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Introduction

These notes are for a graduate course in linear algebra. It is assumed
that the reader has already studied matrix algebra or linear algebra, how-
ever, these notes are completely self-contained. The material is developed
completely from scratch, but at a faster pace than a beginning linear algebra
course. Less motivation is presented than in a beginning course. For exam-
ple, it is assumed that the reader knows that vector spaces are important
to study, even though many details about vector spaces might have been
forgotten from an earlier course.

I have tried to present material efficiently without sacrificing any of the de-
tails. Examples are often given after stating definitions or proving theorems,
instead of beforehand. There are many occasions when a second method or
approach to a result is useful to see. I have often given a second approach
in the text or in the exercises. I try to emphasize a basis-free approach to
results in this text. Mathematically this is often the best approach, but ped-
agogically this is not always the best route to follow. For this reason, I have
often indicated a second approach, either in the text or in the exercises, that
uses a basis in order to make results more clear.

Linear algebra is most conveniently developed over an arbitrary field k.
For readers not comfortable with such generality, very little is lost if one
always thinks of k as the field of real numbers R, or the field of complex
numbers C. It will be clearly pointed out in the text if particular properties
of a field are used or assumed.

3



Chapter 1

Vector Spaces

1.1 Basics of Vector Spaces

We begin by giving the definition of a vector space and deriving the most
basic properties. They are fundamental to all that follows. The main result
of this chapter is that all finitely generated vector spaces have a basis and
that any two bases of a vector space have the same cardinality. On the
way to proving this result, we introduce the concept of subspaces, linear
combinations of vectors, and linearly independent vectors. These results
lead to the concept of the dimension of a vector space. We close the chapter
with a brief discussion of direct sums of vector spaces.

Let k denote an arbitrary field. We begin with the definition of a vec-
tor space. Example 1 (just after Proposition 1.2) gives the most important
example of a vector space.

Definition 1.1. A vector space V over a field k is a nonempty set V together
with two binary operations, called addition and scalar multiplication, which
satisfy the following ten axioms.

1. Addition is given by a function

V × V → V

(v, w) 7−→ v + w.

2. v + w = w + v for all v, w ∈ V .

3. (v + w) + z = v + (w + z) for all v, w, z ∈ V .
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4. There exists an element 0 ∈ V such that v + 0 = v for all v ∈ V .

5. Given v ∈ V , there exists w ∈ V such that v + w = 0.

6. Scalar multiplication is given by a function

k × V → V

(a, v) 7−→ av.

7. a(v + w) = av + aw for all a ∈ k, v, w,∈ V .

8. (a+ b)v = av + bv for all a, b ∈ k, v ∈ V .

9. a(bv) = (ab)v for all a, b ∈ k, v ∈ V .

10. 1v = v for all v ∈ V , where 1 is the multiplicative identity of k.

Axioms (1)-(5) state that V is an abelian group under the operation of
addition. The following result gives some simple consequences of axioms
(1)-(5).

Proposition 1.2. The following statements hold in a vector space V .

1. The element 0 in axiom (4) is uniquely determined.

2. (Cancellation property) If v, y, z ∈ V and y + v = z + v, then y = z.

3. The element w in axiom (5) is uniquely determined.

Proof. 1. Suppose 01 and 02 are elements in V that satisfy axiom (4).
Then axioms (4) and (2) give 01 = 01 + 02 = 02 + 01 = 02.

2. Assume v + w = 0. Then y = y + 0 = y + (v + w) = (y + v) + w =
(z + v) + w = z + (v + w) = z + 0 = z.

3. If v + w1 = 0 = v + w2, then w1 = w2 by (2).

The notation “−v” will stand for the unique element w in axiom (5).
Thus, v + (−v) = 0. The notation “v + (−w)” is usually shortened to
“v − w”.
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Example 1. This is the most basic and most important example of a vector
space. Let n ≥ 1, n an integer. Let

k(n) = {(a1, . . . , an)|ai ∈ k},

the set of all n-tuples of elements of k. Two elements (a1, . . . , an) and
(b1, . . . bn) are equal if and only if a1 = b1, . . . , an = bn. Define addition
and scalar multiplication by

(a1, . . . , an) + (b1, . . . , bn) = (a1 + b1, . . . , an + bn)

and
c(a1, . . . , an) = (ca1, . . . , can).

Then k(n) is a vector space under these two operations. The zero element
of k(n) is (0, . . . , 0) and −(a1, . . . , an) = (−a1, . . . ,−an). Check that axioms
(1)-(10) are valid and conclude that k(n) is a vector space over k (Exercise
1).

We will show in Proposition 2.8 that every finitely generated vector space
over k is isomorphic to k(n) for some n. This is why Example 1 is so important.

Proposition 1.3. The following computations are valid in a vector space V
over k.

1. 0v = 0 for all v ∈ V . (Note that the first “0” lies in k and the second
“0” lies in V .)

2. a0 = 0 for all a ∈ k.

3. a(−v) = −(av) for all a ∈ k, v ∈ V .

4. −v = (−1)v, for all v ∈ V .

5. If a ∈ k, a 6= 0, v ∈ V , and av = 0, then v = 0.

6. If a1v1+· · ·+anvn = 0, a1 6= 0, then v1 = (−a2/a1)v2+· · ·+(−an/a1)vn.

Proof. 1. 0v+ 0 = 0v = (0 + 0)v = 0v+ 0v, so 0 = 0v by the cancellation
property (Proposition 1.2(2)).

2. a0 + 0 = a0 = a(0 + 0) = a0 + a0, so 0 = a0 by the cancellation
property.
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3. a(−v) + av = a(−v + v) = a0 = 0, by (2). Since −(av) + av = 0 by
axiom (5), we have a(−v) = −(av) by Proposition 1.2(3).

4. (−1)v + v = (−1)v + 1v = (−1 + 1)v = 0v = 0, and so (−1)v = −v by
Proposition 1.2(3).

5. v = 1v = ((1/a) · a)v = (1/a)(av) = (1/a)(0) = 0, by (2).

6. a1v1 = −(a2v2 + · · · anvn) = (−1)(a2v2 + · · · anvn) = −a2v2−· · ·−anvn,
which gives

v1 = 1 · v1 = ((1/a1) · a1)v1 = (1/a1)(a1v1) = (1/a1)(−a2v2 − · · · − anvn)

= (−a2/a1)v2 + · · ·+ (−an/a1)vn.

Definition 1.4. A subset W of a vector space V is a subspace of V if W ⊆ V
and W is a vector space over k with respect to the operations of V . W is a
proper subspace of V if W is a subspace of V and W ( V .

Example 2. {0} and V are subspaces of V .
We will use the following convention. The subspace of V consisting of

only the vector 0 will be written (0). A set consisting of only the zero vector
will be written {0}. Although the difference is small, it is useful to distinguish
the two notions.

Proposition 1.5. Let W be a nonempty subset of a vector space V over k.
Then W is a subspace of V if and only if the following two statements hold.

1. If v, w ∈ W , then v + w ∈ W .

2. If a ∈ k, v ∈ W , then av ∈ W .

Proof. If W is a subspace of V , then (1) and (2) hold because of axioms (1)
and (6). Now suppose that (1) and (2) hold. Let v ∈ W (W is nonempty).
Then 0 = 0v ∈ W and −v = (−1)v ∈ W by (2). Now it is easy to check that
axioms (1)-(10) hold in W . (Most of the axioms are obvious since they are
already valid in V .)

Definition 1.6. Let S be a nonempty subset of V . A linear combination of
elements of S is an expression

∑
v∈S avv, av ∈ k, where only finitely many of

the av’s are nonzero. (It is often convenient to think of a linear combination
as a finite sum

∑n
i=1 aivi where v1, . . . , vn are distinct elements of S). A

nontrivial linear combination of elements of S is a linear combination as
above in which at least one of the coefficients av is nonzero.
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Let W be the set of all linear combinations of elements of S. Then W is
a subspace of V by Proposition 1.5, since if

∑
v∈S avv,

∑
v∈S bvv ∈ W , and

c ∈ k, then ∑
v∈S

avv +
∑
v∈S

bvv =
∑
v∈S

(av + bv)v ∈ W

and
c
∑
v∈S

avv =
∑
v∈S

(cav)v ∈ W.

The set W is called the subspace generated by S, or spanned by S, and we
write W = 〈S〉.

Definition 1.7.

1. A vector space V is finitely generated if V = 〈S〉 for some finite subset
S of V .

2. A subset S of V is linearly independent over k if every equation∑n
i=1 aivi = 0, where ai ∈ k and {v1, . . . , vn} are distinct elements

of S, implies that ai = 0, 1 ≤ i ≤ n. In this situation, one also says
that the elements of S are linearly independent over k.

3. A subset S of V is linearly dependent over k if S is not linearly in-
dependent over k. That is, there exist distinct elements v1, . . . , vn in
S, elements a1, . . . , an ∈ k, and an equation

∑n
i=1 aivi = 0 where some

ai 6= 0.

4. A subset S of V is a basis of V if S is a linearly independent subset of
V and V = 〈S〉.

The following convention is used. If S = ∅, the empty set, then 〈S〉 = (0).
The empty set is a linearly independent set.

