The Many Facets of Polyhedra

Carl Lee
University of Kentucky

Ohio Section of the MAA - March 2015

Let's Build!

Using a construction set like Polydron, construct some physical closed "solids".

Let's Build!

Using a construction set like Polydron, construct some physical closed "solids".

What did you make?

Inspiration

Inspiration

Inspiration

SHAPES, SPACE, AND SYMMETRY

 Alan HoldenWith 319 ilustrations

Construction

Polyhedra

A convex polytope P is the convex hull of (smallest convex set containing) a finite set of points in \mathbf{R}^{d}.

Example: Cube

Nets

We commonly make non-overlapping nets for three-dimensional polytopes (cutting along the edges) but it has not been proven that this is possible for every polytope.

However, if we allow cutting across faces, then it is always possible to make a non-overlapping net.

Wonderful video by Eric Demaine to show the complexity of such a "simple" idea:
http://erikdemaine.org/metamorphosis

Virtual Constructions

SketchUp examples
http://www.sketchup.com (Free!)

Cube

Virtual Constructions

SketchUp examples

Pyramid

Virtual Constructions

SketchUp examples

Polyhedral Puzzle

Virtual Constructions

SketchUp examples

Polyhedral Puzzle

Virtual Constructions

SketchUp examples

Polyhedral Puzzle

Virtual Constructions

SketchUp examples

Polyhedral Puzzle

Virtual Constructions

SketchUp examples

Polyhedral Puzzle

3D Printed Constructions

Now just send the files to the 3D printer!
For example, export to Makerbot Desktop,
http://www.makerbot.com/desktop (Also free!)

Other Virtual and 3D Printing Construction Software

- Tinkercad, https://www.tinkercad.com
- 123D Catch, http://www.123dapp.com/catch
- 123D Design, http://www.123dapp.com/design
- OpenSCAD, http://www.openscad.org
- Blender, http://www.blender.org
- POV-Ray, http://www. povray.org

Properties

Back to Polytopes!

Two ways to describe polytopes:

- By their vertices
- By their defining inequalities

Two Descriptions

The cube is the convex hull of its vertices

$$
\begin{aligned}
& (0,0,0) \\
& (0,0,1) \\
& (0,1,0) \\
& (0,1,1) \\
& (1,0,0) \\
& (1,0,1) \\
& (1,1,0) \\
& (1,1,1)
\end{aligned}
$$

Two Descriptions

The cube is defined by the inequalities

$$
\begin{aligned}
& x \geq 0 \\
& x \leq 1 \\
& y \geq 0 \\
& y \leq 1 \\
& z \geq 0 \\
& z \leq 1
\end{aligned}
$$

Hypercubes—A Peek into the Fourth Dimension

Hypercubes

The hypercube (4-dimensional cube) is the convex hull of its vertices

$$
\begin{aligned}
& (0,0,0,0) \\
& (0,0,0,1) \\
& (0,0,1,0) \\
& (0,0,1,1) \\
& (0,1,0,0) \\
& (0,1,0,1) \\
& (0,1,1,0) \\
& (0,1,1,1) \\
& (1,0,0,0) \\
& (1,0,0,1) \\
& (1,1,1,0) \\
& (1,0,1,1) \\
& (1,1,0,0) \\
& (1,1,0,1) \\
& (1,1,1,0) \\
& (1,1,1,1)
\end{aligned}
$$

Hypercubes

The hypercube is defined by the inequalities

$$
\begin{aligned}
& x_{1} \geq 0 \\
& x_{1} \leq 1 \\
& x_{2} \geq 0 \\
& x_{2} \leq 1 \\
& x_{3} \geq 0 \\
& x_{3} \leq 1 \\
& x_{4} \geq 0 \\
& x_{4} \leq 1
\end{aligned}
$$

Hypercubes

The hypercube is defined by the inequalities

$$
\begin{aligned}
& x_{1} \geq 0 \\
& x_{1} \leq 1 \\
& x_{2} \geq 0 \\
& x_{2} \leq 1 \\
& x_{3} \geq 0 \\
& x_{3} \leq 1 \\
& x_{4} \geq 0 \\
& x_{4} \leq 1
\end{aligned}
$$

(The algebra may seem prosaic but the object is nevertheless entrancing.)

