Lagrange multipliers to solve the following problem:

max cT x
s.t. Ax = b

What is the relationship between the Lagrange multipliers and the dual problem? �

Exercise 7.28 Suppose that the linear program

max cT x
s.t. Ax ≤ b

x ≥ O

is unbounded. Prove that, for any b̂, the following linear program is either infeasible or
unbounded:

max cT x

s.t. Ax ≤ b̂
x ≥ O

�

Exercise 7.29 Consider the following linear programs:

(P )
max cT x

s.t. Ax ≤ b
x ≥ O

(P )
max cT x

s.t. Ax ≤ b + u
x ≥ O

(D)
min yT b

s.t. yT A ≥ cT

y ≥ O

Here, u is a vector the same size as b. (u is a vector of real numbers, not variables.) Assume
that (P ) has a finite optimal objective function value z∗. Let y∗ be any optimal solution to
(D). Prove that cT x ≤ z∗ + uT y∗ for every feasible solution x of (P ). What does this mean
economically when applied to the GGMC problem? �

Exercise 7.30 Consider the following pair of linear programs:

(P )
max cT x

s.t. Ax ≤ b
x ≥ O

(D)
min yT b

s.t. yT A ≥ cT

y ≥ O

For all nonnegative x and y, define the function φ(x, y) = cT x+ yT b− yT Ax. Assume that x
and y are nonnegative. Prove that x and y are feasible and optimal for the above two linear
programs, respectively, if and only if

φ(x, y) ≥ φ(x, y) ≥ φ(x, y)

for all nonnegative x and y (whether x and y are feasible for the above linear programs or
not). (This says that (x, y) is a saddlepoint of φ.) �
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Exercise 7.31 Consider the fractional linear program

(FP )

max cT x + α
dT x + β

s.t. Ax ≤ b
x ≥ O

and the associated linear program

(P )

max cT w + αt
s.t. Aw − bt ≤ O

dT w + βt = 1
w ≥ O, t ≥ 0

where A is an m × n matrix, b is an m × 1 vector, c and d are n × 1 vectors, and α and β
are scalars. The variables x and w are n × 1 vectors, and t is a scalar variable.

Suppose that the feasible region for (FP ) is nonempty, and that dT x + β > 0 for all x
that are feasible to (FP ). Let (w∗, t∗) be an optimal solution to (P ).

1. Suppose that the feasible region of (FP ) is a bounded set. Prove that t∗ > 0.

2. Given that t∗ > 0, demonstrate how an optimal solution of (FP ) can be recovered
from (w∗, t∗) and prove your assertion.

�

Exercise 7.32

1. Give a geometric interpretation of complementary slackness for the LP

max cT x
s.t. Ax ≤ b

x ≥ O

and its dual.

2. Now give an economic interpretation of complementary slackness.

�
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Exercise 7.33 Consider the linear program

(P )
min cT x

s.t. Ax = b
� ≤ x ≤ u

where � and u are vectors of constants and �i < ui for all i. Suppose that x is feasible for
(P ). Prove that x is optimal for (P ) if and only if there exists a vector y such that, for all i,

(AT y)i ≥ ci if xi > �i

(AT y)i ≤ ci if xi < ui.

�

Exercise 7.34 There are algorithmic proofs using the simplex method of Theorem 7.13 that
do not explicitly rely upon Theorem 4.3. Assume that Theorem 7.13 has been proved some
other way. Now reprove Theorem 4.3 using Theorem 7.13 and the fact that (I) is feasible if
and only if the following LP is feasible (and thus has optimal value 0):

(P )
max OT x

s.t. Ax ≤ b
x ≥ O

�

Exercise 7.35 Derive and prove a Theorem of the Alternatives for the system

(I) Ax < b

in the following way: Introduce a scalar variable t and a vector e of 1’s, and consider the LP

(P )
max t

s.t. Ax + et ≤ b

Begin by noting that (P ) is always feasible, and proving that (I) is infeasible if and only if
(P ) has a nonpositive optimal value. �

Exercise 7.36 Consider the pair of dual LP’s

(P )
max cT x

s.t. Ax ≤ b
x ≥ O

(D)
min yT b

s.t. yT A ≥ cT

y ≥ O

Suppose x and y are feasible for (P ) and (D), respectively. Then x and y satisfy strong
complementary slackness if
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1. For all j, either xj = 0 or
∑m

i=1 aijyi = cj, but not both; and

2. For all i, either yi = 0 or
∑n

j=1 aijxj = bi, but not both.

