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1 TWO COIN MORRA

This game is played by two players, R and C. Each player hides either one
or two silver dollars in his/her hand. Simultaneously, each player guesses
how many coins the other player is holding. If R guesses correctly and C
does not, then C pays R an amount of money equal to the total number of
dollars concealed by both players. If C guesses correctly and R does not,
then R pays C an amount of money equal to the total number of dollars
concealed by both players. If both players guess correctly or incorrectly, no
money exchanges hands.

Clearly, each player must decide how many coins to hide and what number
to guess. We will use the notation (1,2) to mean that a player hides 1 dollar
and guesses “2.” We can represent the possible outcomes of a round of play
by a payoff matrix, indicating how much R will receive from C given the
strategies followed by each player. A negative number means that C receives
money from R.

C
(1,1) (1,2) (2,1) (2,2)

R

(1,1)
(1,2)
(2,1)
(2,2)

0
−2

3
0

2
0
0

−3

−3
0
0
4

0
3

−4
0

This is an example of a finite two-person zero-sum game. “Finite” refers
to the fact that each player has a finite number of strategies. “Zero-sum”
refers to the fact that what one player gains in wealth, the other loses.

Suppose R decides to use only strategy (1,2). This is an example of a
pure strategy. Since the minimum entry in that row is −2, R can guarantee
losing no more than $2 per round, and this will happen if C consistently uses
strategy (1,1). But what if R decides to use either strategy (1,2) or (2,1), each
half of the time, but randomly mixed so that there is no detectable pattern?
For example, he could flip a coin to decide which of the two strategies to use.
This is an example of a mixed strategy. To calculate the expected outcome,
we mix the second and third rows by multiplying them each by 1/2 and
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adding them together. The result is

1
2

[
−2 0 0 3

]
+

1
2

[
3 0 0 −4

]
‖[

1
2

0 0 −1
2

]
.

Since the minimum entry is −1/2, R can expect to lose no more than half
a dollar per round on the average, and he can expect this to happen if C
consistently chooses strategy (2,2).

Can R do better than this? If R uses each strategy 1/4 of the time,
then R mixes his rows by multiplying each of them by 1/4 and adding them
together, giving

1
4

[
0 2 −3 0

]
+

1
4

[
−2 0 0 3

]
+

1
4

[
3 0 0 −4

]
+

1
4

[
0 −3 4 0

]
‖[

1
4
−1

4
1
4
−1

4

]
.

Since the minimum entry is −1/4, R would expect to lose no more than a
quarter dollar per round on the average, and he can expect this to happen if
C consistently uses only strategies (1,2) and (2,2).

Problem 1.1 Try to find a mixed strategy for R which is even better. In
particular, try to find nonnegative numbers p1, p2, p3, p4 that sum to one
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such that the minimum entry in

p1

[
0 2 −3 0

]
+

p2

[
−2 0 0 3

]
+

p3

[
3 0 0 −4

]
+

p4

[
0 −3 4 0

]
is at least zero. Can you find a mixture where the minimum entry is larger
than zero?

C’s strategies can be studied in a similar manner. For example, suppose
C decides to use only strategy (2,2). The numbers in the matrix represent
amounts that C pays R, so C is interested in looking at the maximum entry
to see how badly he will do. Since the maximum entry in column 4 is 3, C
can expect to lose at most $3 per round, and this happens if R consistently
uses strategy (1,2). If C uses each of his strategies a fourth of the time, we
must mix the columns by multiplying each of them by 1/4 and adding them
together. This yields

1

4


0

−2
3
0

 +
1

4


2
0
0

−3

 +
1

4


−3

0
0
4

 +
1

4


0
3

−4
0

 =


−1/4

1/4
−1/4

1/4

 .

Since the maximum entry is 1/4, by using this mixed strategy, C can expect
to lose no more than a quarter dollar per round on the average, and he can
expect this if R consistently uses only strategies (1,2) and (2,2).

Of course, by symmetry, we can expect the best strategy for R to be the
same as the best strategy for C.

Problem 1.2 Consider the following matching game. Each player hides
either a nickel or a dime. If the two coins match, R gets C’s coin. If they
don’t match, C gets R’s coin. What are the optimal strategies for each
player? Can they each expect to break even on the average? (If so the game
is called fair.)
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2 SADDLEPOINTS

Consider the game with the following payoff matrix

C
I II III

R
I

II
III

4
−3

5

2
0

−1

3
4

−2

This game has an interesting property. Determine the smallest entry for each
row. The largest of these is 2, and it occurs in row 1. Now determine the
largest entry for each column. The smallest of these is also equal to 2 and it
occurs in column 2. Because these two numbers are equal, this game is said
to have a saddlepoint.

C
I II III

R
I

II
III

4
−3

5

2
0

−1

3
4

−2

2
−3
−2

5 2 4

This suggests that the optimal strategy for R is to use only strategy I,
and the optimal strategy for C is to use only strategy II. For if R uses
only I, R can expect to win at least $2 per round, and if C uses only II, C
can expect to lose at most $2 per round. In general, we have the following
theorem.

