
1 Basic De�nitions

De�nition 1.1 Let x1; : : : ; xn 2 R
d and �1; : : : ; �n 2 R. Then x = �1x

1 + � � � + �nx
n is

1. a linear combination of x1; : : : ; xn;

2. an a�ne combination of x1; : : : ; xn if �1 + � � �+ �n = 1;

3. a nonnegative combination of x1; : : : ; xn if �1; : : : ; �n � 0;

4. a convex combination of x1; : : : ; xn if �1 + � � �+ �n = 1 and �1; : : : ; �n � 0.

Remark 1.2 For x1; : : : ; xn 2 R
d, write

A =
h
x1 � � � xn

i

and

A0 =

"
x1 � � � xn

1 � � � 1

#
:

De�ne also

� =

2
664
�1
...
�n

3
775 :

Then the four cases in the above de�nition can be expressed, respectively, as

1. x = A�.

2.

"
x

1

#
= A0�.

3. x = A�, � � O.

4.

"
x

1

#
= A0�, � � O.

De�nition 1.3 Let x1 : : : ; xn 2 R
d. Then fx1; : : : ; xng is

1. linearly dependent if 9�1; : : : ; �n 2 R, not all zero, such that �1x1 + � � � + �nx
n = O.

Otherwise fx1; : : : ; xng is linearly independent.
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2. a�nely dependent if 9�1; : : : ; �n 2 R, not all zero, such that �1x1 + � � � + �nx
n = O

and �1 + � � �+ �n = 0. Otherwise fx1; : : : ; xng is a�nely independent.

Theorem 1.4

1. fx1; : : : ; xng � R
d is linearly dependent i� there exists one of the xi that can be ex-

pressed as a linear combination of the others.

2. fx1; : : : ; xng � R
d is a�nely dependent i� there exists one of the xi that can be ex-

pressed as an a�ne combination of the others.

Proof. Exercise. 2

Theorem 1.5 Let S = fx1; : : : ; xng � R
d and de�ne A and A0 as in Remark 1.2.

1. S is linearly independent i� rankA = n i� dimf� 2 R
n : A� = Og = 0. In particular,

if n > d then S is linearly dependent.

2. S is a�nely independent i� rankA0 = n i� dimf� 2 R
n : A0� = Og = 0. In particular,

if n > d+ 1 then S is a�nely dependent.

Proof. Exercise. 2

Exercise 1.6 fx0; x1; : : : ; xng � R
d is a�nely independent i� fx1 � x0; : : : ; xn � x0g is

linearly independent.

De�nition 1.7 Let S � R
d.

1. S is a linear set or subspace if S 6= ; and 8x; y 2 S, 8�; � 2 R, �x + �y 2 S. I.e., S
is nonempty (in particular S contains O) and closed under all linear combinations of
two elements.

2. S is an a�ne set, a�ne space, or 
at if 8x; y 2 S, 8�; � 2 R such that � + � = 1,
�x+ �y 2 S. I.e., S is closed under all a�ne combinations of two elements.

3. S is a (convex) cone if S 6= ; and 8x; y 2 S, 8 nonnegative �; � 2 R, �x + �y 2 S.
I.e., S is nonempty (in particular S contains O) and is closed under all nonnegative
combinations of two elements.

4. S is a convex set if 8x; y 2 S, 8 nonnegative �; � 2 R such that �+� = 1, �x+�y 2 S.
I.e., S is closed under all convex combinations of two elements.
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Remark 1.8 We often (but not always) refer to elements of linear subspaces and convex
cones as vectors and elements of a�ne and convex sets as points.

Theorem 1.9 Let L;A;K; C denote the collection of all linear subspaces, a�ne sets, cones,
and convex sets, respectively, of Rd. Then A � C and K � C, and these inclusions are strict.
Further, A \K = L.

Proof. Exercise. 2

Exercise 1.10 Classify the following sets.

1. fx 2 R
d : kxk � 1g.

2. fx 2 R
d : aTx = �g, where O 6= a 2 R

d and � 2 R. (Such a set is called a hyperplane.)

3. fx 2 R
d : Mx = Og where M is an n� d matrix.

4. fx 2 R
d : Mx � Og where M is an n � d matrix.

5. fx 2 R
d : Mx = bg where M is an n� d matrix and b 2 R

n.

6. fx 2 R
d : Mx � bg where M is an n � d matrix and b 2 R

n.

Theorem 1.11 Let S � R
d.

