Homework \#2

Due Wednesday, January 30

1. Use Maple and Lawrence's method to determine the volume polynomial for the "tent" with vertices

$$
\begin{aligned}
& p_{1}=(0,0,0) \\
& p_{2}=(2,0,0) \\
& p_{3}=(2,6,0) \\
& p_{4}=(0,6,0) \\
& p_{5}=(1,2,2) \\
& p_{6}=(1,4,2)
\end{aligned}
$$

and facets

$$
\begin{array}{ll}
F_{1}: & -x_{3} \leq 0 \\
F_{2}: & 2 x_{1}+x_{3} \leq 4 \\
F_{3}: & \frac{1}{2} x_{2}+\frac{1}{2} x_{3} \leq 3 \\
F_{4}: & -2 x_{1}+x_{3} \leq 0 \\
F_{5}: & -\frac{1}{2} x_{2}+\frac{1}{2} x_{3} \leq 0
\end{array}
$$

Note that this polytope already sits in the nonnegative octant. Take the determinant of each basis to be positive. Use a generic objective function of $c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}$-if all goes well, no indeterminate c_{i} will appear in the volume polynomial, which should be a polynomial in the variables b_{1}, \ldots, b_{5}. Observe that every monomial that appears in the polynomial is supported by a subset of variables b_{i} which corresponds to a subset of facets with nonempty intersection.
2. Exercise 3.3.
3. Exercise 3.7.
4. Exercise 3.8.
5. Exercise 3.9.
6. Exercise 3.15.

