1 Basic Definitions

Definition 1.1 Let 2',..., 2" ¢ R and A1,...,\, € R. Then @ = Az + -+ + A2 is

.

1. a linear combination of ', ... ™

, T

2. an affine combination of x',. .. 2™ if M\ +---+ X, = 1;

3. a nonnegative combination of x1,... 2™ if A,..., A\, > 0;

4. a convexr combination of z', ... 2" if Ay + -+ X, =1and A(,..., A, > 0.

Remark 1.2 For 2!,..., 2" € R?, write

and

Define also

Then the four cases in the above definition can be expressed, respectively, as

1. 2 = A

Definition 1.3 Let z'...,2" € R Then {z',... 2"} is

1. linearly dependent if IN;,..., N, € R, not all zero, such that Ajz* + -+ + A\, 2"

Otherwise {z',... 2"} is linearly independent.
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2. affinely dependent if AN, ..., A, € R, not all zero, such that A\ja* + -+ X, 2" = O
and Ay + -+ + A, = 0. Otherwise {z',... 2"} is affinely independent.

Theorem 1.4

1 {z', ..., 2"} C R? is linearly dependent iff there exists one of the x* that can be ex-
pressed as a linear combination of the others.

2. {2, ..., 2"} C RY is affinely dependent iff there exists one of the x* that can be ex-
pressed as an affine combination of the others.

Proor. Exercise. O

Theorem 1.5 Let S = {z',..., 2"} CR? and define A and A" as in Remark 1.2.

1. S is linearly independent iff rank A = n iff dim{\ € R" : AX = O} = 0. In particular,
if n > d then S is linearly dependent.

2. S is affinely independent iff rank A" = n iff dim{\ € R" : A’A = O} = 0. In particular,
if n>d+1 then S is affinely dependent.

Proor. Exercise. O

Exercise 1.6 {2°,2',... 2"} C R? is affinely independent iff {z' — 2° ... 2" — 2°} is

linearly independent.

Definition 1.7 Let S C R?.

1. Sis a linear set or subspace if S # () and Vz,y € S,V pe R, Az +puy € 5. Le., S
is nonempty (in particular S contains O) and closed under all linear combinations of
two elements.

2. S is an affine set, affine space, or flat if Ve,y € S, VA, € R such that A + pu =1,
Ax + py € 5. Le., S is closed under all affine combinations of two elements.

3. S is a (convex) cone if S # () and Va,y € 5, V nonnegative \,p € R, Az 4+ uy € S.
Le., S is nonempty (in particular S contains O) and is closed under all nonnegative
combinations of two elements.

4. Sis a conver set if Vo, y € S, V nonnegative A\, u € R such that A\+p =1, Ae+puy € 5.
Le., S is closed under all convex combinations of two elements.
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Remark 1.8 We often (but not always) refer to elements of linear subspaces and convex

cones as vectors and elements of affine and convex sets as points.

Theorem 1.9 Let L, A, K,C denote the collection of all linear subspaces, affine sets, cones,

and

convex sets, respectively, of RY. Then A C C and K C C, and these inclusions are strict.

Further, ANK = L.

Proor. Exercise. O

Exercise 1.10 Classify the following sets.

1
2

3
6

Az e R 2| < 1.

Az eRY: "z = a}, where O # a € R?and o € R. (Such a set is called a hyperplane.)
{2z € R*: Mz = O} where M is an n x d matrix.

Az € R*: Mz < O} where M is an n x d matrix.

{2z € R*: Mx = b} where M is an n x d matrix and b € R".

. {z e R": Mz < b} where M is an n x d matrix and b € R".

Theorem 1.11 Let S C R%

1

. S is a linear subspace iff S # () and S is closed under linear combinations of finite
numbers of vectors in S.

2. S is an affine set iff S is closed under affine combinations of finite numbers of points

n S,

3. S is acone iff S # 0 and S is closed under nonnegative combinations of finite numbers

4.

of vectors in 5.

