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Abstract. The Amer-Brumer Theorem was originally proved for
fields with characteristic different from 2. Amer’s generalization of
Brumer’s result has never been published. We show that Amer’s
result extends to fields of arbitrary characteristic and we give a
proof that is independent of the characteristic of the field.

1. Introduction and preliminaries

Brumer published a beautiful theorem in [B] stating that two qua-
dratic forms Q1, Q2 defined over a field k, char k 6= 2, have a common
nontrivial zero over k if and only if the quadratic form Q1 + tQ2 has
a nontrivial zero over the rational function field k(t). Brumer’s proof
used a very clever argument involving the use of hyperplane reflections.
Independently and slightly earlier, Amer proved a stronger version of
this result in [A]. He showed the same result holds for r-dimensional
subspaces of zeros. Amer also restricted to fields k with char k 6= 2.
Amer’s proof has never been published. Since the result is so funda-
mental, it seems worthwhile to publish a proof. The proof given below
(Theorem 2.2) has been extended to cover all fields. The proof is also
a bit simpler than Amer’s original proof in that hyperplane reflections
are used more efficiently. The Amer-Brumer Theorem will refer to the
case r = 1 in Theorem 2.2 and Amer’s Theorem will refer to the general
case. Pfister published a proof of the Amer-Brumer Theorem in [P],
page 137.

Let k be a field, let V be a finite dimensional vector space over k and
let Q : V → k be a quadratic map. This means that Q(av) = a2Q(v)
for all v ∈ V , a ∈ k, and the function B : V × V → k defined
by B(v, w) = Q(v + w) − Q(v) − Q(w) for all v, w ∈ V is a sym-
metric bilinear form. Thus B(v, v) = 2Q(v). We let rad B = {v ∈
V |B(v, w) = 0 for all w ∈ V } and we let rad Q = {v ∈ V |Q(v + w) =
Q(w) for all w ∈ V }. If v ∈ rad Q, then Q(v) = 0 (set w = 0) and
it follows that rad Q ⊆ rad B. An isomorphic linear transformation
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σ : V → V is an isometry of (V, Q) if Q(v) = Q(σ(v)) for all v ∈ V .
If σ is an isometry, it follows that B(v, w) = B(σ(v), σ(w)) for all
v, w ∈ V . The following lemma introduces some special isometries that
are often called hyperplane reflections when char k 6= 2 and orthogonal
transvections when char k = 2.

Lemma 1.1. Let z ∈ V and assume Q(z) 6= 0. Let τz : V → V be
defined by

τz(y) = y − B(y, z)

Q(z)
z.

Then the following statements hold.

(1) τz is a linear transformation.
(2) τz ◦ τz = 1 and τz(z) = −z.
(3) Q(y) = Q(τz(y)) for all y ∈ V . Thus τz is an isometry of

(V, Q).

Proof. These are straightforward calculations. �

The following result is needed in the proof of Theorem 2.2.

Lemma 1.2. Let Q : V → k be a quadratic map with B : V × V → k
the associated symmetric bilinear form. Then every maximal subspace
of V on which Q vanishes has the same dimension.

Proof. When B is nonsingular, this result is well known and the di-
mension h of a maximal subspace of V on which Q vanishes is often
called the Witt index of Q. In the general case the dimension of such
a maximal subspace of V is h + dim(rad Q), where h is the Witt index
of the nonsingular part of Q. �

2. Amer’s Theorem for arbitrary k

Let Q1 : V → k and Q2 : V → k be two quadratic maps and let
B1, B2 be the associated symmetric bilinear forms. Let k(t) denote the
rational function field and let Vk(t) = V ⊗k k(t). Let

Q1 + tQ2 : Vk(t) → k(t)

be the function defined by (Q1 + tQ2)(v) = Q1(v) + tQ2(v), where
v ∈ Vk(t). It is easily checked that Q1 + tQ2 is a quadratic map. The
associated symmetric bilinear form is denoted B1 + tB2 and satisfies
(B1 + tB2)(v, w) = B1(v, w) + tB2(v, w). We make no assumptions on
Q1, Q2, B1, B2 concerning nondegeneracy. Let

v = v0 + tv1 + · · ·+ tnvn ∈ Vk[t] = V ⊗k k[t], vi ∈ V.