Example 3. Let k(n) be the vector space defined in Example 1. Let e1 =
(1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1). Thus ei is the n-
tuple with zero in each coordinate except for a one in the ith coordinate.
Then {e1, . . . , en} is a basis of k(n) (Exercise 2). This basis is called the
standard basis of k(n).

Here are two more examples of vector spaces over a field k that are useful
to remember.
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Example 4. Let k(∞) denote the set of all sequences (a1, a2, a3, . . .) with
each ai ∈ k. Then k(∞) is a vector space where addition is performed coor-
dinatewise and c(a1, a2, a3, . . .) = (ca1, ca2, ca3, . . .).

Example 5. Let k(∞) denote the set of all sequences (a1, a2, a3, . . .) with

each ai ∈ k such that only finitely many of the ai’s are nonzero. Then k(∞)

is a subspace of k(∞).
Here is a basis of k(∞) that is easy to describe. Let ei = (0, . . . , 0, 1, 0, . . .),

where the ith coordinate is 1 and every other coordinate is zero. Then ε∞ =
{e1, e2, e3, . . .} is a basis of k(∞) called the standard basis of k(∞). (The vector
space k(∞) also has a basis but it is not so easy to describe.)

Proposition 1.8. The following statements are equivalent for a nonempty
set S.

1. S is a basis of V .

2. Every element of V can be written uniquely as a linear combination∑
v∈S avv, av ∈ k.

Proof. (1) ⇒ (2). Since V = 〈S〉, each element v ∈ V can be written as a
linear combination as in (2) and the uniqueness follows from Exercise 10.

(2) ⇒ (1). The hypothesis in (2) implies that V = 〈S〉. Suppose that∑
v∈S avv = 0. Since 0 =

∑
v∈S 0v, the uniqueness part of (2) implies av = 0

for all v ∈ S. This shows S is a linearly independent subset and so S is a
basis of V .

Theorem 1.9. Let V be a vector space over k and let V = 〈T 〉 for some
nonempty finite subset T of V . Let S be a subset of T that is linearly inde-
pendent. Then there exists a basis B of V such that S ⊆ B ⊆ T .

Proof. Since T is finite, there is a maximal subset B of T containing S that
is linearly independent over k. Let W = 〈B〉. If W 6= V , then there exists
some x ∈ T such that x 6∈ W (since if T ⊆ W , then V = 〈T 〉 ⊆ W ). Then
B ( B ∪ {x} and so the maximality of B implies that B ∪ {x} is a linearly
dependent set. It follows that x ∈ 〈B〉 = W , a contradiction. (See Exercise
13 ). Therefore, W = V and B is a basis of V .

Theorem 1.9 also holds if T is an infinite set. The proof is similar but
requires the use of Zorn’s Lemma.
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Corollary 1.10. Let V be a finitely generated vector space.

1. V has a basis.

2. Every finite linearly independent subset of V can be extended to a basis
of V .

3. Every finite generating set of V contains a basis of V .

Proof. Suppose that V = 〈T 〉 for some finite set T . Let S equal the empty
set and apply Theorem 1.9 to conclude that there exists a basis B of V such
that S ⊆ B ⊆ T . This proves (1) and (3).

To prove (2), let S be a finite linearly independent subset of V . Then
S ∪T is a finite set, S ⊆ S ∪T , and V = 〈S ∪T 〉. Theorem 1.9. implies that
V has a basis B such that S ⊆ B ⊆ S ∪ T . Thus S has been extended to a
basis of V . This proves (2).

Corollary 1.10 also holds for vector spaces that are not finitely generated.
The proof uses the general case of Theorem 1.9.

Lemma 1.11 (Replacement Lemma). Suppose {v1, . . . , vm} is a basis of V .
Let w ∈ V , c1, . . . , cm ∈ k, and suppose that w = c1v1 + · · · + cmvm with
c1 6= 0. Then {w, v2, . . . , vm} is a basis of V .

Proof. Since v1 = c−11 (w−c2v2−· · ·−cmvm) ∈ 〈w, v2, . . . , vm〉, it follows that
〈w, v2, . . . , vm〉 = V . (See exercise 11.)

Now suppose that a1w + a2v2 + · · ·+ amvm = 0, with each ai ∈ k. Then
a1c1v1 +

∑m
i=2(a1ci + ai)vi = 0. Since {v1, . . . , vm} is a linearly independent

set, we have that a1c1 = 0. Thus a1 = 0 because c1 6= 0. This gives a2v2 +
· · · + amvm = 0. We conclude from the linear independence of {v2, . . . , vm}
that ai = 0 for 2 ≤ i ≤ m. Therefore {w, v2, . . . , vm} is a linearly independent
set, and so {w, v2, . . . , vm} is a basis of V .

Theorem 1.12. Any two bases of a vector space V have the same cardinality.

Proof. We shall assume that V is finitely generated. The case when V is not
finitely generated will not be needed.

Since V is finitely generated, V contains a finite basis {v1, . . . , vm} by
Theorem 1.9. Thus, V = 〈v1, . . . , vm〉. Let w1, . . . , wn be any elements of V
that are linearly independent over k. We will show that n ≤ m. Assuming
this has been done, we may conclude that any other basis of V has at most
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m elements. If a second basis of V has l elements, l ≤ m, then the symmetry
of this argument lets us conclude that m ≤ l also. Thus, any basis of V has
exactly m elements.

It remains to show that n ≤ m. Suppose that n > m. Since V =
〈v1, . . . , vm〉, we have w1 = c1v1 + · · ·+ cmvm, ci ∈ k. As w1 6= 0 (see Exercise
9), we may relabel the vi’s to assume that c1 6= 0. Then {w1, v2, . . . , vm} is a
basis of V by Lemma 1.11. Suppose by induction, and after relabeling, that
{w1, . . . , wr, vr+1, . . . , vm} is a basis of V , 1 ≤ r < m. Then

wr+1 = c1w1 + · · ·+ crwr + cr+1vr+1 + · · ·+ cmvm, ci ∈ k.

Now cr+1, . . . , cm cannot all equal zero since w1, . . . , wr+1 are linearly inde-
pendent over k. Thus, we may relabel to assume that cr+1 6= 0. Lemma 1.11
implies that {w1, . . . , wr+1, vr+2, . . . , vm} is a basis of V . Since n > m, we
may continue this process and conclude that {w1, . . . , wm} is a basis of V .
Then {w1, . . . , wm+1} would be a linearly dependent set, since wm+1 would
be contained in V = 〈w1, . . . , wm〉. This is impossible since {w1, . . . , wn} is
a linearly independent set. Therefore n ≤ m and the proof is complete.

Definition 1.13. The dimension of a finitely generated vector space V over
k is the number m of elements in any, and hence all, bases of V . This is
written dimk V = m.

If V = (0), then dimk V = 0 since the cardinality of the empty set equals
zero. If there is no confusion, we will usually write dimV instead of dimk V .
It follows from Exercise 2 that dim(k(n)) = n.

Proposition 1.14. Let S = {v1, . . . , vn} and assume that dimV = n. The
following statements are equivalent.

1. S is a basis of V .

2. S is a linearly independent set.

3. V = 〈S〉. That is, V is spanned by S.

Proof. (1) ⇒ (2) is obvious.
(2)⇒ (3). Extend S to a basis T of V using Corollary 1.10. Since |T | = n

by Theorem 1.12, it follows S = T and V = 〈S〉.
(3) ⇒ (1). Use Corollary 1.10 to choose R ⊆ S such that R is a basis of

V . Again, |R| = n by Theorem 1.12 so R = S and it follows that S is a basis
of V .
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The intersection of two subspaces of V is another subspace of V . (See
Exercise 4.) The sum of two subspaces of a vector space V is defined in
Exercise 6 and is shown there to be a subspace of V . The next result gives
information on the dimensions of these subspaces in terms of the original two
subspaces.

Proposition 1.15. Let U,W be subspaces of a finitely generated vector space
V . Then

dimU + dimW = dim(U +W ) + dim(U ∩W ).

Proof. Let R = {y1, . . . , yl} be a basis of U∩W . Use Corollary 1.10 to choose
bases S = {y1, . . . , yl, ul+1, . . . , um} of U and T = {y1, . . . , yl, wl+1, . . . , wn}
of W . Our goal is to show that

S ∪ T = {y1, . . . , yl, ul+1, . . . , um, wl+1, . . . , wn}

is a basis of U +W . Assuming that this has been shown, then

dim(U+W )+dim(U∩W ) = [l+(m−l)+(n−l)]+l = m+n = dimU+dimW.

Let v ∈ U + W . Then v = v1 + v2 where v1 ∈ U , and v2 ∈ W . Since
v1 ∈ 〈S〉 and v2 ∈ 〈T 〉, it follows that v ∈ 〈S ∪ T 〉 and so U +W = 〈S ∪ T 〉.

Suppose that
∑l

i=1 aiyi+
∑m

i=l+1 biui+
∑n

i=l+1 ciwi = 0 where ai, bi, ci ∈ k.
Then

n∑
i=l+1

ciwi = −
l∑

i=1

aiyi −
m∑

i=l+1

biui ∈ U ∩W.

