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Let’s Build!

Using a construction set like Polydron, construct some physical
closed “solids”.

What did you make?
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Inspiration
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Construction
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Polyhedra
A convex polytope P is the convex hull of (smallest convex set
containing) a finite set of points in Rd .

Example: Cube
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Nets

We commonly make non-overlapping nets for three-dimensional
polytopes (cutting along the edges) but it has not been proven that
this is possible for every polytope.

However, if we allow cutting across faces, then it is always possible to
make a non-overlapping net.

Wonderful video by Eric Demaine to show the complexity of such a
“simple” idea:
http://erikdemaine.org/metamorphosis
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Virtual Constructions

SketchUp examples
http://www.sketchup.com (Free!)

Cube
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Virtual Constructions
SketchUp examples

Pyramid
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Polyhedral Puzzle
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3D Printed Constructions
Now just send the files to the 3D printer!
For example, export to Makerbot Desktop,
http://www.makerbot.com/desktop (Also free!)

Polyhedral Puzzle
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Other Virtual and 3D Printing Construction

Software

Tinkercad, https://www.tinkercad.com

123D Catch, http://www.123dapp.com/catch

123D Design, http://www.123dapp.com/design

OpenSCAD, http://www.openscad.org

Blender, http://www.blender.org

POV-Ray, http://www.povray.org
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Properties
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Back to Polytopes!

Two ways to describe polytopes:

By their vertices

By their defining inequalities
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Two Descriptions

The cube is the convex hull of its vertices

(0, 0, 0)
(0, 0, 1)
(0, 1, 0)
(0, 1, 1)
(1, 0, 0)
(1, 0, 1)
(1, 1, 0)
(1, 1, 1)
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Two Descriptions

The cube is defined by the inequalities

x ≥ 0
x ≤ 1
y ≥ 0
y ≤ 1
z ≥ 0
z ≤ 1
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Hypercubes—A Peek into the Fourth Dimension
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Hypercubes
The hypercube (4-dimensional cube) is the convex hull of its vertices

(0, 0, 0, 0)
(0, 0, 0, 1)
(0, 0, 1, 0)
(0, 0, 1, 1)
(0, 1, 0, 0)
(0, 1, 0, 1)
(0, 1, 1, 0)
(0, 1, 1, 1)
(1, 0, 0, 0)
(1, 0, 0, 1)
(1, 1, 1, 0)
(1, 0, 1, 1)
(1, 1, 0, 0)
(1, 1, 0, 1)
(1, 1, 1, 0)
(1, 1, 1, 1)
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Hypercubes

The hypercube is defined by the inequalities

x1 ≥ 0
x1 ≤ 1
x2 ≥ 0
x2 ≤ 1
x3 ≥ 0
x3 ≤ 1
x4 ≥ 0
x4 ≤ 1

(The algebra may seem prosaic but the object is nevertheless
entrancing.)
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Two Descriptions
This result lends itself to practical considerations when constructing
polytopes.
For example, POV-Ray can use either description. See
http://www.ms.uky.edu/~lee/visual05/povray/pyramid1.pov

and
http://www.ms.uky.edu/~lee/visual05/povray/pyramid2.pov

each of which constructs this image:
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Two Descriptions

But this suggests an important computational question: How can you
convert from one description to the other?
This is an example of a question in computational geometry.
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Possibilities
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What Three-Dimensional Polytopes Can We Make?

Let’s agree to avoid coplanar faces.

Convex polytopes made out of equilateral triangles.
The deltahedra.
Possible numbers of triangles: 4, 6, 8, 10, 12, 14, 16, 18, 20.
(Why even?—Let’s shake hands on it.)
But 18 is missing — a geometric limitation, not a combinatorial
limitation.
If we are allowed to use any triangles, then we can achieve any
even integer greater than or equal to 4.

Convex polytopes with congruent regular polygons as faces, and
the same number meeting at each vertex.
The Platonic solids.
Argue by angles that only five are possible; then prove that these
five exist.
SketchUp can help here!
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What Three-Dimensional Polytopes Can We Make?

Convex polytopes with regular polygons as faces, with at least
two different types, but the same circular sequence of faces
meeting at each vertex.

The semiregular solids (well, almost. . . )
These are the Archimedean solids, prisms, and antiprisms.

Convex polytopes made out of regular polygons, apart from the
Platonic and semiregular solids.
The Johnson solids.
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What Three-Dimensional Polytopes Can We Make?
Platonic (Regular) Convex Polyhedra 

 

Semiregular Convex Polyhedra 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Images from Wikipedia) 

     

Tetrahedron {3, 3} Cube {4, 3} Octahedron {3, 4} Dodecahedron {5, 3} Icosahedron {3, 5}
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Limitations
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Counting Vertices, Edges, and Faces

Where geometry meets discrete math.

Let’s count the number of vertices, V , edges, E , and faces, F , of a
three-dimensional polytope, and write as a list (V ,E ,F ), called the
face-vector.

We can extend this idea to counting the elements of higher
dimensional polytopes as well.
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Counting Vertices, Edges, and Faces
Example:

Cube. (8, 12, 6).

Hypercube. (16, 32, 24, 8).

Question: What are the possible face-vectors of polytopes?
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Three-Dimensional Polytopes

Theorem (Euler’s Relation)

V − E + F = 2 for convex 3-polytopes.