Two Descriptions

This result lends itself to practical considerations when constructing polytopes.
For example, POV-Ray can use either description. See http://www.ms.uky.edu/~lee/visual05/povray/pyramid1.pov and
http://www.ms.uky.edu/~lee/visual05/povray/pyramid2.pov each of which constructs this image:

Two Descriptions

But this suggests an important computational question: How can you convert from one description to the other?
This is an example of a question in computational geometry.

Possibilities

What Three-Dimensional Polytopes Can We Make?

What Three-Dimensional Polytopes Can We Make? Let's agree to avoid coplanar faces.

What Three-Dimensional Polytopes Can We Make?

 Let's agree to avoid coplanar faces.- Convex polytopes made out of equilateral triangles.

What Three-Dimensional Polytopes Can We Make?

Let's agree to avoid coplanar faces.

- Convex polytopes made out of equilateral triangles. The deltahedra.

What Three-Dimensional Polytopes Can We Make?

Let's agree to avoid coplanar faces.

- Convex polytopes made out of equilateral triangles.

The deltahedra.
Possible numbers of triangles: $4,6,8,10,12,14,16,18,20$. (Why even?-Let's shake hands on it.)

What Three-Dimensional Polytopes Can We Make?

Let's agree to avoid coplanar faces.

- Convex polytopes made out of equilateral triangles.

The deltahedra.
Possible numbers of triangles: 4, $6,8,10,12,14,16,18,20$.
(Why even?-Let's shake hands on it.)
But 18 is missing - a geometric limitation, not a combinatorial limitation.

What Three-Dimensional Polytopes Can We Make?

 Let's agree to avoid coplanar faces.- Convex polytopes made out of equilateral triangles.

The deltahedra.
Possible numbers of triangles: $4,6,8,10,12,14,16,18,20$.
(Why even?-Let's shake hands on it.)
But 18 is missing - a geometric limitation, not a combinatorial limitation.
If we are allowed to use any triangles, then we can achieve any even integer greater than or equal to 4 .

What Three-Dimensional Polytopes Can We Make?

 Let's agree to avoid coplanar faces.- Convex polytopes made out of equilateral triangles.

The deltahedra.
Possible numbers of triangles: $4,6,8,10,12,14,16,18,20$. (Why even?-Let's shake hands on it.)
But 18 is missing - a geometric limitation, not a combinatorial limitation.
If we are allowed to use any triangles, then we can achieve any even integer greater than or equal to 4 .

- Convex polytopes with congruent regular polygons as faces, and the same number meeting at each vertex.

What Three-Dimensional Polytopes Can We Make?

 Let's agree to avoid coplanar faces.- Convex polytopes made out of equilateral triangles.

The deltahedra.
Possible numbers of triangles: $4,6,8,10,12,14,16,18,20$. (Why even?-Let's shake hands on it.)
But 18 is missing - a geometric limitation, not a combinatorial limitation.
If we are allowed to use any triangles, then we can achieve any even integer greater than or equal to 4 .

- Convex polytopes with congruent regular polygons as faces, and the same number meeting at each vertex.
The Platonic solids.

What Three-Dimensional Polytopes Can We Make?

Let's agree to avoid coplanar faces.

- Convex polytopes made out of equilateral triangles.

The deltahedra.
Possible numbers of triangles: $4,6,8,10,12,14,16,18,20$. (Why even?-Let's shake hands on it.)
But 18 is missing - a geometric limitation, not a combinatorial limitation.
If we are allowed to use any triangles, then we can achieve any even integer greater than or equal to 4 .

- Convex polytopes with congruent regular polygons as faces, and the same number meeting at each vertex.
The Platonic solids.
Argue by angles that only five are possible; then prove that these five exist.

What Three-Dimensional Polytopes Can We Make?

Let's agree to avoid coplanar faces.

- Convex polytopes made out of equilateral triangles.

The deltahedra.
Possible numbers of triangles: $4,6,8,10,12,14,16,18,20$. (Why even?-Let's shake hands on it.)
But 18 is missing - a geometric limitation, not a combinatorial limitation.
If we are allowed to use any triangles, then we can achieve any even integer greater than or equal to 4 .