Thus,
∑n

i=l+1 ciwi =
∑l

i=1 diyi, since R is a basis of U ∩W . Since T is a
basis of W , it follows that ci = 0, l + 1 ≤ i ≤ n, and di = 0, 1 ≤ i ≤ l. Now
we have

∑l
i=1 aiyi +

∑m
i=l+1 biui = 0. Since S is a basis of U , it follows that

ai = 0, 1 ≤ i ≤ l, and bi = 0, l + 1 ≤ i ≤ m. This shows S ∪ T is a linearly
independent set and so S ∪ T is a basis of U +W .

The next result will be used in the definition of a direct sum of vector
spaces.

Proposition 1.16. Let W1, . . . ,Wm be subspaces of V . The following state-
ments are equivalent.

1. V = W1 + · · ·+Wm and

(W1 + · · ·+Wi−1 +Wi+1 + · · ·+Wm) ∩Wi = (0), 1 ≤ i ≤ m.
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2. Each v ∈ V has a unique expression v = w1 + · · ·+wm where wi ∈ Wi,
1 ≤ i ≤ m.

Proof. (1) ⇒ (2). Statement (1) implies that each v ∈ V has an expression
as in (2). Suppose that w1 + · · · + wm = y1 + · · · + ym, where wi, yi ∈ Wi.
Then

(w1 − y1) + · · ·+ (wi−1 − yi−1) + (wi+1 − yi+1) + · · ·+ (wm − ym) =

yi − wi ∈ (W1 + · · ·+Wi−1 +Wi+1 + · · ·+Wm) ∩Wi = (0), 1 ≤ i ≤ m.

Therefore, yi − wi = 0, so wi = yi, 1 ≤ i ≤ m.
(2) ⇒ (1). Let v ∈ (W1 + · · ·+Wi−1 +Wi+1 + · · ·+Wm) ∩Wi. Then we

have v = w1 + · · ·+wi−1 +wi+1 + · · ·+wm = wi, where wj ∈ Wj, 1 ≤ j ≤ m.
The uniqueness part of (2) implies that each wj = 0, so it follows that v = 0.
The remaining part of (1) is obvious from (2).

Definition 1.17. If W1, . . . ,Wm are subspaces of a vector space V that sat-
isfy the statements of Proposition 1.16, then we say that V is the (internal)
direct sum of W1, . . . ,Wm and write V = W1

⊕
· · ·
⊕

Wm.

There is a slightly different notion of direct sum that is given in Exercise
7. These are distinguished by referring to the direct sum in Definition 1.17
as the internal direct sum and the direct sum in Exercise 7 as the external
direct sum. The distinction is not large since we will show in Chapter 2 that
the two direct sums are essentially the same.

Notes to Section 1.1
We have proved that all finitely generated vector spaces V have a basis,

and that all such bases have the same cardinality. There remains the question
of finding or describing all bases of V . In addition, we need computational
methods to find bases of vector spaces and/or calculate the dimensions of
vector spaces. The following is a specific problem that is important to solve.
Let vi = (ai1, ai2, . . . , ain) ∈ k(n), 1 ≤ i ≤ m. Let W = 〈v1, . . . , vm〉, the
subspace of V spanned by {v1, . . . , vm}. What is dimW and how does one
find a basis of W? Some methods will be described in Chapter 3.

There are other approaches to this material. See, for example, the text
by Hoffman and Kunze.

An exposition of Zorn’s Lemma can be found in Hungerford’s Algebra
book.
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Exercises

1. Check that k(n), as defined in Example 1, satisfies the ten axioms of a
vector space.

2. Check that {e1, . . . , en} defined in Example 3 is a basis of k(n).

3. Check the details of Examples 4 and 5.

4. Let W1, . . . ,Wn be subspaces of a vector space V . Then W1 ∩ · · · ∩Wn

is also a subspace of V .

5. Suppose S is a subset of a vector space V and W = 〈S〉. Then W is
the smallest subspace of V that contains S, and W is the intersection
of all subspaces of V that contain S.

6. Let W1, . . . ,Wn be subspaces of a vector space V . Define W1+ · · ·+Wn

to be {w1 + · · ·+wn|wi ∈ Wi, 1 ≤ i ≤ n}. Then W1 + · · ·+Wn is also a
subspace of V . Verify that it is the smallest subspace of V that contains
W1, . . . ,Wn. That is, W1 + · · ·+Wn = 〈W1 ∪ · · · ∪Wn〉.

7. Let V1, . . . , Vn be vector spaces over k. Define V1
⊕
· · ·
⊕

Vn to be
{(v1, . . . , vn)|vi ∈ Vi, 1 ≤ i ≤ n}. Define addition and scalar multipli-
cation on this set according to the following rules.

(v1, . . . , vn) + (y1, . . . , yn) = ((v1 + y1), . . . , (vn + yn))

c(v1, . . . , vn) = (cv1, . . . , cvn)

Then V1
⊕
· · ·
⊕

Vn is a vector space over k. This vector space is called
the (external) direct sum of V1, . . . , Vn.

8. (a) Let W1,W2 be two subspaces of a vector space V . Suppose V =
W1 ∪W2. Then either V = W1 or V = W2. That is, V is not the union
of two proper subspaces.

(b) (harder) If k is an infinite field, show that V is not a finite union
of proper subspaces. What can be said if k is a finite field?

9. Every element of a linearly independent subset is nonzero. The set
containing only the zero vector is a linearly dependent set.

14



10. If S is a linearly independent subset of V and
∑

v∈S avv =
∑

v∈S bvv,
av, bv ∈ k, then av = bv for all v ∈ S.

11. Let {v1, . . . , vn} be a generating set of V and let w1, . . . , wm ∈ V . If
v1 . . . , vn ∈ 〈w1, . . . , wm〉, then V = 〈w1, . . . wm〉.

12. Let S be a linearly independent subset of a vector space V and let
x ∈ V . Then S ∪ {x} is a linearly independent subset if and only if
x 6∈ 〈S〉.

13. Let V be a finitely generated vector space and let W be a subspace of
V . Then

(a) W is finitely generated.

(b) dimW ≤ dimV .

(c) If dimW = dimV , then W = V .

14. A subset S of V containing only nonzero vectors is linearly dependent
if and only if some vector v in S can be expressed as a nontrivial linear
combination of vectors in S distinct from v. This statement is false
if the phrase “some vector v” is replaced by “each vector v”. The
statement is also false if S is allowed to contain the zero vector.

15. Let S ⊆ T be subsets of a vector space V . If T is a linearly independent
set, then so is S. If S is a linearly dependent set, then so is T .

16. Assume dimV = n. Any set S ⊆ V that contains more than n elements
must be a linearly dependent set. Any set S ⊆ V that contains fewer
than n elements does not generate V .

17. Let W1, . . . ,Wn be subspaces of V . Suppose that V = W1

⊕
· · ·
⊕

Wn

(as in Definition 1.17) and that V is finitely generated. Then dimV =∑n
i=1 dimWi. In fact if Si is a basis for Wi, then

⋃
Si is a basis of V .

18. Let V1, . . . , Vn be finitely generated vector spaces over k. Then

dim(V1
⊕
· · ·
⊕

Vn) =
n∑
i=1

dim(Vi).

Describe a basis of V1
⊕
· · ·
⊕

Vn in terms of bases of V1, . . . , Vn. (Note
that this is the external direct sum as defined in Exercise 7.)
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19. Let W be a subspace of V , with dimV finite. Then there exists a
subspace Y of V such that V = W

⊕
Y .

20. Show that {(2, 3), (3, 4)} is a basis of R(2).

21. Let a, b, c, d ∈ R. Show that {(a, b), (c, d)} is a basis of R(2) if and only
if ad− bc 6= 0.

1.2 Systems of Linear Equations

We introduce in this section the main subspaces associated with a system
of linear equations. Studying systems of linear equations gives a lot of mo-
tivation for most of the concepts introduced in later chapters. Many of the
topics introduced here will be introduced in more detail later in this text.

Consider the following system of m linear equations in n variables with
coefficients in a field k.

a11x1 + a12x2 + · · ·+ a1nxn = c1

a21x1 + a22x2 + · · ·+ a2nxn = c2
...

am1x1 + am2x2 + · · ·+ amnxn = cm

We have aij, ci ∈ k for all i and j.
A system of linear equations is called a system of homogeneous linear

equations if c1 = · · · = cm = 0.
The matrix of coefficients of a system of linear equations is the m × n

matrix A given by

A =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
am1 am2 · · · amn

 .

We let Mm×n(k) denote the set of all m× n matrices with entries in k.

The rows of A are the m vectors

(a11, a12, . . . , a1n)
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(a21, a22, . . . , a2n)

...

(am1, am2, . . . , amn)

in k(n), 1 ≤ i ≤ m.

The columns of A are the n vectors
a11
a21
...
am1

 ,


a12
a22
...
am2

 , . . . ,


a1n
a2n
...

amn

 ∈ k(m), 1 ≤ j ≤ n.

We will write such vectors vertically or horizontally, whichever is more con-
venient.

The null set of A is the set of vectors in k(n) that are solutions to the
homogeneous system of linear equations

a11x1 + a12x2 + · · ·+ a1nxn = 0

a21x1 + a22x2 + · · ·+ a2nxn = 0

...

am1x1 + am2x2 + · · ·+ amnxn = 0.