Example: Cube. 8 − 12 + 6 = 2.
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Three-Dimensional Polytopes

Sketch of proof: Sweep the polytope with a plane in general
direction. (Think of immersing in water.) Count vertices, edges, and
polygons only when fully swept (under water). Watch how
χ = V − E + F changes when the plane hits each vertex.

Initially χ = 0.

Bottom vertex. χ changes by 1 − 0 + 0 = 1.

Intermediate vertex with k incident lower edges. There are k − 1
faces between these k edges. χ changes by 1 − k + (k − 1) = 0.

Top vertex. If its degree is k , there are k faces between these k
edges. So χ changes by 1 − k + k = 1.

Total change in χ is therefore 2.

Note: This proof technique generalizes to higher dimensions.
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Three-Dimensional Polytopes

Other necessary conditions:

V ,E ,F are positive integers.

What else?

Theorem (Steinitz)

A positive integer vector (V ,E ,F ) is the face-vector of a 3-polytope
if and only if the following conditions hold.

V − E + F = 2,

V ≤ 2F − 4, and

F ≤ 2V − 4.
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The World of Three-Dimensional Polytopes
(Here, V is labeled f0 and F is labeled f2.) Think about how to
construct representatives of each face-vector!
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Four-Dimensional Polytopes

What is the characterization of face-vectors of 4-polytopes?

We don’t know!—It’s an area of active research
But there are some partial results.
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The Amazing Power of Euler

Carl Lee (UK) The Many Facets of Polyhedra Ohio MAA 39 / 58



Steinitz’s Inequalities
Let’s do a little more math.
Let Fi be the number of faces with i edges.
Let Vi be the number of vertices incident to i edges.

2E = 3F3 + 4F4 + 5F5 + · · · Take it apart!
≥ 3F3 + 3F4 + 3F5 + · · ·
= 3F

2E = 3V3 + 4V4 + 5V5 + · · ·
≥ 3V3 + 3V4 + 3V5 + · · ·
= 3V

2V + 2F − 4 = 2E ≥ 3F
2V − 4 ≥ F

2V + 2F − 4 = 2E ≥ 3V
2F − 4 ≥ V
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But Wait! There’s More!
6 = 3V − 3E + 3F

≤ 3V − 3E + 2E
6 ≤ 3V − E

12 ≤ 6F − 2E
= 6(F3 + F4 + F5 + · · · ) − (3F3 + 4F4 + 5F5 + · · · )

12 ≤ 3F3 + 2F4 + F5 + 0F6 − F7 − 2F8 − · · ·

Theorem
Every polytope must have at least one triangle, quadrilateral, or
pentagon as a face.

In a similar way

Theorem
Every polytope must have at least one vertex of degree 3, 4, or 5.
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Fullerenes

Carbon compounds forming spheres of pentagons and hexagons with
every vertex of degree 3.
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Fullerenes

3V = 2E = 5F5 + 6F6 = 6F − F5

6V − 6E + 6F = 12

4E − 6E + 2E + F5 = 12

F5 = 12

Theorem
Every fullerene must have exactly 12 pentagons.
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Symmetry
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Regular Polygons
What about its symmetries makes a polygon regular?

Choose any two vertex-edge pairs (v , e) and (v ′, e ′) such that v is an
endpoint of e and v ′ is an endpoint of e ′.
Then there is a symmetry of the polygon that maps (v , e) to (v ′, e ′).
That is to say, the symmetry group of a regular polygon is
flag-transitive.
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Regular Polygons

Can you think of some polygons whose symmetry groups are

Vertex transitive but not edge transitive?

Edge transitive but not vertex transitive?
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Platonic Solids

What about its symmetries characterizes a Platonic solid?

Choose any two vertex-edge-face triples (v , e, f ) and (v ′, e ′, f ′) such
that v is an endpoint of e and e is an edge of f , and also v ′ is an
endpoint of e ′ and e ′ is an edge of f ′.
Then there is a symmetry of the polytope that maps (v , e, f ) to
(v ′, e ′, f ′).
That is to say, the symmetry group of a Platonic solid is
flag-transitive.
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Regular Polytopes in Higher Dimensions

This notion of regularity extends naturally into higher dimensions.

In four dimensions there are 6 regular polytopes.

In five and higher dimensions there are only 3.
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Regular Polytopes

Can you think of some three-dimensional polytopes whose symmetry
groups are

Vertex transitive only?

Edge transitive only?

Face transitive only?

Vertex-edge transitive?

Edge-face transitive?

Vertex-face transitive?
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Semiregular Solids
What about its symmetries characterizes a semiregular solid?

Every face is a regular polygon, and

The symmetry group of the semiregular solid is vertex-transitive.
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Shadows of the Fourth Dimension
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Projection of a Cube
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Projection of a Hypercube
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Projection of a Hypercube

Carl Lee (UK) The Many Facets of Polyhedra Ohio MAA 54 / 58



Projection of Many Hypercubes
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Delete Half the Edges

Diamond crystal!
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Ubiquity and Beauty

See accompanying powerpoint
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Image Sources
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cundy+rollett

Holden: http://www.amazon.com/

Shapes-Space-Symmetry-Dover-Mathematics/dp/0486268519

Fullerenes: http://www.miqel.com/images_1/random_image/

odd/fullerines_mixed.jpg

Dodecahedron: http://upload.wikimedia.org/wikipedia/

commons/e/e0/Dodecahedron.jpg

Soccer ball: http://stuffyoudontwant.com/wp-content/

uploads/2011/10/soccer-ball.jpg
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