- Convex polytopes with congruent regular polygons as faces, and the same number meeting at each vertex.
The Platonic solids.
Argue by angles that only five are possible; then prove that these five exist.
SketchUp can help here!

What Three-Dimensional Polytopes Can We Make?

- Convex polytopes with regular polygons as faces, with at least two different types, but the same circular sequence of faces meeting at each vertex.

What Three-Dimensional Polytopes Can We Make?

- Convex polytopes with regular polygons as faces, with at least two different types, but the same circular sequence of faces meeting at each vertex.
The semiregular solids (well, almost. . .)
These are the Archimedean solids, prisms, and antiprisms.

What Three-Dimensional Polytopes Can We Make?

- Convex polytopes with regular polygons as faces, with at least two different types, but the same circular sequence of faces meeting at each vertex.
The semiregular solids (well, almost. . .)
These are the Archimedean solids, prisms, and antiprisms.
- Convex polytopes made out of regular polygons, apart from the Platonic and semiregular solids.

What Three-Dimensional Polytopes Can We Make?

- Convex polytopes with regular polygons as faces, with at least two different types, but the same circular sequence of faces meeting at each vertex.
The semiregular solids (well, almost. . .)
These are the Archimedean solids, prisms, and antiprisms.
- Convex polytopes made out of regular polygons, apart from the Platonic and semiregular solids.
The Johnson solids.

What Three-Dimensional Polytopes Can We Make?
 Platonic (Regular) Convex Polyhedra

Tetrahedron $\{3,3\}$	Cube $\{4,3\}$	Octahedron $\{3,4\}$	Dodecahedron $\{5,3\}$

Semiregular Convex Polyhedra

(Images from Wikipedia)

Limitations

Counting Vertices, Edges, and Faces

Where geometry meets discrete math.

Counting Vertices, Edges, and Faces

Where geometry meets discrete math.
Let's count the number of vertices, V, edges, E, and faces, F, of a three-dimensional polytope, and write as a list (V, E, F), called the face-vector.

We can extend this idea to counting the elements of higher dimensional polytopes as well.

Counting Vertices, Edges, and Faces

Example:

- Cube. (8, 12, 6).

Counting Vertices, Edges, and Faces

Example:

- Cube. $(8,12,6)$.
- Hypercube. (16, 32, 24, 8).

Counting Vertices, Edges, and Faces

Example:

- Cube. $(8,12,6)$.
- Hypercube. (16, 32, 24, 8).

Question: What are the possible face-vectors of polytopes?

Three-Dimensional Polytopes

Theorem (Euler's Relation)

$V-E+F=2$ for convex 3-polytopes.
Example: Cube. $8-12+6=2$.

Three-Dimensional Polytopes

Sketch of proof: Sweep the polytope with a plane in general direction. (Think of immersing in water.) Count vertices, edges, and polygons only when fully swept (under water). Watch how $\chi=V-E+F$ changes when the plane hits each vertex.

Three-Dimensional Polytopes

Sketch of proof: Sweep the polytope with a plane in general direction. (Think of immersing in water.) Count vertices, edges, and polygons only when fully swept (under water). Watch how $\chi=V-E+F$ changes when the plane hits each vertex.

- Initially $\chi=0$.

Three-Dimensional Polytopes

Sketch of proof: Sweep the polytope with a plane in general direction. (Think of immersing in water.) Count vertices, edges, and polygons only when fully swept (under water). Watch how $\chi=V-E+F$ changes when the plane hits each vertex.

- Initially $\chi=0$.
- Bottom vertex. χ changes by $1-0+0=1$.

Three-Dimensional Polytopes

Sketch of proof: Sweep the polytope with a plane in general direction. (Think of immersing in water.) Count vertices, edges, and polygons only when fully swept (under water). Watch how $\chi=V-E+F$ changes when the plane hits each vertex.

- Initially $\chi=0$.
- Bottom vertex. χ changes by $1-0+0=1$.
- Intermediate vertex with k incident lower edges. There are $k-1$ faces between these k edges. χ changes by $1-k+(k-1)=0$.