Prove that if (P ) and (D) are both feasible, then there exists a pair x, y of optimal solutions
to (P ) and (D), respectively, that satisfies strong complementary slackness. Illustrate with
some examples of two variable LP’s. Hint: One way to do this is to consider the following
LP:

max t
s.t. Ax ≤ b

Ax − Iy + et ≤ b
−AT y ≤ −c

−Ix − AT y + ft ≤ −c
−cT x + bT y ≤ 0

x, y, t ≥ O

Here, both e and f are vectors of all 1’s, and t is a scalar variable. �

Exercise 7.37 Consider the quadratic programming problem

(P )
min Q(x) = cT x +

1

2
xT Dx

s.t. Ax ≥ b
x ≥ O

where A is an m × n matrix and D is a symmetric n × n matrix.

1. Assume that x is an optimal solution of (P ). Prove that x is an optimal solution of
the following linear program:

(P ′)
min(cT + xT D)x

s.t. Ax ≥ b
x ≥ O

Suggestion: Let x̂ be any other feasible solution to (P ′). Then λx̂ + (1 − λ)x is also a
feasible solution to (P ′) for any 0 < λ < 1.

2. Assume that x is an optimal solution of (P ). Prove that there exist nonnegative vectors
y ∈ Rm, u ∈ Rn, and v ∈ Rm such that[

u
v

]
−

[
D −AT

A O

] [
x
y

]
=

[
c
−b

]

and such that uT x + vT y = 0.
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�

Exercise 7.38 Consider a p× q chessboard. Call a subset of cells independent if no pair of
cells are adjacent to each other via a single knight’s move. Call any line segment joining the
centers of two cells that are adjacent via a single knight’s move a knight line. A knight line
is said to cover its two endpoint cells. A knight line cover is a set of knight lines such that
every cell on a chessboard is covered by at least one knight line. Consider the problem (P )
of finding the maximum size k∗ of an independent set. Consider the problem (D) of finding
the minimum size �∗ of a knight lines cover. Prove that if k is the size of any independent
set and � is the size of any knight line cover, then k ≤ �. Conclude that k∗ ≤ �∗. Use this
result to solve both (P ) and (D) for the 8 × 8 chessboard. For the 2 × 6 chessboard. �

Exercise 7.39 Look up the definitions and some theorems about Eulerian graphs. Explain
why the question: “Is a given graph G Eulerian?” has a good characterization. �
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8 Solving Linear Programs

8.1 Matrices

Suppose A is an m × n matrix, B is an n × p matrix, and C = AB. Then

cik =
n∑

j=1

aijbjk, i = 1, . . . ,m, k = 1, . . . , p.

We can recognize this as the inner product of the ith row of A with the kth column of B:

cik = [ai1, . . . , ain]




b1k
...

bnk


 .

We can also see that the ith row of C is a linear combination of the rows of B using as
coefficients the entries in the ith row of A:

[ci1, . . . , cip] = ai1 [b11, . . . , b1p] + · · · + ain [bn1, . . . , bnp] ,

and the kth column of C is a linear combination of the columns of A using as coefficients
the entries in the kth column of B:


c1k
...

cmk


 = b1k




a11
...

am1


 + · · · + bnk




a1n
...

amn


 .

8.2 Four Vector Spaces Associated with a Matrix

Definition 8.1 Let A be an m × n matrix. The four vector spaces associated with A are:

1. The column space of A. This is the space of all linear combinations of the columns of
A, columnspace(A) = {Ax : x ∈ Rn}.