Theorem 2.1 If the row minimum m in some row r equals the column max-
imum M in some column c, then the optimal strategy for R is to use only
strategy r, the optimal strategy for C is to use only strategy c, and under op-
timal play the amount that R can expect to receive on the average is m = M .

We will establish this theorem by considering a sufficiently general exam-
ple. Suppose we have a 3× 4 matrix in which the maximum entry in row 2
is 5 and the minimum entry in column 3 is also 5.
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C
1 2 3 4

R
1
2
3

·
b
·

·
c
·

a
d
f

·
e
·

5

5

Since 5 is the minimum entry in row 2, we know that d ≥ 5. But since 5 is the
maximum entry in column 3, we know also that d ≤ 5. So d = 5. Suppose
R uses only strategy 2. Since 5 is the minimum row entry, R can expect to
win at least $5 per round. Now suppose R tries to do better by mixing his
strategies according to p1, p2, p3, where p1, p2, p3 ≥ 0, and p1 + p2 + p3 = 1.
Multiply the three rows by these numbers and add them together. Look
at the third entry. It is p1a + p2d + p3f . Since 5 is the column maximum,
a ≤ 5 and f ≤ 5. Remember that d = 5. Since p1, p2, p3 ≥ 0, we conclude
p1a ≤ 5p1, p2d = 5p2, and p3f ≤ 5p3. So p1a+ p2d+ p3f ≤ 5p1 +5p2 +5p3 =
5(p1 + p2 + p3) = 5(1) = 5. Thus the third entry of the row mixture is no
greater than 5, and hence the minimum entry of the row mixture is also no
greater than 5. Therefore R cannot expect to win more than $5 per round
on the average even if he mixes his strategies.

A similar argument works for C. Suppose C uses only strategy 3. Since
5 is the maximum column entry, C can expect to lose at most $5 per round.
Now suppose C tries to do better by mixing his strategies according to q1,
q2, q3, q4, where q1, q2, q3, q4 ≥ 0 and q1 + q2 + q3 + q4 = 1. Multiply the four
columns by these numbers and add them together. Look at the second entry.
It is q1b+ q2c+ q3d+ q4e. Since 5 is the row minimum, b, c, e ≥ 5. Remember
that d = 5. Since q1, q2, q3, q4 ≥ 0, we conclude q1b ≥ 5q1, q2c ≥ 5q2,
q3d = 5q3, and q4e ≥ 5q4. So q1b + q2c + q3d + q4e ≥ 5q1 + 5q2 + 5q3 + 5q4 =
5(q1 + q2 + q3 + q4) = 5(1) = 5. Thus the second entry of the column mixture
is at least 5, and hence the maximum entry of the column mixture is also
at least 5. Therefore C cannot expect to lose less than $5 per round on the
average even if he mixes his strategies.

3 MATRIX NOTATION

Given a matrix game with payoff matrix A = (aij). Suppose R uses mixed
strategy (p1, . . . , pm) where p1, . . . , pm ≥ 0, p1 + · · · + pm = 1, and C uses
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mixed strategy (q1, . . . , qn) where q1, . . . , qn ≥ 0, q1 + · · · + qn = 1. Then
R can expect to receive

∑m
i=1

∑n
j=1 piaijqj per round on the average. This

can be seen in two ways. If R mixes the rows according to his strategy, the
resulting row is

[p1a11 + · · ·+ pmam1 · · · p1a1n + · · ·+ pmamn]

= [
∑m

i=1 piai1 · · ·
∑m

i=1 piain].

But C mixes his strategies according to q1, . . . , qn, so the expected amount
R wins per round on the average will be

(
∑m

i=1 piai1)q1 + · · ·+ (
∑m

i=1 piain)qn

=
∑m

i=1

∑n
j=1 piaijqj.

The second way to see this is, if C mixes the columns according to his
strategy, the resulting column is

q1a11 + · · ·+ qna1n
...

q1am1 + · · ·+ qnamn

 =


∑n

j=1 a1jqj
...∑n

j=1 amjqj


But R mixes his strategies according to p1, . . . , pm, so the expected amount
that R wins per round on the average will be

p1(
∑n

j=1 aijqj) + · · ·+ pm(
∑n

j=1 amjqj)

=
∑m

i=1

∑n
j=1 piaijqj.

This is more easily expressed using matrix multiplication. Write R’s
mixed strategy as a 1×m matrix

p = [p1 · · · pm]

and C’s mixed strategy as an n× 1 matrix

q =


q1
...
qn
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Then if R mixes rows according to his strategy, the resulting row is pA. Now
if C mixes columns according to his strategy, the result is an expected payoff
of (pA)q = pAq to R per round on the average.

Similarly, if C mixes columns according to his strategy, the resulting
column is Aq. Now if R mixes rows according to his strategy, the result is
an expected payoff of p(Aq) = pAq to R per round on the average.