Three-Dimensional Polytopes

Sketch of proof: Sweep the polytope with a plane in general direction. (Think of immersing in water.) Count vertices, edges, and polygons only when fully swept (under water). Watch how $\chi=V-E+F$ changes when the plane hits each vertex.

- Initially $\chi=0$.
- Bottom vertex. χ changes by $1-0+0=1$.
- Intermediate vertex with k incident lower edges. There are $k-1$ faces between these k edges. χ changes by $1-k+(k-1)=0$.
- Top vertex. If its degree is k, there are k faces between these k edges. So χ changes by $1-k+k=1$.

Three-Dimensional Polytopes

Sketch of proof: Sweep the polytope with a plane in general direction. (Think of immersing in water.) Count vertices, edges, and polygons only when fully swept (under water). Watch how $\chi=V-E+F$ changes when the plane hits each vertex.

- Initially $\chi=0$.
- Bottom vertex. χ changes by $1-0+0=1$.
- Intermediate vertex with k incident lower edges. There are $k-1$ faces between these k edges. χ changes by $1-k+(k-1)=0$.
- Top vertex. If its degree is k, there are k faces between these k edges. So χ changes by $1-k+k=1$.
Total change in χ is therefore 2 .

Three-Dimensional Polytopes

Sketch of proof: Sweep the polytope with a plane in general direction. (Think of immersing in water.) Count vertices, edges, and polygons only when fully swept (under water). Watch how $\chi=V-E+F$ changes when the plane hits each vertex.

- Initially $\chi=0$.
- Bottom vertex. χ changes by $1-0+0=1$.
- Intermediate vertex with k incident lower edges. There are $k-1$ faces between these k edges. χ changes by $1-k+(k-1)=0$.
- Top vertex. If its degree is k, there are k faces between these k edges. So χ changes by $1-k+k=1$.
Total change in χ is therefore 2 .
Note: This proof technique generalizes to higher dimensions.

Three-Dimensional Polytopes

Other necessary conditions:

Three-Dimensional Polytopes

Other necessary conditions:
V, E, F are positive integers.

Three-Dimensional Polytopes

Other necessary conditions:
V, E, F are positive integers.

What else?

Three-Dimensional Polytopes

Other necessary conditions:
V, E, F are positive integers.
What else?

Theorem (Steinitz)

A positive integer vector (V, E, F) is the face-vector of a 3-polytope if and only if the following conditions hold.

- $V-E+F=2$,
- $V \leq 2 F-4$, and
- $F \leq 2 V-4$.

The World of Three-Dimensional Polytopes

 (Here, V is labeled f_{0} and F is labeled f_{2}.) Think about how to construct representatives of each face-vector!

Four-Dimensional Polytopes

What is the characterization of face-vectors of 4-polytopes?

Four-Dimensional Polytopes

What is the characterization of face-vectors of 4-polytopes?
We don't know!-It's an area of active research

Four-Dimensional Polytopes

What is the characterization of face-vectors of 4-polytopes?
We don't know!-It's an area of active research But there are some partial results.

The Amazing Power of Euler

Steinitz's Inequalities
 Let's do a little more math.
 Let F_{i} be the number of faces with i edges.
 Let V_{i} be the number of vertices incident to i edges.

Steinitz's Inequalities

Let's do a little more math.
Let F_{i} be the number of faces with i edges.
Let V_{i} be the number of vertices incident to i edges.

$$
2 E=3 F_{3}+4 F_{4}+5 F_{5}+\cdots \text { Take it apart! }
$$

Steinitz's Inequalities

Let's do a little more math.
Let F_{i} be the number of faces with i edges.
Let V_{i} be the number of vertices incident to i edges.

$$
\begin{aligned}
2 E & =3 F_{3}+4 F_{4}+5 F_{5}+\cdots \text { Take it apart! } \\
& \geq 3 F_{3}+3 F_{4}+3 F_{5}+\cdots
\end{aligned}
$$

Steinitz's Inequalities

Let's do a little more math.
Let F_{i} be the number of faces with i edges.
Let V_{i} be the number of vertices incident to i edges.