2. The row space of A. This is the space of all linear combinations of the rows of A,
rowspace(A) = {yT A : y ∈ Rm}.

3. The nullspace of A, nullspace(A) = {x ∈ Rn : Ax = O}.
4. The left nullspace of A, leftnullspace(A) = {y ∈ Rm : yT A = OT}.
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To find bases for each of the four spaces, perform Gaussian elimination on A to obtain
a matrix A′ in row-reduced form. By multiplying the matrices corresponding to the various
row operations, determine the square invertible matrix M such that MA = A′. The leading
nonzero entries in each nonzero row of A′ are called the pivot entries. The rows in which
they appear are called the pivot rows, and the columns in which they appear are called the
pivot columns. You should be able to verify the following assertions:

1. To obtain a basis for the column space of A select the columns of A corresponding to
the pivot columns of A′. Note that A and A′ do not necessarily have the same column
space, but their column spaces have the same dimension, namely, the number of pivot
entries.

2. The nonzero rows of A′ form a basis for the row space of A. Hence they have the same
dimension, namely, the number of pivot entries.

3. Matrices A and A′ have the same nullspace. There is one basis vector for each nonpivot
column A′

s of A′: Set ws = 1 and wj = 0 for all other nonpivot columns Aj. Then
determine the unique multipliers wj for the pivot columns of A′

j to solve A′w = O. So
the dimension of the nullspace equals the number of nonpivot columns.

4. Suppose the zero rows of A′ are precisely the last k rows of A′. Then the last k rows
of M form a basis for the left nullspace of A. In particular, the dimension of the left
nullspace equals the number of nonpivot rows.

As an immediate consequence we have:

Theorem 8.2

1. The dimension of the row space equals the dimension of the column space. This number
is also called the rank of A.

2. The dimension of the column space plus the dimension of the nullspace equals the
number of columns.

3. The dimension of the row space plus the dimension of the left nullspace equals the
number of rows.
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8.3 Graphs and Digraphs

Definition 8.3 A directed graph (digraph) G = (V,E) is a finite set V = V (G) of vertices
and a finite set E = E(G) of edges. Associated with each edge e is an ordered pair (u, v)
of (usually distinct) vertices. We way u is the tail of e, v is the head of e, and u and v are
the endpoints of e. If u and v are distinct, we may sometimes write e = uv if there is no
other edge having the same tail as e and the same head as e. If u = v then e is called a loop.
In this course, unless otherwise indicated, we will consider only digraphs without loops. We
can represent a directed graph by a drawing, using points for vertices and arrows for edges,
with the arrow pointing from the tail to the head.

If each edge is associated with an unordered (instead of ordered) pair of endpoints, then
we say that we have an (undirected) graph.

Definition 8.4 A subgraph of a digraph G = (V,E) is a digraph G′ = (V ′, E ′) where
V ′ ⊆ V , E ′ ⊆ E.

A path in a digraph is an alternating sequence v0, e1, v1, e2, v2, . . . , ek, vk of vertices and
edges, where the vertices vi are all distinct, the edges ei are all distinct, and vi−1 and vi are
the two endpoints of ei (either one of vi, vj could be the tail, the other being the head). If
you have an alternating sequence in which k ≥ 1, v0 = vk and otherwise the vertices and
edges are distinct, the sequence is called a cycle. We also often identify paths and cycles
with just the sets of edges in them.

Two vertices are connected if there is a path from one to the other. The set of all vertices
connected to a given vertex is a component of the digraph. A digraph is connected if it has
only one component.

A forest is a graph containing no cycle (i.e., acylic). A tree is a connected forest. A
spanning forest of a digraph is a subgraph that is a forest containing every vertex of the
digraph. A connected spanning forest of a digraph is a spanning tree.

A twig of a digraph is an edge that is not a loop and has an endpoint that is not the
endpoint of any other edge in the digraph.

Theorem 8.5 Forests with at least one edge have twigs.

Proof. Assume the contrary. Choose any vertex in the forest that is the endpoint of
some edge in the forest. Begin making a path. If every vertex encountered is new, at every
new vertex there will be another vertex having that vertex as an endpoint that can be used
to continue the path. Since there is only a finite number of vertices, this cannot continue
forever. So at some point a vertex will be encountered for a second time. But then a cycle
will be detected, which is also impossible. �
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Definition 8.6 Associated with a digraph having no loops is the vertex-edge incidence ma-
trix A. Rows are indexed by vertices, columns by edges. The entry in row v column e is −1
if v is the tail of e, +1 if v is the head of e, and zero otherwise. (Note that other texts may
interchange −1 and 1 in the definition.)