It is straightforward to verify that the null set of A is a subspace of k(n).
(See Exercise 1.)

Definition 1.18. Let A ∈Mm×n(k).

1. The row space of A, denoted R(A), is the subspace of k(n) spanned by
the m rows of A.

2. The column space of A, denoted C(A), is the subspace of k(m) spanned
by the n columns of A.

3. The null space of A, denoted N (A), is the subspace of vectors in k(n)

that are solutions to the above homogeneous system of linear equations.
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The product of a matrix A ∈Mm×n(k) and a vector b ∈ k(n) is a partic-
ular vector c ∈ k(m) defined below. We follow the traditional notation and
write b and c as column vectors. Thus we are defining Ab = c and writing
the following expression.

a11 a12 · · · a1n
a21 a22 · · · a2n

...
am1 am2 · · · amn



b1
b2
...
bn

 =

 c1
...
cm

 .

The vector c is defined by setting

ci =
n∑
j=1

aijbj, for 1 ≤ i ≤ m.

We will see in Chapter 3 a conceptual reason for this seemingly arbitrary
definition.

It is convenient to introduce additional notation to deal with sums of this
type. Given two vectors v, w ∈ k(n), we define the dot product of v and w as
follows. Let v = (a1, a2, . . . , an) and w = (b1, b2, . . . , bn). The dot product of
v and w is defined by

v · w =
n∑
j=1

ajbj.

The definition of Ab above can be expressed in terms of dot products of
vectors. Let v1, . . . , vm denote the m row vectors of A in k(n). Then Ab = c
where

c =


v1 · b
v2 · b

...
vm · b

 .

There is a second way to express Ab = c. Let w1, . . . wn denote the n
column vectors of A in k(m). We continue to write

b =


b1
b2
...
bn

 and c =

 c1
...
cm

 .
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Then it is straightforward to verify that Ab = c where

c = b1w1 + b2w2 + · · · bnwn.

(See Exercise 9.)
The dot product satisfies the following properties. Let v, w, y ∈ k(n) be

arbitrary vectors and let a, b ∈ k.

1. v · w = w · v

2. v · (w + y) = v · w + v · y

3. v · aw = a(v · w)

Thus v · (aw + by) = a(v · w) + b(v · y). (See Exercise 2.)
Motivated by results on dot products of vectors in vector spaces over the

real numbers, we say that two vectors v, w ∈ k(n) are orthogonal if v ·w = 0.
We write v ⊥ w to denote that v · w = 0.

Let W be an arbitrary subspace of k(n). We define the orthogonal com-
plement of W , denoted W⊥, by

W⊥ = {v ∈ k(n) | v · w = 0 for all w ∈ W}.

Using the properties of dot products, it is straightforward to verify that W⊥

is a subspace of k(n). (See Exercise 3.)
Putting together all of our definitions and notation, it follows that

N (A) = (R(A))⊥.

A system of linear equations can be expressed by the single matrix equa-
tion

Ax = c, where x =


x1
x2
...
xn

.
For a matrix A ∈Mm×n(k), define the function

LA : k(n) → k(m) by LA(b) = Ab.

The function LA is an example of a linear transformation. Linear transforma-
tions will be studied in detail in Chapter 2. In particular, for all v, v1, v2 ∈ k(n)
and a ∈ k, the following properties hold.
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1. LA(v1 + v2) = LA(v1) + LA(v2)

2. LA(av) = aLA(v)

We see that im(LA) = {Ab | b ∈ k(n)} = C(A). Note that the system of linear
equations Ax = c has a solution if and only if c ∈ C(A).

Suppose we know that b is a solution of the matrix equation Ax = c, and
so LA(b) = c. Then all solutions of the equation Ax = c are given by

b+N (A) = {b+ y|y ∈ N (A)}.

(See Exercise 4.) For the special case that c = 0, we may certainly take
b = 0, and then this result simply reduces to the original definition of N (A).

Thus the existence of solutions of a system of linear equations and the
characterization of all such solutions can be described in terms of the function
LA and the subspaces N (A) and C(A) = im(LA).

Theorem 1.19. Using the notations from above, we have

dim(N (A)) + dim(C(A)) = n.

Proof. Let {w1, . . . , ws} be a basis of N (A). As N (A) ⊆ k(n), we can extend
{w1, . . . , ws} to a basis {w1, . . . , ws, v1, . . . vn−s} of k(n). We have Awi = 0,
1 ≤ i ≤ s.

We will now show that {Av1, . . . Avn−s} is a basis of C(A). This will
let us conclude that dim(C(A)) = n − s, which will finish the proof. Since
{w1, . . . , ws, v1, . . . vn−s} is a basis of k(n), we have that C(A) = im(LA) is
spanned by {Aw1, . . . , Aws, Av1, . . . Avn−s}. Since Awi = 0 for 1 ≤ i ≤ s, it
follows that C(A) is spanned by {Av1, . . . Avn−s}.

To show that {Av1, . . . Avn−s} is a linearly independent set, suppose that
c1Av1 + · · ·+ cn−sAvn−s = 0, where each ci ∈ k. Then

A(c1v1 + · · ·+ cn−svn−s) = 0.

Thus c1v1 + · · · + cn−svn−s ∈ N (A) = Span{w1, . . . , ws}. It follows that
c1 = · · · = cn−s = 0 because {v1, . . . , vn−s, w1, . . . , ws} is a basis of k(n).
Thus {Av1, . . . Avn−s} is a linearly independent set, and so is also a basis of
C(A).
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The equation dim(N (A)) + dim(C(A)) = n allows us to recover many of
the standard results about systems of linear equations. We need a method to
compute a basis of N (A) and a basis of C(A) in order to completely describe
the set of solutions to a system of linear equations. This is one of the main
applications of matrix methods developed in Chapter 3.

There are three important results about dim(C(A)), dim(R(A)), and
dim(N (A)). Theorem (1.19) is the first result. We also have the follow-
ing two theorems.

Theorem 1.20. For any subspace V ⊆ k(n), we have

dim(V ) + dim(V ⊥) = n.

In particular, since N (A) = R(A)⊥, we have

dim(R(A)) + dim(N (A)) = n.

Theorem 1.21. dim(R(A)) = dim(C(A)).

For any subspace V ⊆ k(n), there exists a matrix A ∈ Mm×n(k) with
m ≥ dim(V ) such that V = R(A). (See Exercise 5.) From this it follows
that any two of Theorems (1.19), (1.20), and (1.21) easily implies the third.
(See Exercise 6.) There are several proofs of Theorems (1.20) and (1.21) in
these notes that use different methods. Each of the proofs is trickier than
our previous proofs.

Exercises

1. For A ∈Mm×n(k), prove that the null set of A is a subspace of k(n).

2. Verify the properties of the dot product of two vectors as given in the
text.

3. For a subspace W ⊆ k(n), verify that W⊥ is a subspace of k(n).

4. If b is a solution of the system Ax = c, prove that all solutions are
given by b+N (A) = {b+ y|y ∈ N (A)}.

5. For any subspace V ⊆ k(n), prove that for m ≥ dim(V ) there exists a
matrix A ∈Mm×n(k) such that V = R(A).
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6. Using the previous exercise, prove that any two of Theorems 1.19, 1.20,
1.21 implies the third.

7. For any v ∈ k(n), let 〈v〉 denote the subspace of k(n) generated by v.

(a) For any nonzero a ∈ k, prove that 〈av〉⊥ = 〈v〉⊥.

(b) Prove that dim(〈v〉⊥) =

{
n− 1 if v 6= 0

n if v = 0.

Note that this exercise gives a proof of the special case of Theorem 1.20
when dim(V ) = 0 or 1.

8. Consider a system of homogeneous linear equations where m < n.
Use Theorem 1.19 to prove that there exists a nonzero solution to the
system.

9. Let e1, . . . , en be the standard basis of k(n).

(a) Show that Aej is the jth column of A.

(b) Suppose that b = b1e1 + · · ·+ bnen where each bj ∈ k. Show that
Ab =

∑n
j=1 bj(column j of A).

10. Let V,W ⊆ k(n) be subspaces. Prove the following statements.

(a) If W ⊆ V , then V ⊥ ⊆ W⊥.

(b) (V +W )⊥ = V ⊥ ∩W⊥

(c) (V ∩W )⊥ = V ⊥ +W⊥

In (c), the inclusion (V ∩ W )⊥ ⊆ V ⊥ + W⊥ is difficult to prove at
this point. One strategy is to prove that (V ∩W )⊥ ⊇ V ⊥ + W⊥ and
to use Theorem 1.20 (which has not yet been proved) to prove that
dim((V ∩ W )⊥) = dim(V ⊥ + W⊥). Later we will be able to give a
complete proof of this inclusion.

1.3 Appendix

Let V be a vector space defined over a field k. In this appendix, we show
that the axiom stating that addition is commutative is actually redundant.
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That is, the other axioms for a vector space already imply that addition is
commutative.

(The following argument is actually valid for an arbitrary R-module M
defined over a commutative ring R with a multiplicative identity.)

We assume that V is a group, not necessarily commutative, and we as-
sume the following three facts concerning scalar multiplication.

