1 Basic Definitions

Definition 1.1 Let $x^1, \ldots, x^n \in \mathbf{R}^d$ and $\lambda_1, \ldots, \lambda_n \in \mathbf{R}$. Then $x = \lambda_1 x^1 + \cdots + \lambda_n x^n$ is

- 1. a linear combination of x^1, \ldots, x^n ;
- 2. an affine combination of x^1, \ldots, x^n if $\lambda_1 + \cdots + \lambda_n = 1$;
- 3. a nonnegative combination of x^1, \ldots, x^n if $\lambda_1, \ldots, \lambda_n \ge 0$;
- 4. a convex combination of x^1, \ldots, x^n if $\lambda_1 + \cdots + \lambda_n = 1$ and $\lambda_1, \ldots, \lambda_n \ge 0$.

Remark 1.2 For $x^1, \ldots, x^n \in \mathbf{R}^d$, write

$$A = \left[\begin{array}{ccc} x^1 & \cdots & x^n \end{array} \right]$$

and

$$A' = \left[\begin{array}{ccc} x^1 & \cdots & x^n \\ 1 & \cdots & 1 \end{array} \right].$$

Define also

$$\lambda = \begin{bmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{bmatrix}$$

Then the four cases in the above definition can be expressed, respectively, as

1. $x = A\lambda$. 2. $\begin{bmatrix} x \\ 1 \end{bmatrix} = A'\lambda$. 3. $x = A\lambda, \lambda \ge O$. 4. $\begin{bmatrix} x \\ 1 \end{bmatrix} = A'\lambda, \lambda \ge O$.

Definition 1.3 Let $x^1 \ldots, x^n \in \mathbf{R}^d$. Then $\{x^1, \ldots, x^n\}$ is

1. linearly dependent if $\exists \lambda_1, \ldots, \lambda_n \in \mathbf{R}$, not all zero, such that $\lambda_1 x^1 + \cdots + \lambda_n x^n = O$. Otherwise $\{x^1, \ldots, x^n\}$ is linearly independent. 2. affinely dependent if $\exists \lambda_1, \ldots, \lambda_n \in \mathbf{R}$, not all zero, such that $\lambda_1 x^1 + \cdots + \lambda_n x^n = O$ and $\lambda_1 + \cdots + \lambda_n = 0$. Otherwise $\{x^1, \ldots, x^n\}$ is affinely independent.

Theorem 1.4

- 1. $\{x^1, \ldots, x^n\} \subseteq \mathbf{R}^d$ is linearly dependent iff there exists one of the x^i that can be expressed as a linear combination of the others.
- 2. $\{x^1, \ldots, x^n\} \subseteq \mathbf{R}^d$ is affinely dependent iff there exists one of the x^i that can be expressed as an affine combination of the others.

PROOF. Exercise. \Box

Theorem 1.5 Let $S = \{x^1, \ldots, x^n\} \subseteq \mathbf{R}^d$ and define A and A' as in Remark 1.2.

- 1. S is linearly independent iff rank A = n iff dim $\{\lambda \in \mathbf{R}^n : A\lambda = O\} = 0$. In particular, if n > d then S is linearly dependent.
- 2. S is affinely independent iff rank A' = n iff dim $\{\lambda \in \mathbf{R}^n : A'\lambda = 0\} = 0$. In particular, if n > d + 1 then S is affinely dependent.

PROOF. Exercise. \Box

Exercise 1.6 $\{x^0, x^1, \ldots, x^n\} \subseteq \mathbf{R}^d$ is affinely independent iff $\{x^1 - x^0, \ldots, x^n - x^0\}$ is linearly independent.

Definition 1.7 Let $S \subseteq \mathbf{R}^d$.