Theorem 8.7 For a digraph, the dimension of the left nullspace of A equals the number of
components of G.

Proof. An element of the left nullspace is an assignment of numbers yv to vertices v such
that for every edge e = uv, yv − yu = 0; i.e., yv = yu. By connectivity, the same number
must be assigned to every vertex in a given component. But different components may have
vertices with different numbers. �

For a digraph, an element of the nullspace of A corresponds to an assignment of numbers
xe to edges e ∈ E(G) such that for every vertex v,

∑
e∈δ−(v)

xe −
∑

e∈δ+(v)

xe = 0.

We are using the notation δ+(v) to denote the set of edges whose tails are v (the set of
edges leaving v), and δ−(v) to denote the set of edges whose heads are v (the set of edges
entering v). That is to say, for every vertex v, the sum of the numbers on edges entering v
equals the sum of the numbers on edges leaving v. The above equations are known as the
flow-conservation equations because by interpreting the numbers on the edges as flows, the
equations state that what flows in at each vertex must flow out. (Regard negative flow as
positive flow in the opposite direction.)

Theorem 8.8 If a subset of edges contains a cycle, then the corresponding subset of columns
of A is dependent.

Proof. Trace the cycle in some direction, assigning +1 to edges traversed in the forward
direction, and −1 to edges traversed in the reverse direction. �

Theorem 8.9 If a subset S of columns of A is dependent, then the corresponding subset of
edges contains a cycle.

Proof. Let x be a nonzero solution to Ax = O. Without loss of generality assume that
xe �= 0 precisely when e ∈ S. From the flow-conservations equations we can deduce that
there can be no twig in the subgraph of G determined by the edges in S. So the set of edges
of S cannot be a forest, and hence contains a cycle. �
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Exercise 8.10 Prove that the following are equivalent for a digraph G with at least one
edge. Try using some of the properties of the dimensions of the vector spaces associated
with the vertex-edge incidence matrix A of G.

1. G is a tree.

2. G is minimally connected; i.e., G is connected, but no subgraph with the same vertex
set and fewer edges is connected.

3. G is maximally acyclic; i.e, G is acyclic, but no supergraph with the same vertex set
and more edges is acyclic.

4. |V (G)| = |E(G)| + 1 and G is connected.

5. |V (G)| = |E(G)| + 1 and G is acyclic.

Exercise 8.11 Let A be the vertex-edge incidence matrix of a digraph G with at least
one edge. Let M be any square submatrix of A, determined by selecting any sets of equal
numbers of rows and columns of A, not necessarily adjacent. Prove that the determinant of
M is 0, 1, or −1. Suggestion: Recall how to calculate a determinant by expansion along a
column.

8.4 Systems of Equations

Definition 8.12 Let A be an m× n matrix. For a subset B ⊆ {1, . . . , n} we let AB denote
the submatrix of A consisting only of those columns indexed by B. Similarly, if x ∈ Rn we
let xB denote the subvector of x consisting only of those components of x indexed by B.

Given an m × n matrix A and a vector b ∈ Rm we can determine whether or not b is
in the column space of A and, if so, find a particular solution x to Ax = b using Gaussian
elimination. The solution x will satisfy ABxB = b and xN = O, where N = {1, . . . , n} \ B.
We can also find a basis for {w1, . . . , wp} for the nullspace of A. Then the complete set of
solutions to Ax = b is given by

{x + t1w
1 + · · · + tpw

p : t1, . . . , tp ∈ R}.

Actually, we can do the above for any set B of indices of columns forming a basis for the
column space of A. Such a solution x is called the basic solution associated with B, and the
vectors w1, . . . , wp are called the basic directions associated with B.
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Example 8.13 Consider the system Ax = b below:




1 2 1 0 0
1 1 0 1 0
2 1 0 0 1







x1

x2

x3

x4

x5




=




120
70
100


 .