If vn 6= 0, we say that deg v = n. The following lemma was proved by
Brumer [B] when char k 6= 2.
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Lemma 2.1. Suppose (Q1+tQ2)(v) = 0 where v = v0+tv1+· · ·+tnvn,
vi ∈ V . Assume that (Q1 + tQ2)(vn) 6= 0 and let v′ = τvn(v), where
τvn is the isometry of (Vk(t), Q1 + tQ2) defined in Lemma 1.1. Then
v′ ∈ Vk[t] and deg v′ < deg v.

Proof. Since (Q1 + tQ2)(v) = 0, a computation of the coefficients of
t2n+1 and t2n shows that

(1) Q2(vn) = 0,
(2) Q1(vn) + B2(vn−1, vn) = 0.

Since (Q1 + tQ2)(vn) 6= 0 and Q2(vn) = 0 by (1), we have Q1(vn) 6= 0.
This gives

v′ = τvn(v) = v − (B1 + tB2)(v, vn)

(Q1 + tQ2)(vn)
vn = v − B1(v, vn) + tB2(v, vn)

Q1(vn)
vn.

Thus v′ = v′0 + tv′1 + · · · + tn−1v′n−1 + tnv′n + tn+1v′n+1, where v′i ∈ V .
We have

v′n+1 = −B2(vn, vn)

Q1(vn)
vn = 0,

since B2(vn, vn) = 2Q2(vn) = 0. We have

v′n = vn −
B1(vn, vn) + B2(vn−1, vn)

Q1(vn)
vn

=
Q1(vn)−B1(vn, vn)−B2(vn−1, vn)

Q1(vn)
vn = 0

using Q1(vn)−B1(vn, vn) = −Q1(vn) and (2). �

The following theorem was proved by Amer in [A] when char k 6= 2.
The proof given here is a slight simplification of Amer’s proof and is
valid for all fields.

Theorem 2.2. Let Q1, Q2 be as above. Then Q1, Q2 vanish on a
common r-dimensional subspace of V if and only if Q1 + tQ2 vanishes
on an r-dimensional subspace of Vk(t).

Proof. If Q1, Q2 vanish on a common r-dimensional subspace W of V ,
then Q1 + tQ2 vanishes on Wk(t) ⊆ Vk(t).

Assume Q1 + tQ2 vanishes on an r-dimensional subspace W of Vk(t).
Let {w1, . . . , wr} be a basis of W . We may assume each wi ∈ Vk[t] =
V ⊗k k[t]. Thus we may write wi = vi0 + tvi1 + · · ·+ tnivi,ni

, where each
vij ∈ V and vi,ni

6= 0, so that deg wi = ni. We may arrange the wi’s so
that n1 ≤ n2 ≤ · · · ≤ nr.

Among all r-dimensional subspaces W of Vk(t) on which Q1 + tQ2

vanishes, and among all possible bases {w1, . . . , wr} of these subspaces
W such that wi ∈ Vk[t], 1 ≤ i ≤ r, and n1 ≤ n2 ≤ · · · ≤ nr, choose a
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subspace W and a basis {w1, . . . , wr} such that (n1, . . . , nr) is minimal
with respect to the lexicographical ordering. Our goal is to show that
n1 = · · · = nr = 0. Suppose this is not the case. Then we may assume
deg w1 = · · · = deg wi−1 = 0 and deg wi > 0 for some i ≥ 1. For
ease of notation, set n = ni and vj = vij, 0 ≤ j ≤ ni = n. Then
wi = v0 + tv1 + · · ·+ tnvn with vn 6= 0 and n ≥ 1.
Case I. Suppose Q1 + tQ2 does not vanish on the k-subspace gener-
ated by {w1, . . . , wi−1, vn}. Then (Q1 + tQ2)(y + vn) 6= 0 for some
y ∈ spank{w1, . . . , wi−1}. Since W is generated as a k(t)-subspace by
{w1, . . . , wi−1, wi + tny, wi+1, . . . , wr}, and since