- 1. S is a linear set or subspace if $S \neq \emptyset$ and $\forall x, y \in S, \forall \lambda, \mu \in \mathbf{R}, \lambda x + \mu y \in S$. I.e., S is nonempty (in particular S contains O) and closed under all linear combinations of two elements.
- 2. S is an affine set, affine space, or flat if $\forall x, y \in S, \forall \lambda, \mu \in \mathbf{R}$ such that $\lambda + \mu = 1$, $\lambda x + \mu y \in S$. I.e., S is closed under all affine combinations of two elements.
- 3. S is a (convex) cone if $S \neq \emptyset$ and $\forall x, y \in S, \forall$ nonnegative $\lambda, \mu \in \mathbf{R}, \lambda x + \mu y \in S$. I.e., S is nonempty (in particular S contains O) and is closed under all nonnegative combinations of two elements.
- 4. S is a convex set if $\forall x, y \in S$, \forall nonnegative $\lambda, \mu \in \mathbf{R}$ such that $\lambda + \mu = 1$, $\lambda x + \mu y \in S$. I.e., S is closed under all convex combinations of two elements.

Remark 1.8 We often (but not always) refer to elements of linear subspaces and convex cones as *vectors* and elements of affine and convex sets as *points*.

Theorem 1.9 Let $\mathcal{L}, \mathcal{A}, \mathcal{K}, \mathcal{C}$ denote the collection of all linear subspaces, affine sets, cones, and convex sets, respectively, of \mathbb{R}^d . Then $\mathcal{A} \subseteq \mathcal{C}$ and $\mathcal{K} \subseteq \mathcal{C}$, and these inclusions are strict. Further, $\mathcal{A} \cap \mathcal{K} = \mathcal{L}$.

PROOF. Exercise. \Box

Exercise 1.10 Classify the following sets.

- 1. $\{x \in \mathbf{R}^d : ||x|| \le 1\}.$
- 2. $\{x \in \mathbf{R}^d : a^T x = \alpha\}$, where $O \neq a \in \mathbf{R}^d$ and $\alpha \in \mathbf{R}$. (Such a set is called a hyperplane.)
- 3. $\{x \in \mathbf{R}^d : Mx = O\}$ where M is an $n \times d$ matrix.
- 4. $\{x \in \mathbf{R}^d : Mx \leq O\}$ where M is an $n \times d$ matrix.
- 5. $\{x \in \mathbf{R}^d : Mx = b\}$ where M is an $n \times d$ matrix and $b \in \mathbf{R}^n$.
- 6. $\{x \in \mathbf{R}^d : Mx \leq b\}$ where M is an $n \times d$ matrix and $b \in \mathbf{R}^n$.

Theorem 1.11 Let $S \subseteq \mathbf{R}^d$.

- 1. S is a linear subspace iff $S \neq \emptyset$ and S is closed under linear combinations of finite numbers of vectors in S.
- 2. S is an affine set iff S is closed under affine combinations of finite numbers of points in S.
- 3. S is a cone iff $S \neq \emptyset$ and S is closed under nonnegative combinations of finite numbers of vectors in S.
- 4. S is a convex set iff S is closed under convex combinations of finite numbers of points in S.

PROOF. Exercise. \Box

Theorem 1.12 Let S be a nonempty subset of \mathbf{R}^d . Then S is an affine set iff there exists a linear subspace L of \mathbf{R}^d and a point y such that S = L + y; i.e., $S = \{x + y : x \in L\}$. In this case L is unique, and y can be chosen to be any particular point of S. **PROOF.** Exercise. \Box

Theorem 1.13 Let $S \subseteq \mathbf{R}^d$.

- 1. S is a linear subspace iff S is a set of the form $\{x \in \mathbf{R}^d : Mx = 0\}$ for some $n \times d$ matrix M.
- 2. S is an affine set iff S is a set of the form $\{x \in \mathbf{R}^d : Mx = b\}$ for some $n \times d$ matrix M and $b \in \mathbf{R}^n$. If S is nonempty, then in this case, S = L + y, where y is any particular point in S and $L = \{x \in \mathbf{R}^d : Mx = O\}$.