Here are some choices for B and the corresponding basic solutions and basic directions,
each of which can easily be computed by hand in this small example:

1. B = {3, 4, 5}, x = (0, 0, 120, 70, 100), w1 = (1, 0,−1,−1,−2), w2 = (0, 1,−2,−1,−1).

2. B = {2, 3, 5}, x = (0, 70,−20, 0, 30), w1 = (1,−1, 1, 0,−1), w2 = (0,−1, 2, 1, 1).

3. B = {1, 2, 3}, x = (30, 40, 10, 0, 0), w1 = (1,−2, 3, 1, 0), w2 = (−1, 1,−1, 0, 1).

4. B = {1, 2, 4}, x = (80
3
, 140

3
, 0,−10

3
, 0), w1 = (1

3
,−2

3
, 1, 1

3
, 0), w2 = (−2

3
, 1

3
, 0, 1

3
, 1).

5. B = {1, 2, 5}, x = (20, 50, 0, 0, 10), w1 = (1,−1, 1, 0,−1), w2 = (−2, 1, 0, 1, 3).

So, for example, from B = {1, 2, 5} we obtain the complete set of solutions





20
50
0
0

10




+ t1




1
−1

1
0

−1




+ t2




−2
1
0
1
3




: t1, t2 ∈ R




.

In the special case that the matrix A has full row rank (the rows are linear independent),
then for every choice of indices B for the column space, the matrix AB will be square and
intertible. In this case we can derive formulas for x and the vectors wi.

Since ABxB = b, we have
xB = A−1

B b
xN = O

Since each basic direction w is obtained by setting ws = 1 for some s ∈ N , wj = 0 for
j ∈ N \ {s}, and then solving Aw = O, we have ABwB + As = O so

wB = −A−1
B As

ws = 1
wj = 0, j ∈ N \ {s}

65



8.5 Solving Linear Programs

In this section we finally begin to discuss how to solve linear programs. Let’s start with a
linear program in standard form

(P̂ )

max z = ĉT x̂

s.t. Âx̂ ≤ b
x̂ ≥ O

where Â is an m × n matrix.
In summation notation, (P̂ ) is of the form

max z =
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj ≤ bi, i = 1, . . . , m

xj ≥ 0, j = 1, . . . , n

The first step will be to turn this system into a system of equations by introducing m
nonnegative slack variables, one for each inequality in Âx̂ ≤ b:

max z =
n∑

j=1

cjxj

s.t. (
n∑

j=1

aijxj) + xn+i = bi, i = 1, . . . ,m

xj ≥ 0, j = 1, . . . , n + m

Now we have a problem of the form

(P )
max cT x

s.t. Ax = b
x ≥ O

where x = (x̂, xn+1, . . . , xn+m), c = (ĉ, 0, . . . , 0), and A = [Â|I]. In particular, the rows of A
are linearly independent (A has full row rank).

Example 8.14 With the addition of slack variables, the GGMC problem becomes

max z = 5x1 + 4x2

s.t. x1 + 2x2 + x3 = 120
x1 + x2 + x4 = 70

2x1 + x2 + x5 = 100
x1, . . . , x5 ≥ 0
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We are going to solve this problem by moving through a sequence of basic solutions by
following a sequence of basic directions.

1. Begin with the easy basis {3, 4, 5}. Compute the associated basic solution and basic
directions: x = (0, 0, 120, 70, 100), w1 = (1, 0,−1,−1,−2), w2 = (0, 1,−2,−1,−1).
Notice that x is a nonnegative basic solution. We call such solutions basic feasible
solutions, and such a basis a (primal) feasible basis. Using the objective function,
determine the values of each of these: cT x = $0, cT w1 = $5, cT w2 = $4. So if we
start with the solution x and move in the direction of w1 along the ray x + tw1 =
(0 + t, 0, 120− t, 70− t, 100− 2t), we gain $5 for each unit increase in t. How high can
we make t without having any of our variables become negative? We clearly need to
be only concerned with the variables that are dropping in value, and in this case we
see that t must be the minimum of {120, 70, 100

2
}; namely, 50.

Setting t = 50 we get the new solution (50, 0, 70, 20, 0). So we went from a solu-
tion involving basis {3, 4, 5}, used the linear relation among columns {1, 3, 4, 5}, and
noticed that dropping column 5 leaves a new basis {1, 3, 4} with associated basic fea-
sible solution (50, 0, 70, 20, 0). At this point it would be wise to take a second look at
Exercise 2.14(3).