1. S is a linear subspace i� S 6= ; and S is closed under linear combinations of �nite
numbers of vectors in S.

2. S is an a�ne set i� S is closed under a�ne combinations of �nite numbers of points
in S.

3. S is a cone i� S 6= ; and S is closed under nonnegative combinations of �nite numbers
of vectors in S.

4. S is a convex set i� S is closed under convex combinations of �nite numbers of points
in S.

Proof. Exercise. 2

Theorem 1.12 Let S be a nonempty subset of Rd. Then S is an a�ne set i� there exists
a linear subspace L of Rd and a point y such that S = L + y; i.e., S = fx+ y : x 2 Lg. In
this case L is unique, and y can be chosen to be any particular point of S.

3



Proof. Exercise. 2

Theorem 1.13 Let S � R
d.

1. S is a linear subspace i� S is a set of the form fx 2 R
d : Mx = Og for some n � d

matrix M .

2. S is an a�ne set i� S is a set of the form fx 2 R
d :Mx = bg for some n�d matrix M

and b 2 R
n. If S is nonempty, then in this case, S = L+ y, where y is any particular

point in S and L = fx 2 R
d : Mx = Og.

Proof. Exercise. 2

Remark 1.14 Not all cones are of the form fx 2 R
d : Mx � Og. Those that are are called

(convex) polyhedral cones. Similarly, not all convex sets are of the form fx 2 R
d :Mx � bg.

Those that are are called (convex) polyhedra.

Proof. Exercise. 2

Theorem 1.15

1. Every linear subspace is the intersection of a �nite number of hyperplanes containing
O.

2. Every a�ne set is the intersection of a �nite number of hyperplanes.

Proof. Exercise. 2

Theorem 1.16 The intersection of any collection of linear subspaces, a�ne sets, cones,
convex sets is again a linear subspace, a�ne set, cone, convex set, respectively.

Proof. Exercise. 2

De�nition 1.17 Let S � R
d.

1. The linear span of S, spanS, is the intersection of all linear subspaces containing S.

2. The a�ne span of S, a�S, is the intersection of all a�ne sets containing S.

3. The cone of S, posS, is the intersection of all cones containing S.
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4. The convex hull of S, convS, is the intersection of all convex sets containing S.

De�nition 1.18 Let S; T � R
d.

1. If S = span T , then we say T (linearly) spans S.

2. If S = a� T , then we say T a�nely spans S.

Theorem 1.19 Suppose S is a nonempty subset of Rd. Then spanS, a�S, pos S, convS is
the set of all linear, a�ne, nonnegative, convex combinations, respectively, of �nite numbers
of elements in S.

Proof. Exercise. 2

De�nition 1.20 If S � R
d is a �nite set, pos S is called a �nite cone and convS is called

a (convex) polytope.

Theorem 1.21 Let S � R
d.

1. If S 6= fOg is a linear subspace, then 9x1; : : : ; xn 2 S such that every x 2 S can
be expressed uniquely as a linear combination of x1; : : : ; xn. In this case, n is the
maximum size of a linearly independent subset of S and the minimum size of a subset
of S that spans S linearly.

2. If S 6= ; is an a�ne set, then 9x1; : : : ; xn 2 S such that every x 2 S can be expressed
uniquely as an a�ne combination of x1; : : : ; xn. In this case, n is the maximum size of
an a�nely independent subset of S and the minimum size of a subset of S that spans
S a�nely.

Proof. Exercise. 2

De�nition 1.22 In the �rst case above, fx1; : : : ; xng is called a basis of S and the dimension
of S, dimS, equals n. If S = fOg, then dimS = 0. In the second case above, fx1; : : : ; xng
is called an a�ne basis of S and S is the translate L+ y of some linear (n� 1)-dimensional
subspace (verify this). We say that the dimension of S, dimS, equals n� 1. An a�ne set is
0-dimensional i� it is a set consisting of a single point. A�ne sets of dimension 1 and 2 are
called lines and planes, respectively.

Exercise 1.23 Let S be an a�ne subset of Rd. Show that S is a hyperplane i� dimS = d�1.
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Exercise 1.24 Let S � R
d.

1. Show that a linear basis for span S can be chosen from S itself.

2. Show that an a�ne basis for a� S can be chosen from S itself.

Exercise 1.25 Suppose M is an n � d matrix and b 2 R
n.

1. If S = fx 2 R
d :Mx = Og, then dimS = d � rankM .

2. If ; 6= S = fx 2 R
d :Mx = bg, then dimS = d� rankM .

De�nition 1.26 Suppose S is a nonempty subset of Rd. The dimension of S, dimS, is
de�ned to be dim(a� S). (Note that the de�nitions of dimension agree if S is an a�ne set.)
The dimension of the empty set is de�ned to be �1.
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