1. r · (~v + ~w) = r · ~v + r · ~w for all ~v, ~w ∈ V and for all r ∈ k.

2. (r + s) · ~v = r · ~v + s · ~v for all v ∈ V and for all r, s ∈ k.

3. 1 · ~v = ~v for all v ∈ V .

On the one hand, using (1) and then (2) we have

(r + s) · (~v + ~w) = (r + s) · ~v + (r + s) · ~w = r · ~v + s · ~v + r · ~w + s · ~w.

On the other hand, using (2) and then (1) we have

(r + s) · (~v + ~w) = r · (~v + ~w) + s · (~v + ~w) = r · ~v + r · ~w + s · ~v + s · ~w.

Since V is a group, we can cancel on both sides to obtain

s · ~v + r · ~w = r · ~w + s · ~v.

We let r = s = 1 and use (3) to conclude that ~v + ~w = ~w + ~v. Therefore,
addition in V is commutative.

1.4 Proof of Theorems 1.20 and 1.21

We let Mm×n(k) denote the set of m × n matrices with entries in a field k,
and we let {e1, . . . , en} denote the standard basis of k(n).

Lemma 1.22. Let A ∈ Mn×n(k). Then A is an invertible matrix if and
only if {Ae1, . . . , Aen} is a basis of k(n).

Proof. Assume that A is an invertible matrix. We show that {Ae1, . . . , Aen}
is a linearly independent spanning set of k(n). Suppose that c1Ae1 + · · · +
cnAen = 0, where each ci ∈ k. Then A(c1e1 + · · · + cnen) = 0. Since A
is invertible, it follows that c1e1 + · · · + cnen = 0, and so c1 = · · · = cn =
0 because {e1, . . . , en} is a linearly independent set. Thus {Ae1, . . . , Aen}
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is a linearly independent set in k(n). To show that {Ae1, . . . , Aen} spans
k(n), consider v ∈ k(n). Since {e1, . . . , en} is a basis of k(n), we may write
A−1v = c1e1 + · · ·+ cnen where each ci ∈ k. Applying A to both sides gives
v = A(c1e1 + · · · + cnen) = c1Ae1 + · · · + cnAen. Therefore, {Ae1, . . . , Aen}
is a basis of k(n).

Now assume that {Ae1, . . . , Aen} is a basis of k(n). There exist bij ∈ k,
1 ≤ i ≤ n and 1 ≤ j ≤ n, such that

∑n
i=1 bij(Aei) = ej. Let B = (bij)n×n, an

n× n matrix. Using the fact that
n∑
i=1

bij(column i of A) =
n∑
i=1

bij(Aei) = ej,

we see that AB = In, where In denotes the n×n identity matrix. Therefore,
A is in an invertible matrix.

Proposition 1.23. Let {v1, . . . , vn} be a basis of k(n). Then there is a unique

basis {w1, . . . , wn} of k(n) such that vi · wj =

{
0 if i 6= j

1 if i = j.

Proof. Let {e1, . . . , en} be the standard basis of k(n). Let A ∈ Mn×n(k) be
the (unique) matrix such that Aei = vi, 1 ≤ i ≤ n. (The columns of A are the
vectors v1, . . . , vn.) Then A is invertible by Lemma 1.22. Let wi = (At)−1ei,
1 ≤ i ≤ n. Then {w1, . . . , wn} is a basis of k(n) by Lemma 1.22 because
(At)−1 is invertible. We have

vi · wj = vtiwj = (Aei)
t(At)−1ej = etiA

t(At)−1ej

= etiej = ei · ej =

{
0 if i 6= j

1 if i = j.

Suppose that {w′1, . . . , w′n} is another basis of k(n) such that vi · w′j ={
0 if i 6= j

1 if i = j.
Then vi · (wj −w′j) = vi ·wj − vi ·w′j = 0 for all i and j. Then

wj − w′j ∈ (k(n))⊥ for all j. Since (k(n))⊥ = (0) (see Exercise 1), it follows
that wj = w′j for all j. This proves the uniqueness statement.

Lemma 1.24. Suppose that {v1, . . . , vn} and {w1, . . . , wn} are bases of k(n)

such that vi ·wj =

{
0 if i 6= j

1 if i = j.
Let V = Span{v1, . . . , vl}, where 1 ≤ l ≤ n.

Then V ⊥ = Span{wl+1, . . . , wn}.
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Proof. We have Span{wl+1, . . . , wn} ⊆ V ⊥ because if 1 ≤ i ≤ l and l + 1 ≤
j ≤ n, then i 6= j and so vi · wj = 0.

Take w ∈ V ⊥. We may write w = a1w1 + · · ·+ anwn. Since vi ·w = 0 for
1 ≤ i ≤ l, it follows that ai = 0 for 1 ≤ i ≤ l. Then w = al+1wl+1+ · · ·+anwn
and thus w ∈ Span{wl+1, . . . , wn}. Therefore V ⊥ = Span{wl+1, . . . , wn}.

The next result recovers Theorem 1.20.

Proposition 1.25. Any subspace V ⊆ k(n) satisfies dim(V ) + dim(V ⊥) = n.

Proof. Extend a basis {v1, . . . , vl} of V to a basis {v1, . . . , vn} of k(n). Let

{w1, . . . , wn} be a basis of k(n) such that vi · wj =

{
0 if i 6= j

1 if i = j.
Then

Span{wl+1, . . . , wn} is a basis of V ⊥. Thus dim(V )+dim(V ⊥) = l+(n− l) =
n.

We can now prove Theorem 1.21.

Theorem 1.26. Let A ∈Mm×n(k). Then dim(R(A)) = dim(C(A)).

Proof. Since N (A) = R(A)⊥, Theorems 1.19 and 1.20 imply that

dim(N (A)) + dim(C(A)) = n = dim(R(A)) + dim(R(A)⊥)

= dim(R(A)) + dim(N (A)).

Therefore dim(C(A)) = dim(R(A)).

The next proposition develops a bit further the ideas in the proof of
Proposition 1.23 and Lemma 1.24.

Proposition 1.27. Assume that A ∈ Mn×n(k) is an invertible matrix. Let
W be a subspace of k(n). Then (At)−1W⊥ = (AW )⊥.

Proof. Take v ∈ AW and w ∈ (At)−1W⊥. Then v = Av1 where v1 ∈ W and
w = (At)−1w1 where w1 ∈ W⊥. Then

v · w = vtw = (vt1A
t)(At)−1w1 = vt1w1 = v1 · w1 = 0,

because v1 ∈ W and w1 ∈ W⊥. Since v, w are arbitrary, it follows that
(At)−1W⊥ ⊆ (AW )⊥.
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Now take w ∈ (AW )⊥. Let w1 = Atw. We will show that w1 ∈ W⊥. Let
v ∈ W . Then

v · w1 = vtw1 = vtAtw = (Av)tw = Av · w = 0,

because w ∈ (AW )⊥. Thus w1 ∈ W⊥, and so w = (At)−1w1 ∈ (At)−1W⊥.
Therefore, (AW )⊥ ⊆ (At)−1W⊥, and so (At)−1W⊥ = (AW )⊥.

Exercises

1. Prove that (k(n))⊥ = (0).

2. Assume that A ∈Mn×n(k) is an invertible matrix. Show for any basis
{v1, . . . , vn} of k(n) that {Av1, . . . , Avn} is a basis of k(n).

3. Show the following.

(a) Show that V ⊆ (V ⊥)⊥.

(b) Compute dim((V ⊥)⊥) and conclude that V = (V ⊥)⊥.
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Chapter 2

Linear Transformations

2.1 Basic Results

The most important functions between vector spaces are called linear trans-
formations. In this chapter we will study the main properties of these func-
tions.

Let V,W be vector spaces over a field k. Let 0V , 0W denote the zero
vectors of V,W respectively. We will write 0 instead, if the meaning is clear
from context.

Definition 2.1. A function f : V → W is a linear transformation if

1. f(v1 + v2) = f(v1) + f(v2), for all v1, v2 ∈ V and

2. f(av) = af(v), for all a ∈ k, v ∈ V .

For the rest of section 2.1, let f : V → W be a fixed linear transformation.

Lemma 2.2. f(0V ) = 0W and f(−v) = −f(v).

Proof. Using Proposition 1.1, parts (1) and (4), we see that f(0V ) = f(0 ·
0V ) = 0f(0V ) = 0W , and f(−v) = f((−1)v) = (−1)f(v) = −f(v).

For any vector space V and any v, y ∈ V , recall from Chapter 1 that v−y
means v + (−y). For any linear transformation f : V → W , and v, y ∈ V ,
Lemma 2.2 lets us write f(v − y) = f(v)− f(y) because

f(v − y) = f(v + (−y)) = f(v) + f(−y) = f(v) + (−f(y)) = f(v)− f(y).

Examples Here are some examples of linear transformations f : V → W .
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1. If f(v) = 0 for all v ∈ V , then f is a linear transformation called the
zero transformation.

2. If V = W and f(v) = v for all v ∈ V , then f is a linear transformation
called the identity transformation. We denote the identity transforma-
tion on V by 1V : V → V .

3. If U is a subspace of V , then the inclusion mapping ι : U → V is a
linear transformation, where for u ∈ U we have ι(u) = u ∈ V .