2. The basis {1, 3, 4} has the associated basic feasible solution and basic directions:
x = (50, 0, 70, 20, 0) with value $250, w1 = (−1

2
, 1,−3

2
,−1

2
, 0) with value $3

2
, w2 =

(−1
2
, 0, 1

2
, 1

2
, 1) with value $−5

2
. If we move from x in the direction of w1 along the ray

x + tw1 = (50 − 1
2
t, 0 + t, 70 − 3

2
t, 20 − 1

2
t, 0), we gain $3

2
for each unit increase in t.

How high can we make t without having any of our variables become negative? In this
case it is the minimum of {50/1

2
, 70/3

2
, 20/1

2
}; namely, 40.

Setting t = 40 we get the new solution (30, 40, 10, 0, 0). So we went from a solution
involving basis {1, 3, 4}, used the linear relation among columns {1, 2, 3, 4}, and noticed
that dropping column 4 leaves a new linearly independent set of columns {1, 2, 3} with
associated basic feasible solution (30, 40, 10, 0, 0).

3. The basis {1, 2, 3} has the associated basic feasible solution and basic directions:
x = (30, 40, 10, 0, 0) with value $310, w1 = (1,−2, 3, 1, 0) with value $−3, w2 =
(−1, 1,−1, 0, 1) with value $−1. If we move from x in either direction w1 or w2 or
any nonnegative combination of these, we cannot get a higher value. On the other
hand, since every solution to the set of equations is of the form x + t1w

1 + t2w
2 and

we require nonnegative variables, we cannot let t1 become negative without making x4

negative, and we cannot let t2 become negative without making x5 negative. So we are
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restricted to considering only nonnegative t1, t2. Therefore there is no solution with
higher value than the one we have. �

This gives an idea of the simplex method to solve linear programs. If you have a basis B
with an associated basic feasible solution, determine the basic directions and their values. If
no value is positive, you have arrived at an optimal solution. Otherwise move in the direction
of one of the basic directions with positive value until some basic variable is forced to zero.
If no variable decreases to zero, then the basic direction w is nonnegative. Such a basic
direction is called a basic feasible direction. Then you have found a ray of feasible solutions
with ever-increasing objective function value; hence the linear program is unbounded. If,
on the other hand, some variable decreases to zero, drop the index of that column from the
basis and add the index of the nonbasic column associated with the basic direction.

There are still some details to be worked out, including how to make choices to insure
that the algorithm will terminate, and how to get a basis with a basic feasible solution in
the first place.

8.6 The Revised Simplex Method

Another question has to do with the computations involved. Let us suppose that our matrix
A has full row rank. Given a basis B, we already have formulas for the basic solution and the
basic directions. Let’s think about the costs of the basic directions. Suppose we have basic
direction w associated with basis B and nonbasic column s. Recall that wB = −A−1

B As,
ws = 1, and wj = 0 otherwise. So its cost is cT w = csws + cT

BwB = cs − cT
BA−1

B As.
Define yT = cT

BA−1
B . Thus y is the unique solution to the equation yT AB = cT

B. Then the
cost of w becomes cs − yT As. By computing y first, we can screen our possible directions to
determine if any have positive value. If we find that there is a basic direction with positive
value, we can then compute it and use it to move to another basic feasible solution.

The general procedure to make a step (also known as a pivot) in the revised simplex
method can be described as follows:

At some stage in the simplex method we have a feasible basis B and an associated basic
feasible solution x. To get yT = cT

BA−1
B , we solve yT AB = cT

B. Then we can calculate
cN = cT

N − yT AN . These numbers are known as the reduced costs of the nonbasic variables.
If cN ≤ O, then x is optimal. If not, then cs > 0 for some s ∈ N . Find w by solving
ABwB = −As, and setting ws = 1 and wj = 0 for all other j ∈ N \ s. If w ≥ O then (P )
is unbounded. Otherwise find the largest value of t for which x + tw remains nonnegative.
Calculate the new basic feasible solution with this value of t. Suppose the previously basic
variable xr drops to zero. Change B by dropping r and including s.