S is a convex set iff S is closed under convexr combinations of finite numbers of points

n S,

Proor. Exercise. O

Theorem 1.12 Let S be a nonempty subset of RY. Then S is an affine set iff there exists
a linear subspace L of R and a point y such that S = L +y; ie., S={cx+y:z€ L}. In

this

case L is unique, and y can be chosen to be any particular point of S.



Proor. Exercise. O

Theorem 1.13 Let S C R

1. S is a linear subspace iff S is a set of the form {x € R : Mz = O} for some n x d
matriz M.

2. S is an affine set iff S is a set of the form {x € R : Mz = b} for some n x d matriz M
and b € R". If S is nonempty, then in this case, S = L + vy, where y is any particular
point in S and L = {x ¢ R*: Mz = O}.

Proor. Exercise. O

Remark 1.14 Not all cones are of the form {z € R?: Mz < O}. Those that are are called
(convex) polyhedral cones. Similarly, not all convex sets are of the form {x € R?: Mz < b}
Those that are are called (convex) polyhedra.

Proor. Exercise. O

Theorem 1.15

1. Fvery linear subspace is the intersection of a finite number of hyperplanes containing

0.

2. Fvery affine set is the intersection of a finite number of hyperplanes.
PRrooF. Exercise. O

Theorem 1.16 The intersection of any collection of linear subspaces, affine sets, cones,
convex sets is again a linear subspace, affine set, cone, convex set, respectively.

PRrooF. Exercise. O
Definition 1.17 Let S C R
1. The linear span of S, span S, is the intersection of all linear subspaces containing 5.

2. The affine span of S, aft S, is the intersection of all affine sets containing S.

3. The cone of S, pos S, is the intersection of all cones containing S.



4. The convex hull of S, conv S, is the intersection of all convex sets containing 5.

Definition 1.18 Let 5,7 C R%.
1. If S =span T, then we say T (linearly) spans S.

2. If S =aff T, then we say T' affinely spans S.

Theorem 1.19 Suppose S is a nonempty subset of R?. Then span S, aff S, pos S, conv S is
the set of all linear, affine, nonnegative, convexr combinations, respectively, of finite numbers
of elements in 5.

Proor. Exercise. O

Definition 1.20 If S C R? is a finite set, pos S is called a finite cone and conv S is called
a (convex) polytope.

Theorem 1.21 Let S C R%

1. If S # {0} is a linear subspace, then Iz',... 2" € S such thal every x € S can
be expressed uniquely as a linear combination of x',... ™. In this case, n is the
mazimum size of a linearly independent subset of S and the minimum size of a subset

of S that spans S linearly.

2. If S # 0 is an affine set, then 3x',... a" € S such that every x € S can be expressed

uniquely as an affine combination of x',...,x". In this case, n is the maximum size of
an affinely independent subset of S and the minimum size of a subset of S that spans
S affinely.

Proor. Exercise. O

Definition 1.22 In the first case above, {x!,... 2"} is called a basis of S and the dimension
of S, dim S, equals n. If S = {O}, then dimS = 0. In the second case above, {z', ... 2"}
is called an affine basis of S and S is the translate L + y of some linear (n — 1)-dimensional
subspace (verify this). We say that the dimension of S, dim S, equals n — 1. An affine set is
O-dimensional iff it is a set consisting of a single point. Affine sets of dimension 1 and 2 are
called lines and planes, respectively.

Exercise 1.23 Let S be an affine subset of . Show that S is a hyperplane iff dim S = d—1.



Exercise 1.24 Let S C R,
1. Show that a linear basis for span S can be chosen from S itself.

2. Show that an affine basis for aff S can be chosen from S itself.

Exercise 1.25 Suppose M is an n x d matrix and b € R".
1. If S ={z € RY: Mz = O}, then dim S = d — rank M.

2. If 0 # S = {x € R": Mz = b}, then dim S = d — rank M.
Definition 1.26 Suppose S is a nonempty subset of RY. The dimension of S, dim S, is

defined to be dim(aff ). (Note that the definitions of dimension agree if S is an affine set.)
The dimension of the empty set is defined to be —1.



