Symmetry in Nature (and Human Nature) Stillness in Motion

Carl Lee
University of Kentucky

Symmetry - 2015

Key Idea \#1

An object is symmetrical if it "remains unchanged," or maps precisely back onto itself, or is invariant when acted on by an (interesting) motion or transformation.

Product Design (Hubcap)

Product Design (Hubcap)

Motion: Rotations by multiples of $1 / 5$ of a full turn

Biology (Butterfly)

Biology (Butterfly)

Biology (Butterfly)

Motion: Reflection across a line

Textiles (Peruvian Skirt)

Textiles (Peruvian Skirt)

Motion: Reflection across a line

Literature (Ambigrams)

Literature (Ambigrams)

From Dan Brown's Angels and Demons
Motion: Half turn

Ambigrams Activity

Solve the puzzles on the Ambigram handout
On your own: Try some online ambigram generators, such as http://www.flipscript.com/ambigram-generator.aspx

Chemistry (Carvone)

Chemistry (Carvone)

Motion: Reflection across a plane

Chemistry (Carvone)

Spearmint and Caraway

Other Examples of Enantiomers (Chiral Pairs)

Glucose and L-Glucose - the latter tastes sweet but cannot be metabolized

Thalidomide - only one version causes birth defects; the other is a sedative

DNA

Amino acids

Chirality Activity

Construct as many structures as you can with four multilink cubes

Identify symmetries of individual structures

Identify chiral pairs
Repeat with five cubes

Dance (Square Dancing)

http://www.squaredancecd.com/sdance.htm

Try Basic Steps: Ladies' Chain Family: Four Ladies Chain Three Quarters

"Square Dance" Activity

Four people stand at the corners of a square

Determine seven moves (rotations and reflections) that move some or all of the individuals to different positions

Determine the net effect of carrying out two such moves, one after the other

"Square Dance" Activity

Math (Distance)

Motion: Rotation of segment $A B$ about a point.
The coordinates of the endpoints change, but the distance formula yields the same length of the line segments: $\sqrt{(4-1)^{2}+(2-1)^{2}}=\sqrt{(2-3)^{2}+(6-3)^{2}}=\sqrt{10}$.

Physics (Special Relativity)

Motion: Lorentz transformation of space-time coordinates (x, y, z, t)
Unchanged: Space-time distance
$\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}-\left(c t_{2}-c t_{1}\right)^{2}}$

Puzzles

Motion: Various rotations by $1 / 3$ turns, $1 / 4$ turns (and others?)

Puzzles

Pass around examples

Sculpture (Bathsheba)

Motion: Various rotations by multiples of $1 / 5$ turns (and others?)

Sculpture (Snelson Tensegrities)

Motion: Various rotations by multiples of $1 / 3$ turns

Geology (Giant's Causeway)

Motion: Various translations, rotations, reflections

Art (M.C. Escher)

Motion: Various translations, rotations, reflections

Pattern Analysis Activity

Identify the symmetries in various repeating patterns

Fractals (Sierpinski Triangle)

http:
//www.ms.uky.edu/~lee/visual05/povray/sierpinski2.mov
Motion: Scaling

Biology (Cold Virus)

Motion: Various rotations

Chemistry (Carbon)

Liquid (Milk)

Motion: Rotation
Note: Symmetry breaking

Key Idea \#2

We are tempted to "complete" a partially hidden object using symmetry

Architecture (Bahá'í Temple near New Delhi)

Architecture (Bahá'í Temple near New Delhi)

Physics (Particles, Forces, and Laws)

Symmetry: A 'Key to Natures Secrets', by Steven Weinberg http://www.nybooks.com/articles/archives/2011/oct/27/ symmetry-key-natures-secrets
"At the same time, we did have a valuable key to nature's secrets. The laws of nature evidently obeyed certain principles of symmetry, whose consequences we could work out and compare with observation, even without a detailed theory of particles and forces. There were symmetries that dictated that certain distinct processes all go at the same rate, and that also dictated the existence of families of distinct particles that all have the same mass. Once we observed such equalities of rates or of masses, we could infer the existence of a symmetry, and this we thought would give us a clearer idea of the further observations that should be made, and of the sort of underlying theories that might or might not be possible. It was like having a spy in the enemy's high command."

Periodic Table of the Elements

Mendeleev organizes the known elements and correctly predicts some elements to fill the gaps in his table

Key Idea \#3

We can create a symmetrical object by repeatedly applying a certain transformation or set of transformations

Key Idea \#3

We can create a symmetrical object by repeatedly applying a certain transformation or set of transformations

Unlike before when we start with an object and describe the symmetries, this time we start with the symmetries and create the object

Computer Aided Design (SketchUp)

SketchUp demo of ring of cloned columns

Kirigami

Cutting and folding symmetrical patterns

Art (Teach and Learn)

Object: A word
Motion: A single reflection
App: iOrnament

Art (Patterns)

Object: A motif
Motion: A set of translations, rotations, and/or reflections App: iOrnament

Music

Object: A musical passage
Motion: Translation in pitch

Music

Object: A musical passage
Motion: Translation in pitch

Transposition

Music

Object: A musical passage Motion: Translation in time

Music

Object: A musical passage Motion: Translation in time

Rounds

Music (Hayden)

Description by Scott Kim: Palindromic 3rd movement from Haydn's Symphony 47. The orchestra plays the first part twice forwards, twice backwards, the second part twice forwards, twice backwards, and finally the first part twice forwards, twice backwards.

Music/Video (Come into my World)

https://www. youtube.com/watch?v=63vqob-MljQ

Kaleidoscope

Make a human kaleidoscope with three "mirrors" and six people

Polyhedra (Regular and Semiregular Solids)

Tetrahedron $\{3,3\}$	Cube $\{4,3\}$	Octahedron $\{3,4\}$	Dodecahedron $\{5,3\}$

Semiregular Convex Polyhedra

(Images from Wikipedia)

Tessellation and Polyhedra Activity

Build symmetrical patterns and objects

Try "unit origami"

Heighten your "symmetry awareness"