Example 8.15 Solving GGMC using the revised simplex method.
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1. Begin with the basis B = {3, 4, 5} and associated basic feasible solution x =
(0, 0, 120, 70, 100).

Our starting basis is (3, 4, 5), So

AB =

3 4 5


1 0 0
0 1 0
0 0 1




Find y by solving yT AB = cT
B:

[
y1 y2 y3

]
3 4 5


1 0 0
0 1 0
0 0 1


 =

3 4 5[
0 0 0

]

Thus y = (0, 0, 0)T .

Calculate cT
N = cT

N − yT AN .

[
c1 c2

]
=

1 2[
5 4

]
−

[
0 0 0

]
1 2


1 2
1 1
2 1


 =

1 2[
5 4

]

Since 5 is positive we can choose the basic direction w associated with column s = 1;
i.e., x1 will be the entering variable. Set w1 = 1 and w2 = 0. Solve ABwB = −As:

3 4 5


1 0 0
0 1 0
0 0 1







w3

w4

w5


 =



−1
−1
−2




Thus w = (1, 0,−1,−1,−2).
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To find the new solution, write x̂ = x + tw:


x̂1

x̂2

x̂3

x̂4

x̂5




=




0
0

120
70
100




+ t




1
0

−1
−1
−2




Therefore t = 50, x5 is the leaving variable, {1, 3, 4} is the new basis, x =
(50, 0, 70, 20, 0) is the new basic feasible solution, and

B =

1 3 4


1 1 0
1 0 1
2 0 0




is the new basis matrix AB.

2. Find y by solving yT AB = cT
B:

[
y1 y2 y3

]
1 3 4


1 1 0
1 0 1
2 0 0


 =

1 3 4[
5 0 0

]

Thus y = (0, 0, 2.5)T .

Calculate cT
N = cN − yT AN .

[
c2 c5

]
=

2 5[
4 0

]
−

[
0 0 2.5

]
2 5


2 0
1 0
1 1


 =

2 5[
1.5 −2.5

]

Since 1.5 is positive we can choose the basic direction w associated with column s = 2;
i.e., x2 will be the entering variable. Set w2 = 1 and w5 = 0. Solve ABwB = −As:

1 3 4


1 1 0
1 0 1
2 0 0







w1

w3

w4


 =



−2
−1
−1
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Thus w = (−0.5, 1,−1.5,−0.5, 0).

To find the new solution, write x̂ = x + tw:


x̂1

x̂2

x̂3

x̂4

x̂5




=




50
0
70
20
0




+ t




−0.5
1

−1.5
−0.5

0




Therefore t = 40, x4 is the leaving variable, {1, 2, 3} is the new basis, x =
(30, 40, 10, 0, 0) is the new basic feasible solution, and

B =

1 2 3


1 2 1
1 1 0
2 1 0




is the new basis matrix AB.

3. Find y by solving yT AB = cT
B:

[
y1 y2 y3

]
1 2 3


1 2 1
1 1 0
2 1 0


 =

1 2 3[
5 4 0

]

Thus y = (0, 3, 1)T .

Calculate cT
N = cN − yT AN .

[
c4 c5

]
=

4 5[
0 0

]
−

[
0 3 1

]
4 5


0 0
1 0
0 1


 =

4 5[
−3 −1

]

Since c is nonpositive, our current solution x is optimal.

�
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Index

e, 54

affine combination, 5
affine set, 5
affine span, 6
alternatives, theorems of the, 14, 15, 25–

29, 57

basic direction, 64
basic feasible direction, 68
basic feasible solution, 67
basic solution, 64
basis, 2
basis, feasible, 67
basis, primal feasible, 67
binding constraint, 35
binding inequality, 11
bizarre, opposite, standard, 51
bounded subset, 9

Carathéodory’s Theorem, 7
characterization, good, 15, 25, 47
chessboard, 59
column space, 60
complementary slackness, 47, 53
complementary slackness, strong, 57
component, 62
cone, 5, 6
connected digraph, 62
connected vertices, 62
constraint, binding, 35
constraint, linear, 32
convex combination, 5
convex hull, 6
convex set, 5
costs, reduced, 68