4. Let V = W
⊕

Y . Each v ∈ V can be written uniquely as v = w +
y where w ∈ W and y ∈ Y . Let f(v) = w. Then f is a linear
transformation from V to W called the projection from V to W .

5. Let V = W = k[x] where k[x] denotes the ring of polynomials with
coefficients in k. Thus each element of V can be written a0+a1x+a2x

2+
· · · + amx

m where each ai ∈ k and m ≥ 0. Then V is a vector space
over k where addition in V is the usual addition of polynomials and
scalar multiplication is the usual multiplication in k[x] of an element
in k by a polynomial in k[x]. Let f : V → V where f(a0 +a1x+a2x

2 +
· · · + amx

m) = a1 + a2x + a3x
2 + · · · amxm−1. Let g : V → V where

g(a0 + a1x+ a2x
2 + · · ·+ amx

m) = a0x+ a1x
2 + a2x

3 + · · ·+ amx
m+1.

Then f and g are both linear transformations.

6. Let V = {f : R → R | f is C∞}. That is, V is the set of infinitely
differentiable real-valued functions defined on the set of real numbers.
Using standard facts about differentiable functions, one can show that
V is a vector space over the field of real numbers. Let d : V → V be
defined by d(f) = f ′, where f ′ is the derivative of f . Then d is a linear
transformation. Note that the hypothesis of infinite differentiability is
needed since a function f might be differentiable at each real number
but its derivative f ′ might not be differentiable at each real number.

For example, let f(x) =

{
x2 if x ≥ 0,

−x2 if x < 0.
Then f ′(x) = 2|x|, but

f ′(x) is not differentiable at x = 0.

Definition 2.3.

1. The kernel of f , written ker(f), is defined as {v ∈ V |f(v) = 0}.
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2. The image of f , written im(f), is defined as {w ∈ W |w = f(v) for
some v ∈ V }.

3. f is injective if f(v1) = f(v2) implies v1 = v2, where v1, v2 ∈ V .

4. f is surjective if im(f) = W .

5. f is bijective if f is injective and surjective.

Proposition 2.4.

1. ker(f) is a subspace of V .

2. im(f) is a subspace of W .

3. f is injective if and only if ker(f) = (0).

Proof. (1) If v1, v2 ∈ ker(f), and a ∈ k, then f(v1 + v2) = f(v1) + f(v2) =
0 + 0 = 0, and f(av1) = af(v1) = a · 0 = 0. Since ker(f) is nonempty
(0 ∈ ker(f)), the result follows from Proposition 1.5.

(2) Let w1, w2 ∈ im(f) and a ∈ k. Then w1 = f(v1) and w2 = f(v2) for
some v1, v2 ∈ V . Then w1 + w2 = f(v1) + f(v2) = f(v1 + v2) ∈ im(f), and
aw1 = af(v1) = f(av1) ∈ im(f). Since im(f) is nonempty, the result follows
from Proposition 1.5.

(3) Suppose that f is injective and let v ∈ ker(f). Since f(v) = 0 = f(0),
it follows that v = 0 and thus, ker(f) = 0. Conversely, suppose that ker(f) =
0 and let f(v1) = f(v2). Then f(v1−v2) = f(v1)+f(−v2) = f(v1)−f(v2) = 0.
Thus, v1 − v2 ∈ ker(f) = (0) and so v1 = v2. Therefore f is injective.

For any function f : V → W , if w ∈ W , recall that f−1(w) denotes the
inverse image (or preimage) of w in V . That is, f−1(w) is the set of elements
x ∈ V such that f(x) = w.

Proposition 2.5. Let f : V → W be a linear transformation and let f(v) =
w where v ∈ V and w ∈ W . Then f−1(w) = v + ker(f).

Proof. Let y ∈ ker(f). Then f(v + y) = f(v) + f(y) = f(v) = w. Thus,
v + y ∈ f−1(w), and so v + ker(f) ⊆ f−1(w).

Now let u ∈ f−1(w). Then f(u) = w = f(v). This gives f(u − v) =
f(u) − f(v) = 0, so u − v ∈ ker(f). Then u = v + (u − v) ∈ v + ker(f), so
f−1(w) ⊆ v + ker(f).
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Proposition 2.6. Let f be as above and assume that dimV is finite. Then

dimV = dim(ker(f)) + dim(im(f)).

Proof. Let {v1, . . . , vn} be a basis of V . Then {f(v1), . . . , f(vn)} spans im(f).
(See Exercise 3(a).) It follows from Corollary 1.10(3) that im(f) has a finite
basis. Since ker(f) is a subspace of V , Exercise 13 of Chapter 1 implies that
ker(f) has a finite basis.

Let {w1, . . . , wm} be a basis of im(f) and let {u1 . . . , ul} be a basis of
ker(f). Choose yi ∈ V , 1 ≤ i ≤ m, such that f(yi) = wi. We will show that
{u1, . . . , ul, y1, . . . , ym} is a basis of V . This will show that dimV = l+m =
dim(ker(f)) + dim(im(f)).

Let v ∈ V and let f(v) =
∑m

j=1 cjwj where each cj ∈ k. Then v −∑m
j=1 cjyj ∈ ker(f) because

f(v −
m∑
j=1

cjyj) = f(v)− f(
m∑
j=1

cjyj)

= f(v)−
m∑
j=1

cjf(yj) = f(v)−
m∑
j=1

cjwj = 0.

Thus, v −
∑m

j=1 cjyj =
∑l

i=1 aiui where each ai ∈ k, and so v =
∑l

i=1 aiui +∑m
j=1 cjyj. Therefore V is spanned by {u1, . . . , ul, y1, . . . , ym}.
To show linear independence, suppose that

∑l
i=1 aiui +

∑m
j=1 cjyj = 0.

Since ui ∈ ker(f), we have

0W = f(0V ) = f(
l∑

i=1

aiui +
m∑
j=1

cjyj) =
l∑

i=1

aif(ui) +
m∑
j=1

cjf(yj)

= 0V +
m∑
j=1

cjf(yj) =
m∑
j=1

cjwj.

Since {w1, . . . , wm} is a basis of im(f), we see that cj = 0, 1 ≤ j ≤ m. We

now have that
∑l

i=1 aiui = 0. Then ai = 0, 1 ≤ i ≤ l because {u1 . . . , ul} is
a basis of ker(f). Therefore, {u1, . . . , ul, y1, . . . , ym} is a linearly independent
set and forms a basis of V .

Definition 2.7. A linear transformation f : V → W is an isomorphism if
f is injective and surjective. We say that V is isomorphic to W , written
V ∼= W , if there exists an isomorphism f : V → W .
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Proposition 2.8. Let dimV = n, n ≥ 1, and let β = {v1, . . . , vn} be a basis
of V . Then there exists an isomorphism φβ : V → k(n), where k(n) is defined
in Example 1 in Chapter 1.

Proof. Define the function φβ : V → k(n) by φβ(v) = (a1, . . . , an), where
v =

∑n
i=1 aivi. Then φβ is well defined by Proposition 1.8.

To show that φβ is a linear transformation, let v =
∑n

i=1 aivi and w =∑n
i=1 bivi. Since v + w =

∑n
i=1(ai + bi)vi, we have

φβ(v + w) = (a1 + b1, . . . , an + bn) = (a1, . . . , an) + (b1, . . . , bn)

= φβ(v) + φβ(w).

If c ∈ k, then cv =
∑n

i=1 caivi and hence

φβ(cv) = (ca1, . . . , can) = c(a1, . . . , an) = cφβ(v).

If v ∈ ker(φβ), then φβ(v) = (0, . . . , 0). Then v =
∑n

i=1 0vi = 0 and
therefore φβ is injective by Proposition 2.4(3). If (a1, . . . , an) ∈ k(n) is given,
then for v =

∑n
i=1 aivi we have φβ(v) = (a1, . . . , an). Thus φβ is surjective

and therefore, φβ is an isomorphism.

The isomorphism φβ constructed in Proposition 2.8 depends on the choice
of basis β of V . This observation will be used in Chapter 3.

Proposition 2.9. Let f : V → W be a linear transformation and assume
that dimV = dimW is finite. Then the following statements are equivalent.

1. f is an isomorphism.

2. f is injective.

3. f is surjective.

Proof. We have dimV = dim(ker(f))+dim(im(f)) by Proposition 2.6. Thus,
f is injective ⇐⇒ ker(f) = (0) ⇐⇒ dim(ker(f)) = 0 ⇐⇒ dim(im(f)) =
dimV = dimW ⇐⇒ im(f) = W ⇐⇒ f is surjective. (See Exercise 13.)
Thus (2),(3) are equivalent. If (1) is true, then both (2) and (3) are true by
the definition of isomorphism. If either (2) or (3) is true then both are true,
and then (1) is true. This completes the proof.

Proposition 2.9 fails to hold if dimV is not finite. For example, consider
Example 5 above. Using the notation of that example, it is easy to check that
f is surjective, but f is not injective. Also, g is injective, but not surjective.
(See Exercise 19.)
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2.2 The vector space of linear transforma-

tions f : V → W

Notation. Let L(V,W ) be the set of linear transformations from V to W .
We will define addition and scalar multiplication in L(V,W ) so as to make

L(V,W ) a vector space over k with respect to these operations.
Let f, g ∈ L(V,W ). Define f+g to be the function f+g : V → W , where

(f + g)(v) = f(v) + g(v), v ∈ V . For a ∈ k, define af to be the function
af : V → W , where (af)(v) = af(v).