$$
\begin{aligned}
2 E & =3 F_{3}+4 F_{4}+5 F_{5}+\cdots \text { Take it apart! } \\
& \geq 3 F_{3}+3 F_{4}+3 F_{5}+\cdots \\
& =3 F
\end{aligned}
$$

Steinitz's Inequalities

Let's do a little more math.
Let F_{i} be the number of faces with i edges.
Let V_{i} be the number of vertices incident to i edges.

$$
\begin{aligned}
2 E & =3 F_{3}+4 F_{4}+5 F_{5}+\cdots \text { Take it apart! } \\
& \geq 3 F_{3}+3 F_{4}+3 F_{5}+\cdots \\
& =3 F \\
2 E & =3 V_{3}+4 V_{4}+5 V_{5}+\cdots
\end{aligned}
$$

Steinitz's Inequalities

Let's do a little more math.
Let F_{i} be the number of faces with i edges.
Let V_{i} be the number of vertices incident to i edges.

$$
\begin{aligned}
2 E & =3 F_{3}+4 F_{4}+5 F_{5}+\cdots \text { Take it apart! } \\
& \geq 3 F_{3}+3 F_{4}+3 F_{5}+\cdots \\
& =3 F \\
2 E & =3 V_{3}+4 V_{4}+5 V_{5}+\cdots \\
& \geq 3 V_{3}+3 V_{4}+3 V_{5}+\cdots
\end{aligned}
$$

Steinitz's Inequalities

Let's do a little more math.
Let F_{i} be the number of faces with i edges.
Let V_{i} be the number of vertices incident to i edges.

$$
\begin{aligned}
2 E & =3 F_{3}+4 F_{4}+5 F_{5}+\cdots \text { Take it apart! } \\
& \geq 3 F_{3}+3 F_{4}+3 F_{5}+\cdots \\
& =3 F \\
2 E & =3 V_{3}+4 V_{4}+5 V_{5}+\cdots \\
& \geq 3 V_{3}+3 V_{4}+3 V_{5}+\cdots \\
& =3 V
\end{aligned}
$$

Steinitz's Inequalities

Let's do a little more math.
Let F_{i} be the number of faces with i edges.
Let V_{i} be the number of vertices incident to i edges.

$$
\begin{aligned}
2 E & =3 F_{3}+4 F_{4}+5 F_{5}+\cdots \text { Take it apart! } \\
& \geq 3 F_{3}+3 F_{4}+3 F_{5}+\cdots \\
& =3 F \\
2 E & =3 V_{3}+4 V_{4}+5 V_{5}+\cdots \\
& \geq 3 V_{3}+3 V_{4}+3 V_{5}+\cdots \\
& =3 V \\
& 2 V+2 F-4=2 E \geq 3 F
\end{aligned}
$$

Steinitz's Inequalities

Let's do a little more math.
Let F_{i} be the number of faces with i edges.
Let V_{i} be the number of vertices incident to i edges.

$$
\begin{aligned}
2 E & =3 F_{3}+4 F_{4}+5 F_{5}+\cdots \text { Take it apart! } \\
& \geq 3 F_{3}+3 F_{4}+3 F_{5}+\cdots \\
& =3 F \\
2 E= & 3 V_{3}+4 V_{4}+5 V_{5}+\cdots \\
\geq & 3 V_{3}+3 V_{4}+3 V_{5}+\cdots \\
& =3 V \\
& \quad 2 V+2 F-4=2 E \geq 3 F \\
& \quad 2 V-4 \geq F
\end{aligned}
$$

Steinitz's Inequalities

Let's do a little more math.
Let F_{i} be the number of faces with i edges.
Let V_{i} be the number of vertices incident to i edges.

$$
\begin{aligned}
2 E= & 3 F_{3}+4 F_{4}+5 F_{5}+\cdots \text { Take it apart! } \\
\geq & 3 F_{3}+3 F_{4}+3 F_{5}+\cdots \\
= & 3 F \\
2 E= & 3 V_{3}+4 V_{4}+5 V_{5}+\cdots \\
\geq & 3 V_{3}+3 V_{4}+3 V_{5}+\cdots \\
= & 3 V \\
& 2 V+2 F-4=2 E \geq 3 F \\
& 2 V-4 \geq F \\
& 2 V+2 F-4=2 E \geq 3 V
\end{aligned}
$$