wi + tny = v0 + tv1 + · · ·+ tn−1vn−1 + tn(y + vn),

we may assume from the start that wi = v0 + tv1 + · · · + tnvn with
(Q1 + tQ2)(vn) 6= 0. Since (Q1 + tQ2)(wi) = 0, we have Q2(vn) = 0.
Thus Q1(vn) 6= 0.

Let τvn be the isometry of (Vk(t), Q1 + tQ2) defined in Lemma 1.1.
Let

Y = τvn(W ) = spank(t){τvn(w1), . . . , τvn(wr)}.
Then τvn(wi) ∈ Vk[t] and deg(τvn(wi)) < deg(wi) by Lemma 2.1. We
have that (B1 + tB2)(wj, wi) = 0, since Q1 + tQ2 vanishes on W . The
coefficient of tn+1 in (B1 + tB2)(wj, wi) equals B2(wj, vn), and thus
B2(wj, vn) = 0. Since Q2(vn) = 0 and Q1(vn) 6= 0, we now have for
1 ≤ j < i that

τvn(wj) = wj −
(B1 + tB2)(wj, vn)

(Q1 + tQ2)(vn)
vn = wj −

B1(wj, vn)

Q1(vn)
vn ∈ V.

After rearranging this basis of Y lexicographically by degree, we pro-
duce a smaller r-tuple of degrees, which is a contradiction.
Case II. Suppose Q1 + tQ2 vanishes on the k- subspace generated by
{w1, . . . , wi−1, vn}. If {w1, . . . , wi−1, vn} is a linearly dependent set over
k, then there exists y ∈ spank{w1, . . . , wi−1} such that y + vn = 0.
Then

spank(t){w1, . . . , wi, . . . , wr}
= spank(t){w1, . . . , wi−1, t

ny + wi, wi+1, . . . , wr}.
But tny + wi 6= 0 since {w1, . . . , wi} are linearly independent, and
deg(tny + wi) < deg wi since y + vn = 0. This basis of W produces a
smaller r-tuple of degrees, which is a contradiction.

Thus {w1, . . . , wi−1, vn} is a linearly independent set over k. Then
Lemma 1.2 implies that {w1, . . . , wi−1, vn} is contained in a subspace
Y of Vk(t), with dim Y = r, on which Q1 + tQ2 vanishes. Then Y has
a basis that gives a smaller r-tuple of degrees, our final contradiction.



AMER-BRUMER THEOREM 5

Therefore n1 = · · · = nr = 0 and it follows that Q1 + tQ2 van-
ishes on an r-dimensional subspace W of V . Then Q1 and Q2 vanish
simultaneously on the r-dimensional subspace W of V . �

3. An application

In this section we use the Amer-Brumer Theorem to give a new proof
in Proposition 3.1 of one of the representation theorems due to Cassels
and Pfister (see [L], p. 260 or [S], p. 150). In Proposition 3.2, we use
Amer’s Theorem to reprove Proposition 3.1 and in fact prove a slightly
stronger version.

Let k be a field with char k 6= 2 and let k(t) denote the rational
function field. If q is a quadratic form defined over k, let Dk(q) denote
the nonzero values of k represented by q.

In Propositions 3.1 and 3.2, let q ∈ k[x1, . . . , xn] be an anisotropic
quadratic form.

Proposition 3.1. Suppose q ∼= 〈b〉 ⊥ φ and let d ∈ k, d 6= 0. Then
d ∈ Dk(φ) if and only if bt2 + d ∈ Dk(t)(q).