Cramer’s rule, 3
cycle, 62

Dantzig, George, 41
determinant, 3
diet problem, 54
digraph, 62
digraph, connected, 62
directed graph, 62
direction, basic, 64
direction, basic feasible, 68
direction, feasible, 54
dual linear program, 41
dual linear program, algebraic motivation,

42
dual linear program, economic motivation,

39
dual linear program, geometric motivation,

53
duality, 39, 54
duality theorems, 42, 49
duality, strong, 44, 46
duality, weak, 42
duals of general linear programs, 48
duals of linear programs in standard form,

40

edge, 62
eigenvalue, 3
eigenvector, 3
endpoint, 62
equation, linear, 32
equations, systems of, 14
equivalent linear program, 49
equivalent system, 2
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Eulerian graph, 59

Farkas Lemma, 28
feasible direction, 54
feasible linear program, 32
feasible region, 32
feasible region, unbounded, 32
feasible solution, 32
flow-conservation equations, 63
forest, 62
forest, spanning, 62
Fourier-Motzkin elimination, 13, 16, 24, 27
fractional linear program, 56
free variable, 49
function, linear, 32

Gaussian elimination, 2, 14, 61
good characterization, 15, 25, 47
gradient, 35
Gram-Schmidt orthogonalization, 3
graph, directed, 62
graph, Eulerian, 59
graph, undirected, 62

H-polyhedron, 9
H-polytope, 9, 11, 13
halfspace, 32
halfspace, closed, 9
halfspace, open, 9
head, 62
Helly’s Theorem, 8
hyperplane, 9, 32

inequality, linear, 32
infeasible linear program, 32
integer linear program, 37
irredundant system, 27

Lagrange multipliers, 55

left nullspace, 60
linear combination, 5
linear constraint, 32
linear equation, 9, 32
linear function, 32
linear inequalities, systems of, 14, 27
linear inequality, 9, 32
linear program, 32, 34
linear program in standard form, 33
linear program, dual, 41
linear program, equivalent, 49
linear program, feasible, 32
linear program, fractional, 56
linear program, infeasible, 32
linear program, integer, 37
linear program, primal, 41
linear program, unbounded, 32, 43
linear span, 6
loop, 62
LU factorization, 3

matrix algebra, 2
matrix, inverse, 3
matrix, multiplication, 60
matrix, nonsingular, 3
matrix, orthogonal, 3
matrix, positive definite, 4
matrix, positive semi-definite, 4
matrix, product, 2
matrix, singular, 3
matrix, symmetric, 4
matrix, vertex-edge incidence, 63
Minkowski’s Theorem, 11

nonbinding inequality, 11
nonnegative combination, 5
norm, 3
nullspace, 2, 11, 60
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nullspace, left, 60

objective function, 32
opposite, standard, bizarre, 51
optimal solution, 32
optimal value, 32

path, 62
pivot, 68
polymake, 13
polytope, 5
polytopes, 5
primal linear program, 41

QR factorization, 3
quadratic program, 58

Radon’s Theorem, 8
rank of a matrix, 61
reduced costs, 68
references, 1
row operations, 2
row space, 60

saddlepoint, 55
simplex method, 68
slack inequality, 11
slack variable, 66
solution, basic, 64
solution, basic feasible, 67
solution, feasible, 32
solution, geometric, 31
solution, optimal, 32
spanning forest, 62
spanning tree, 62
standard form, linear program in, 33
standard, opposite, bizarre, 51
strong complementary slackness, 57
strong duality, 44, 46

subgraph, 62
subspace, 5
systems of equations, 14
systems of linear inequalities, 14, 27

tail, 62
theorems of the alternatives, 14, 15, 25–29,

57
tight inequality, 11
tree, 62
tree, spanning, 62
twig, 62

unbounded feasible region, 32
unbounded linear program, 32, 43
unrestricted variable, 49

V-polytope, 5, 7, 11, 13
value, optimal, 32
variable, free, 49
variable, slack, 66
variable, unrestricted, 49
vector, 2
vector spaces associated with a matrix, 2
vertex, 11, 30, 62
vertex-edge incidence matrix, 63
vertices, connected, 62

weak duality, 42
Weyl’s Theorem, 13
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