Steinitz's Inequalities

Let's do a little more math.
Let F_{i} be the number of faces with i edges.
Let V_{i} be the number of vertices incident to i edges.

$$
\begin{aligned}
2 E= & 3 F_{3}+4 F_{4}+5 F_{5}+\cdots \text { Take it apart! } \\
\geq & 3 F_{3}+3 F_{4}+3 F_{5}+\cdots \\
= & 3 F \\
2 E= & 3 V_{3}+4 V_{4}+5 V_{5}+\cdots \\
\geq & 3 V_{3}+3 V_{4}+3 V_{5}+\cdots \\
= & 3 V \\
& 2 V+2 F-4=2 E \geq 3 F \\
& 2 V-4 \geq F \\
& 2 V+2 F-4=2 E \geq 3 V \\
& 2 F-4 \geq V
\end{aligned}
$$

But Wait! There's More!
 $6=3 V-3 E+3 F$

But Wait! There's More!
 $6=3 V-3 E+3 F$
 $\leq 3 V-3 E+2 E$

But Wait! There's More!

$6=3 V-3 E+3 F$
$\begin{aligned} & \leq 3 V-3 E+2 E \\ 6 & \leq 3 V-E\end{aligned}$

But Wait! There's More!

$$
\begin{aligned}
6 & =3 V-3 E+3 F \\
& \leq 3 V-3 E+2 E \\
6 & \leq 3 V-E
\end{aligned}
$$

$12 \leq 6 F-2 E$

But Wait! There's More!

$$
\begin{aligned}
6 & =3 V-3 E+3 F \\
& \leq 3 V-3 E+2 E \\
6 & \leq 3 V-E \\
12 & \leq 6 F-2 E \\
& =6\left(F_{3}+F_{4}+F_{5}+\cdots\right)-\left(3 F_{3}+4 F_{4}+5 F_{5}+\cdots\right)
\end{aligned}
$$

But Wait! There's More!

$$
\begin{aligned}
6 & =3 V-3 E+3 F \\
& \leq 3 V-3 E+2 E \\
6 & \leq 3 V-E \\
12 & \leq 6 F-2 E \\
& =6\left(F_{3}+F_{4}+F_{5}+\cdots\right)-\left(3 F_{3}+4 F_{4}+5 F_{5}+\cdots\right) \\
12 & \leq 3 F_{3}+2 F_{4}+F_{5}+0 F_{6}-F_{7}-2 F_{8}-\cdots
\end{aligned}
$$

But Wait! There's More!

$$
\begin{aligned}
6 & =3 V-3 E+3 F \\
& \leq 3 V-3 E+2 E \\
6 & \leq 3 V-E
\end{aligned}
$$

$12 \leq 6 F-2 E$
$=6\left(F_{3}+F_{4}+F_{5}+\cdots\right)-\left(3 F_{3}+4 F_{4}+5 F_{5}+\cdots\right)$
$12 \leq 3 F_{3}+2 F_{4}+F_{5}+0 F_{6}-F_{7}-2 F_{8}-\cdots$

Theorem
Every polytope must have at least one triangle, quadrilateral, or pentagon as a face.

But Wait! There's More!

$$
\begin{aligned}
6 & =3 V-3 E+3 F \\
& \leq 3 V-3 E+2 E \\
6 & \leq 3 V-E
\end{aligned}
$$

$12 \leq 6 F-2 E$

$$
=6\left(F_{3}+F_{4}+F_{5}+\cdots\right)-\left(3 F_{3}+4 F_{4}+5 F_{5}+\cdots\right)
$$

$$
12 \leq 3 F_{3}+2 F_{4}+F_{5}+0 F_{6}-F_{7}-2 F_{8}-\cdots
$$

Theorem

Every polytope must have at least one triangle, quadrilateral, or pentagon as a face.

In a similar way
Theorem
Every polytope must have at least one vertex of degree 3, 4, or 5 .

Fullerenes

Carbon compounds forming spheres of pentagons and hexagons with every vertex of degree 3.