PROOF. Exercise. □

Remark 1.14 Not all cones are of the form $\{x \in \mathbf{R}^d : Mx \leq O\}$. Those that are are called *(convex) polyhedral cones.* Similarly, not all convex sets are of the form $\{x \in \mathbf{R}^d : Mx \leq b\}$. Those that are are called *(convex) polyhedra*.

PROOF. Exercise. \Box

Theorem 1.15

- 1. Every linear subspace is the intersection of a finite number of hyperplanes containing O.
- 2. Every affine set is the intersection of a finite number of hyperplanes.

PROOF. Exercise. □

Theorem 1.16 The intersection of any collection of linear subspaces, affine sets, cones, convex sets is again a linear subspace, affine set, cone, convex set, respectively.

PROOF. Exercise. \Box

Definition 1.17 Let $S \subseteq \mathbf{R}^d$.

- 1. The linear span of S, span S, is the intersection of all linear subspaces containing S.
- 2. The affine span of S, aff S, is the intersection of all affine sets containing S.
- 3. The *cone* of S, pos S, is the intersection of all cones containing S.

4. The convex hull of S, conv S, is the intersection of all convex sets containing S.

Definition 1.18 Let $S, T \subseteq \mathbf{R}^d$.

- 1. If $S = \operatorname{span} T$, then we say T (linearly) spans S.
- 2. If $S = \operatorname{aff} T$, then we say T affinely spans S.

Theorem 1.19 Suppose S is a nonempty subset of \mathbb{R}^d . Then span S, aff S, pos S, conv S is the set of all linear, affine, nonnegative, convex combinations, respectively, of finite numbers of elements in S.

PROOF. Exercise. □

Definition 1.20 If $S \subseteq \mathbf{R}^d$ is a finite set, pos S is called a *finite cone* and conv S is called a *(convex) polytope*.

Theorem 1.21 Let $S \subseteq \mathbf{R}^d$.

- 1. If $S \neq \{O\}$ is a linear subspace, then $\exists x^1, \ldots, x^n \in S$ such that every $x \in S$ can be expressed uniquely as a linear combination of x^1, \ldots, x^n . In this case, n is the maximum size of a linearly independent subset of S and the minimum size of a subset of S that spans S linearly.
- 2. If $S \neq \emptyset$ is an affine set, then $\exists x^1, \ldots, x^n \in S$ such that every $x \in S$ can be expressed uniquely as an affine combination of x^1, \ldots, x^n . In this case, n is the maximum size of an affinely independent subset of S and the minimum size of a subset of S that spans S affinely.

PROOF. Exercise. \Box

Definition 1.22 In the first case above, $\{x^1, \ldots, x^n\}$ is called a *basis* of *S* and the *dimension* of *S*, dim *S*, equals *n*. If $S = \{O\}$, then dim S = 0. In the second case above, $\{x^1, \ldots, x^n\}$ is called an *affine basis* of *S* and *S* is the translate L + y of some linear (n - 1)-dimensional subspace (verify this). We say that the *dimension* of *S*, dim *S*, equals n - 1. An affine set is 0-dimensional iff it is a set consisting of a single point. Affine sets of dimension 1 and 2 are called *lines* and *planes*, respectively.

Exercise 1.23 Let S be an affine subset of \mathbb{R}^d . Show that S is a hyperplane iff dim S = d-1.

Exercise 1.24 Let $S \subseteq \mathbf{R}^d$.

- 1. Show that a linear basis for span S can be chosen from S itself.
- 2. Show that an affine basis for aff S can be chosen from S itself.

Exercise 1.25 Suppose M is an $n \times d$ matrix and $b \in \mathbf{R}^n$.

- 1. If $S = \{x \in \mathbf{R}^d : Mx = O\}$, then dim S = d rank M.
- 2. If $\emptyset \neq S = \{x \in \mathbf{R}^d : Mx = b\}$, then dim S = d rank M.

Definition 1.26 Suppose S is a nonempty subset of \mathbf{R}^d . The *dimension* of S, dim S, is defined to be dim(aff S). (Note that the definitions of dimension agree if S is an affine set.) The dimension of the empty set is defined to be -1.