Proof. Without loss of generality, we can assume that b = 1 by scaling
q and d by b. If d ∈ Dk(φ), then it is clear that t2 + d ∈ Dk(t)(q). Now
assume t2 + d ∈ Dk(t)(q). We note that

〈1,−(t2 + d)〉 ∼=
(

1 t
t −d

)
,

since both binary forms represent 1 over k(t) and both have determi-
nant −(t2 + d). Let

Q1 = φ(x1, . . . , xn−1) + x2
n − dx2

n+1(1)

Q2 = 2xnxn+1.(2)

Then

Q1 + tQ2
∼=k(t) φ ⊥

(
1 t
t −d

)
(3)

∼=k(t) φ ⊥ 〈1,−(t2 + d)〉 ∼=k(t) q ⊥ 〈−(t2 + d)〉.(4)

Therefore Q1 + tQ2 is isotropic over k(t). The Amer-Brumer Theo-
rem implies that Q1, Q2 have a common nontrivial zero over k. Then
either xn = 0 or xn+1 = 0. If xn+1 = 0, then q is isotropic over k, a
contradiction. Thus xn = 0 and φ ⊥ 〈−d〉 is isotropic over k. Thus
d ∈ Dk(φ). �

In the next proposition, we weaken the hypothesis by not assum-
ing beforehand that b is represented by q over k. This stronger version
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requires Amer’s Theorem. In the usual treatment (see [L] or [S], for ex-
ample), an application of the so-called substitution principle is usually
used.

Proposition 3.2. Let b, c ∈ k with bc 6= 0. Then 〈b, c〉 is a k-subform
of q if and only if bt2 + c ∈ Dk(t)(q).

Proof. If 〈b, c〉 is a k-subform of q, then it is clear that bt2+c ∈ Dk(t)(q).
Now suppose that bt2 + c ∈ Dk(t)(q). Let d = cb−1 so that bt2 + c =
b(t2 + d). We have q ⊥ 〈−b(t2 + d)〉 is isotropic over k(t) and hence
q ⊥ 〈−b, b,−b(t2 + d)〉 vanishes on a 2-dimensional vector space over
k(t). We note that

〈b,−b(t2 + d)〉 ∼=k(t) b

(
1 t
t −d

)
,

since both binary forms represent b over k(t) and both have determinant
−(t2 + d). Let

Q1 = q(x1, . . . , xn)− bx2
n+1 + bx2

n+2 − bdx2
n+3

Q2 = 2bxn+2xn+3.

Then

Q1 + tQ2
∼=k(t) q ⊥ 〈−b〉 ⊥ b

(
1 t
t −d

)
∼=k(t) q ⊥ 〈−b, b,−b(t2 + d)〉.

Thus Q1 + tQ2 vanishes on a 2-dimensional vector space over k(t).
Amer’s Theorem (Theorem 2.2) implies Q1, Q2 vanish on a common
2-dimensional k-subspace W defined over k. Then W is contained in
the union of the two hyperplanes defined by {xn+2 = 0} ∪ {xn+3 = 0}.
It follows easily that either W ⊆ {xn+2 = 0} or W ⊆ {xn+3 = 0}. If
W ⊆ {xn+3 = 0}, then q(x1, . . . , xn) − bx2

n+1 + bx2
n+2 vanishes on a 2-

dimensional subspace over k and so q(x1, . . . , xn) must be isotropic over
k, a contradiction. Therefore W ⊆ {xn+2 = 0} and so q(x1, . . . , xn) −
bx2

n+1 − bdx2
n+3 vanishes on a 2-dimensional subspace over k. Then

q ⊥ 〈−b,−bd〉 ∼=k q′ ⊥ H ⊥ H
∼=k q′ ⊥ 〈b, bd,−b,−bd〉

for some quadratic form q′. Witt cancellation implies that q ∼=k q′ ⊥
〈b, bd〉 and so 〈b, bd〉 = 〈b, c〉 is a k-subform of q. �
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