Proposition 2.10. L(V,W ) is a vector space with respect to the operations
defined above.

Proof. Let f, g ∈ L(V,W ), and let v, w ∈ V , a, b ∈ k. Then

(f + g)(v + w) = f(v + w) + g(v + w) = f(v) + f(w) + g(v) + g(w)

= f(v) + g(v) + f(w) + g(w) = (f + g)(v) + (f + g)(w),

and

(f + g)(av) = f(av) + g(av) = af(v) + ag(v) = a(f(v) + g(v))

= a(f + g)(v).

Therefore, f + g ∈ L(V,W ).
As for af , we have

(af)(v + w) = af(v + w) = a(f(v) + f(w)) = af(v) + af(w)

= (af)(v) + (af)(w),

and
(af)(bv) = af(bv) = abf(v) = baf(v) = b(af)(v).

Therefore, af ∈ L(V,W ).
We have now verified axioms (1) and (6) in the definition of a vector space.

The 0 element of L(V,W ) is the zero transformation f where f(v) = 0 for
all v ∈ V . If f ∈ L(V,W ), then −f is the element (−1)f . Now it is easy to
verify that L(V,W ) satisfies the ten axioms of a vector space over k. (See
Exercise 8.)

If g : U → V and f : V → W , then fg (or f ◦ g) denotes the composite
function fg : U → W .
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Proposition 2.11. Let U, V,W be vector spaces over k. Let g ∈ L(U, V )
and let f ∈ L(V,W ). Then the composite function fg ∈ L(U,W ). (If u ∈ U ,
(fg)(u) is defined to be f(g(u)).)

Proof. Let u1, u2, u ∈ U and let a ∈ k. Then

(fg)(u1 + u2) = f(g(u1 + u2)) = f(g(u1) + g(u2))

= f(g(u1)) + f(g(u2)) = (fg)(u1) + (fg)(u2),

and (fg)(au) = f(g(au)) = f(ag(u)) = af(g(u)) = a(fg)(u).

Proposition 2.12. Let U, V,W, Y be vector spaces over k. Let f, f1, f2 ∈
L(V,W ), let g, g1, g2 ∈ L(U, V ), let h ∈ L(W,Y ), and let a ∈ k. Then the
following properties hold.

1. (f1 + f2)g = f1g + f2g

2. f(g1 + g2) = fg1 + fg2

3. a(fg) = (af)g = f(ag)

4. (hf)(g) = (h)(fg)

Proof. See Exercise 11.

Suppose now that U = V = W = Y . Then the composition of linear
transformations in L(V, V ) acts like a type of multiplication in L(V, V ). The
identity linear transformation 1V has the property that 1V f = f1V = f for
all f ∈ L(V, V ). The properties in Proposition 2.12 let us regard L(V, V ) as
an associative algebra. That is, L(V, V ) is not only a vector space but also
a ring whose multiplication is compatible with scalar multiplication.

Let f ∈ L(V,W ) and assume that f is bijective. Then the inverse function
f−1 : W → V is defined by f−1(w) = v ⇐⇒ f(v) = w. The function f−1 is
also bijective.

Proposition 2.13. If f ∈ L(V,W ) and f is bijective, then f−1 ∈ L(W,V ).
Thus, if f is an isomorphism, then f−1 is an isomorphism.

Proof. Let w1, w2 ∈ W , and let f−1(w1) = v1 and f−1(w2) = v2. Then
f(v1) = w1 and f(v2) = w2. Since f(v1 + v2) = f(v1) + f(v2) = w1 + w2, it
follows that f−1(w1 + w2) = v1 + v2 = f−1(w1) + f−1(w2).

If a ∈ k, then f(av1) = af(v1) = aw1. Thus, f−1(aw1) = av1 = af−1(w1).
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2.3 Quotient Spaces

Let V be a vector space over a field k and let W be a subspace of V . There
is an important vector space formed from V and W called the quotient space
V mod W , written V/W .

We begin the construction by defining the following equivalence relation
on V . Let v, w ∈ V . We say that v ≡ w mod W if v − w ∈ W . Then the
following three properties are easily verified.

1. v ≡ v mod W for all v ∈ V . (reflexive)

2. If v ≡ w mod W , then w ≡ v mod W . (symmetric)

3. If v ≡ w mod W and w ≡ y mod W , then v ≡ y mod W . (transitive)

To see that the transitive property holds, observe that if v ≡ w mod W
and w ≡ y mod W , then v − w ∈ W and w − y ∈ W . Then v − y =
(v − w) + (w − y) ∈ W , and so v ≡ y mod W .

These three properties show that ≡ modW is an equivalence relation.
Recall that v+W denotes the set {v +w|w ∈ W}. Such a set is called a

coset of W in V (or more precisely, a left coset of W in V ).

Lemma 2.14. Let v ∈ V . Then {y ∈ V |y ≡ v mod W} = v + W . That is,
the equivalence classes of ≡ modW are the cosets of W in V .

Proof. ⊆: If y ≡ v mod W , then y− v = w ∈ W and so y = v +w ∈ v +W .
⊇: Let y = v + w ∈ v + W , where w ∈ W . Then y ≡ v mod W because

y − v = w ∈ W .

Lemma 2.15. Let v, y ∈ V . The following four statements are equivalent.

1. v ≡ y mod W .

2. v − y ∈ W .

3. v +W = y +W .

4. (v +W ) ∩ (y +W ) 6= ∅.

In particular, two cosets of W are either equal or disjoint.
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Proof. The equivalence of statements 1 and 2 comes from the definition of
≡ modW .

2 ⇒ 3: If v − y ∈ W , then v = y + w where w ∈ W . Then v + W =
(y + w) +W ⊆ y +W . Similarly, y +W ⊆ v +W because y = v − w. Thus
v +W = y +W .

3 ⇒ 4: This is obvious.
4 ⇒ 2: Let z ∈ (v + W ) ∩ (y + W ). Then z = v + w1 and z = y + w2

where w1, w2 ∈ W . Then v − y = w2 − w1 ∈ W .
The equivalence of statements 3 and 4 implies that two cosets of W are

either equal or disjoint.

The equivalence classes of ≡ modW partition V into disjoint sets. Thus,
the cosets of W in V partition V into disjoint sets.

Let V/W denote the set of equivalence classes of ≡ modW (or the set of
cosets of W in V ). The set V/W can be given the structure of a vector space
over k. We must define addition and scalar multiplication and then check
that the ten axioms of a vector space hold.
Addition: (v +W ) + (y +W ) = (v + y) +W , for all v, y ∈ V .
Scalar multiplication: a(v +W ) = (av) +W , for all a ∈ k, v ∈ V .

It is necessary to check that these definitions are well defined. That
is, we must show that the two operations do not depend on the choice of
v or y to represent the equivalence class. Thus, it must be shown that if
v1 +W = v2 +W and y1 +W = y2 +W , then (v1 + y1) +W = (v2 + y2) +W .
Similarly, it must be shown that (av1) +W = (av2) +W . (See Exercise 13.)

Proposition 2.16. The set V/W under the two operations defined above is
a vector space over k.

Proof. The zero element 0V/W of V/W is 0 +W and −(v+W ) = (−v) +W .
Now it is straightforward to check the ten axioms of a vector space. Note
that checking the axioms in V/W involves using the corresponding axioms
in V . (See Exercise 13.)

Proposition 2.17. The function π : V → V/W defined by π(v) = v +W is
linear transformation with ker(π) = W and im(π) = V/W .

Proof. π(v + y) = (v + y) +W = (v +W ) + (y +W ) = π(v) + π(y).
π(av) = (av) +W = a(v +W ) = aπ(v), a ∈ k.
Thus π is a linear transformation. The image of π is clearly all of V/W since
v + W = π(v). For the kernel of π, v ∈ ker(π) ⇐⇒ v + W = 0 + W ⇐⇒
v ∈ W .
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Corollary 2.18. Assume that dimV is finite and let W be a subspace of V .
Then dim(V/W ) = dimV − dimW .

Proof. Using the notation from Proposition 2.17, we have dim(V/W ) =
dim(im(π)) = dimV −dim(ker(π)) = dimV −dimW , by Proposition 2.6.

Theorem 2.19 (First Isomorphism Theorem). Let f : V → Z be a linear
transformation of vector spaces over k. Then V/ ker(f) ∼= im(f). There
exists a unique isomorphism f : V/ ker(f) → im(f) such that f ◦ π = f ,
where π : V → V/ ker(f).