4 OPTIMAL STRATEGIES

If R uses mixed strategy p, then R can expect to win at least the minimum
of the row pA per round on the average. Suppose this minimum is the cth
entry and equals w. Then w = pAq where

q =



0
...
1
...
0


with a 1 in entry c and 0’s everywhere else. Now consider any other

q =


q1
...
qn


where q1, . . . , qn ≥ 0 and q1 + · · ·+ qn = 1. Then pA ≥ [w · · ·w] so

(pA)q ≥ [w · · ·w]q
= wq1 + · · ·+ wqn

= w(q1 + · · ·+ qn)
= w.

We have shown that (pA)q ≥ w for all strategies q. So w = minq(pA)q.
So R can expect to win at least minq pAq. Obviously R wants to choose p to
make this minimum as large as possible, so R’s goal is to find

max
p

min
q

pAq.
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Starting all over again: If C uses mixed strategy q, then C can expect
to lose at most the maximum of the column Aq. Suppose this maximum is
the rth entry and equals w. Then w = pAq where p = [0 · · · 1 · · · 0] with a
1 in entry r and 0’s everywhere else. Now consider any other p = [p1 · · · pm]
where p1, . . . , pm ≥ 0 and p1 + · · ·+ pm = 1. Then

Aq ≤


w
...
w


so

p(Aq) ≤ p


w
...
w


= p1w + · · ·+ pmw
= (p1 + · · ·+ pm)w
= w.

We have shown that p(Aq) ≤ w for all strategies p. So w = maxp p(Aq).
So C can expect to lose at most maxp pAq.

Obviously C want to choose q to make this maximum as small as possible,
so C’s goal is to find

min
q

max
p

pAq.

Theorem 4.1 maxp minq pAq ≤ minq maxp pAq, where p1, . . . , pm ≥ 0, p1 +
· · ·+ pm = 1, q1, . . . , qn ≥ 0, q1 + · · ·+ qn = 1.

Proof: Consider any p and q. Suppose minq pAq occurs when q = q∗.
Suppose maxp pAq occurs when p = p∗. Then minq pAq = pAq∗ ≤ pAq ≤
p∗Aq = maxp pAq. So no matter what p is chosen and what q is chosen,
the left-hand side is always no more than the right-hand side. So even the
largest left-hand side is no more than the smallest right-hand side. Hence
maxp minq pAq ≤ minq maxp pAq. 2

Theorem 4.2 If p∗ and q∗ can be found so that

min
q

p∗Aq = max
p

pAq∗,

then p∗ is optimal for R and q∗ is optimal for C (where p∗ and q∗ are each
nonnegative vectors whose components sum to 1).
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Proof: If there were a better p, then

min
q

pAq > min
q

p∗Aq = max
p

pAq∗.

So
max

p
min

q
pAq ≥ min

q
pAq > max

p
pAq∗ ≥ min

q
max

p
pAq

which contradicts the previous theorem.
Similarly, if there were a better q, then

min
q

p∗Aq = max
p

pAq∗ > max
p

pAq.

So
max

p
min

q
pAq ≥ min

q
p∗Aq > max

p
pAq ≥ min

q
max

p
pAq

which contradicts the previous theorem. 2

The above theorem helps to verify that proposed mixed strategies are
optimal, although it does not indicate how to find them in the first place.

5 THE GRAPHICAL SOLUTION OF 2 × n

GAMES

If R has just two pure strategies, there is an easy way to determine R’s
optimal mix graphically. For example, consider the game

C
1 2 3 4

R
1
2

2
−2

1
−1

0
2

−2
3

Draw two parallel vertical axes. For each column, plot the first entry
on the first axis and the second entry on the second axis. Connect the two
points by a line segment and label the segment by the number of the column.
Now darken the line segments which bound the figure from below; then find
and mark with a dot the highest point on this darkened boundary.
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1

2

3

4

The height of the dot as measured against the vertical axes is the value of
the game. In the above example, the value of the game is 1/7. The position
of the dot between the two axes indicates which mixture of his two strategies
R should use. For example, if the dot is 3/7 of the way from the first axis to
the second, as it is above, R should use his second strategy 3/7 of the time
and his first strategy 4/7 of the time. The lines which intersect at the dot
identify the strategies C should use in his mixture. In the above example, C
should use only strategies 2 and 4.

In the above example, the dot is at the intersection of lines 2 and 4. This
means that R should choose p1 and p2 so that in the row mixture, the 2nd
and 4th entries turn out to be equal. Hence

p1 − p2 = −2p1 + 3p2

3p1 = 4p2

p1/p2 = 4/3
p1 = 4/7 p2 = 3/7.

The value of the game is p1 − p2 = −2p1 + 3p2 = 1/7. C should use only
strategies 2 and 4 and should choose q2 and q4 so that in the column mixture,
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the two column entries turn out to be equal. Hence

q2 − 2q4 = −q2 + 3q4

2q2 = 5q4

q2/q4 = 5/2
q2 = 5/7 q4 = 2/7.

Again, the value of the game is q1 − 2q2 = −q1 + 3q4 = 1/7. So by the
last theorem of the previous section, we have found the optimal strategies
for both players.

The above method can be modified to solve m×2 games as well, but then
we have to interchange the role of the columns and the rows, darken the line
segments which bound the graph from above, and locate the lowest point on
this boundary.