Fullerenes

$$
3 V=2 E=5 F_{5}+6 F_{6}=6 F-F_{5}
$$

Fullerenes

$$
3 V=2 E=5 F_{5}+6 F_{6}=6 F-F_{5}
$$

$$
6 V-6 E+6 F=12
$$

Fullerenes

$$
3 V=2 E=5 F_{5}+6 F_{6}=6 F-F_{5}
$$

$$
6 V-6 E+6 F=12
$$

$$
4 E-6 E+2 E+F_{5}=12
$$

Fullerenes

$$
3 V=2 E=5 F_{5}+6 F_{6}=6 F-F_{5}
$$

$$
6 V-6 E+6 F=12
$$

$$
4 E-6 E+2 E+F_{5}=12
$$

$$
F_{5}=12
$$

Fullerenes

$$
3 V=2 E=5 F_{5}+6 F_{6}=6 F-F_{5}
$$

$$
6 V-6 E+6 F=12
$$

$$
4 E-6 E+2 E+F_{5}=12
$$

$$
F_{5}=12
$$

Theorem
Every fullerene must have exactly 12 pentagons.

Symmetry

Regular Polygons

What about its symmetries makes a polygon regular?

Regular Polygons

What about its symmetries makes a polygon regular?

Choose any two vertex-edge pairs (v, e) and $\left(v^{\prime}, e^{\prime}\right)$ such that v is an endpoint of e and v^{\prime} is an endpoint of e^{\prime}.
Then there is a symmetry of the polygon that maps (v, e) to $\left(v^{\prime}, e^{\prime}\right)$.
That is to say, the symmetry group of a regular polygon is flag-transitive.

Regular Polygons

Can you think of some polygons whose symmetry groups are

- Vertex transitive but not edge transitive?
- Edge transitive but not vertex transitive?

Platonic Solids

What about its symmetries characterizes a Platonic solid?

Platonic Solids

What about its symmetries characterizes a Platonic solid?

Choose any two vertex-edge-face triples (v, e, f) and $\left(v^{\prime}, e^{\prime}, f^{\prime}\right)$ such that v is an endpoint of e and e is an edge of f, and also v^{\prime} is an endpoint of e^{\prime} and e^{\prime} is an edge of f^{\prime}.
Then there is a symmetry of the polytope that maps (v, e, f) to $\left(v^{\prime}, e^{\prime}, f^{\prime}\right)$.
That is to say, the symmetry group of a Platonic solid is flag-transitive.

Regular Polytopes in Higher Dimensions

This notion of regularity extends naturally into higher dimensions.

- In four dimensions there are 6 regular polytopes.
- In five and higher dimensions there are only 3.

Regular Polytopes

Can you think of some three-dimensional polytopes whose symmetry groups are

- Vertex transitive only?
- Edge transitive only?
- Face transitive only?
- Vertex-edge transitive?
- Edge-face transitive?
- Vertex-face transitive?

Semiregular Solids

What about its symmetries characterizes a semiregular solid?

Semiregular Solids

What about its symmetries characterizes a semiregular solid?

- Every face is a regular polygon, and
- The symmetry group of the semiregular solid is vertex-transitive.

Shadows of the Fourth Dimension

Projection of a Cube

Projection of a Hypercube

Projection of a Hypercube

Projection of Many Hypercubes

Delete Half the Edges

Delete Half the Edges

Diamond crystal!

Ubiquity and Beauty

Ubiquity and Beauty

See accompanying powerpoint

Image Sources

Cundy and Rollett: http://www.amazon.com/
Mathmatical-Models-Second-Martyn-Cundy/dp/B00KK5GFQ8/ ref=sr_1_12?ie=UTF8\&qid=1427234942\&sr=8-12\&keywords= cundy+rollett
Holden: http://www.amazon.com/
Shapes-Space-Symmetry-Dover-Mathematics/dp/0486268519
Fullerenes: http://www.miqel.com/images_1/random_image/ odd/fullerines_mixed.jpg
Dodecahedron: http://upload.wikimedia.org/wikipedia/ commons/e/e0/Dodecahedron.jpg
Soccer ball: http://stuffyoudontwant.com/wp-content/ uploads/2011/10/soccer-ball.jpg