Proof. Let Y = im(f) and let W = ker(f). Define f : V/W → Y by
f(v +W ) = f(v). We have to check five properties of f .

f is well defined: Suppose v + W = y + W . Then v − y ∈ W = ker(f) and
so f(v) = f(y) because f(v) − f(y) = f(v) + f(−y) = f(v − y) = 0. Now,
f(v +W ) = f(v) = f(y) = f(y +W ).

f is a linear transformation: f((v + W ) + (y + W )) = f((v + y) + W ) =
f(v + y) = f(v) + f(y) = f(v +W ) + f(y +W ).
f(a(v +W )) = f(av +W ) = f(av) = af(v) = af(v +W ).

f is injective: Let f(v + W ) = 0. Then f(v) = 0 and so v ∈ ker(f) = W .
Therefore v +W = 0 +W and therefore ker(f) = (0 +W ).

f is surjective: Let y ∈ Y . Then y = f(v) for some v ∈ V and f(v + W ) =
f(v) = y.

This shows that f : V/ ker(f)→ im(f) is an isomorphism.

f ◦ π = f : This is obvious.
Finally, f is unique since f(v +W ) must equal f(v).

Theorem 2.20 (Second Isomorphism Theorem). Let W,Y be subspaces of
V . Then (W + Y )/W ∼= Y/(W ∩ Y ).

Proof. Let f : Y → W + Y be the linear transformation defined by f(y) = y
for all y ∈ Y , and let g : W +Y → (W +Y )/W be the linear transformation
defined by g(w + y) = (w + y) + W for all w ∈ W and y ∈ Y . Then
g ◦ f : Y → (W + Y )/W is a linear transformation. We now compute
ker(g ◦ f) and im(g ◦ f). We have

y ∈ ker(g ◦ f) ⇐⇒ y ∈ Y and y +W = 0 +W ⇐⇒ y ∈ W ∩ Y.
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Thus ker(g ◦ f) = W ∩ Y . Next we have that g ◦ f is surjective because if
(w+y)+W ∈ (W+Y )/W , then (g◦f)(y) = g(y) = y+W = (w+y)+W . Thus
im(g ◦ f) = (W + Y )/W . Then the First Isomorphism Theorem (Theorem
2.19) implies that W/ ker(g ◦ f) ∼= im(g ◦ f). Therefore, W/(W ∩ Y ) ∼=
(W + Y )/W .

2.4 Applications

Direct Sums.
We will now show that the internal direct sum defined in Definition 1.17

and the external direct sum defined in Exercise 7 of Chapter 1 are essentially
the same.

Let V = V1
⊕
· · ·
⊕

Vn be an external direct sum of the vector spaces
V1, . . . , Vn, and let

V
′

i = {(0, . . . , 0, vi, 0, . . . , 0)|vi ∈ Vi}.

Then V
′
i is a subspace of V and it is easy to check that V

′
i is isomorphic to

Vi. It follows from Definition 1.17 and Proposition 1.16 that V equals the
internal direct sum V

′
1

⊕
· · ·
⊕

V
′
n.

Now suppose that V is the internal direct sum of subspaces W1, . . . ,Wm

as in Definition 1.17. Let V
′

equal the external direct sum W1

⊕
· · ·
⊕

Wm.
Consider the function f : V → V

′
defined as follows. If v ∈ V , Proposition

1.16 implies there is a unique expression v = w1 + · · ·+wm where each wi ∈
Wi. Set f(v) = (w1, . . . , wm). It is easy to check that f is a bijective linear
transformation and so f is an isomorphism. We will no longer distinguish
between the internal and external direct sum.

Exact Sequences.

Definition 2.21. Let U
f→ V

g→ W be a sequence of linear transformations.

(This means f ∈ L(U, V ) and g ∈ L(V,W ).) We say U
f→ V

g→ W is an
exact sequence at V if im(f) = ker(g). A sequence

V1
f1→ V2

f2→ · · · fn−2→ Vn−1
fn−1→ Vn

is an exact sequence if im(fi−1) = ker(fi), 2 ≤ i ≤ n − 1, that is, if the
sequence is exact at V2, . . . , Vn−1.
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When writing sequences of linear transformations, it is standard to write
0 for the vector space (0). Note that the linear transformations 0 → V and
V → 0 are uniquely defined and hence we will never give a name to these
functions. The following lemma gives some of the basic results.

Lemma 2.22.

1. The sequence 0→ V → 0 is exact if and only if V = (0).

2. The sequence 0→ U
f→ V is exact if and only if f is injective.

3. The sequence V
g→ W → 0 is exact if and only if g is surjective.

4. The sequence 0→ V
f→ W → 0 is exact if and only if f is an isomor-

phism.

5. The sequence 0 → U
f→ V

g→ W → 0 is exact if and only if f is
injective, g is surjective, and im(f) = ker(g).

Proof. The proofs are immediate from the definitions upon noting that

im(0→ V ) = 0, and ker(V → 0) = V.

Proposition 2.23. Assume that 0→ V1
f1→ V2

f2→ · · · fn−1→ Vn→0 is an exact
sequence of finite dimensional vector spaces, n ≥ 1. Then

n∑
i=1

(−1)i dimVi = 0.

Proof. We prove the result by induction on n. If n = 1, then V1 = (0)
and so dimV1 = 0. If n = 2, then V1 ∼= V2 by Lemma 2.22(4) and so
dimV1 = dimV2 (see Exercise 7). Now assume that n = 3. In this case,

0→ V1
f1→ V2

f2→ V3 → 0 is an exact sequence. Then

dimV2 = dim(ker(f2)) + dim(im(f2)) = dim(im(f1)) + dimV3

= dimV1 + dimV3.

(Note that ker(f1) = (0) since f1 is injective and so dim(ker(f1)) = 0. There-
fore dimV1 = dim(im(f1)) by Proposition 2.6.) Thus, − dimV1 + dimV2 −
dimV3 = 0 and the result holds for n = 3.
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For the general case, suppose that n ≥ 4 and that we have proved the
result for smaller values of n. Then the given exact sequence is equivalent to
the following two exact sequences because im(fn−2) = ker(fn−1).

0→ V1
f1→ · · · fn−3→ Vn−2

fn−2→ im(fn−2)→ 0,

0→ im(fn−2)
i→ Vn−1

fn−1→ Vn → 0.

By induction, we have
∑n−2

i=1 (−1)i dimVi + (−1)n−1 dim(im(fn−2)) = 0 and
(−1)n−2 dim(im(fn−2))+(−1)n−1 dimVn−1+(−1)n dimVn = 0. Adding these
two equations gives us the result.

Systems of Linear Equations.
Our last application is studying systems of linear equations. This moti-

vates much of the material in Chapter 3.
Consider the following system of m linear equations in n variables with

coefficients in k.
a11x1 + a12x2 + · · ·+ a1nxn = c1

a21x1 + a22x2 + · · ·+ a2nxn = c2

...

am1x1 + am2x2 + · · ·+ amnxn = cm

Now consider the following vectors in k(m). We will write such vectors
vertically or horizontally, whichever is more convenient.

u1 =


a11
a21
...
am1

 , u2 =


a12
a22
...
am2

 , . . . , un =


a1n
a2n
...

amn


Define the function f : k(n) → k(m) by f(b1, . . . , bn) = b1u1 + · · · + bnun.

Then f is a linear transformation. Note that f(b1, . . . , bn) = (c1, . . . , cm) if
and only if (b1, . . . , bn) is a solution for (x1, . . . , xn) in the system of linear
equations above. That is, (c1, . . . , cm) ∈ im(f) if and only if the system of
linear equations above has a solution. Let us abbreviate the notation by
letting b = (b1, . . . , bn) and c = (c1, . . . , cm). Then f(b) = c means that b is
a solution of the system of linear equations.

39



Suppose we know that b is a solution of the system and so f(b) = c. Then
all solutions are given by b+ ker(f) = {b+ y|y ∈ ker(f)} by Proposition 2.5.

Thus the existence of solutions of a system of linear equations and the
characterization of all such solutions can be described in terms of a linear
transformation f and the subspaces ker(f) and im(f).

The equations n = dim(k(n)) = dim(ker(f)) + dim(im(f)) allow us to
recover many of the usual results about systems of linear equations. We
need a method to compute a basis of ker(f) and a basis of im(f) in order to
completely describe the set of solutions to a system of linear equations. This
is one of the main applications of matrix methods developed in Chapter 3.

Notes to Chapter 2. The proof of Proposition 2.10 contains a step
where we need to know that ab = ba in a field. This is an interesting point
since much of linear algebra can be developed over skew fields. (A skew field
is a ring where each nonzero element is invertible, but multiplication need
not be commutative.) One defines left and right vector spaces over a skew
field D and other related concepts. A good reference for this is the book by
E. Artin. In this setting, Proposition 2.10 does not carry over completely.

A common problem that students have is knowing when it is necessary
to show that a function is well defined. If the domain of a function consists
of equivalence classes, and if a function is defined in terms of an element of
the equivalence class, then it is necessary to show that the definition of the
function does not depend on the chosen element of the equivalence class.

Exercises

1. Give a second proof of Lemma 2.2 using the equations 0 + 0 = 0 and
−v + v = 0.

2. Verify that Examples 1-5 following Lemma 2.2 are linear transforma-
tions.

3. Let f : V → W be a linear transformation. Let v1, . . . , vn ∈ V and let
wi = f(vi), 1 ≤ i ≤ n.

(a) If {v1, . . . , vn} spans V , then {w1, . . . , wn} spans im(f). That is,
〈{w1, . . . , wn}〉 = im(f).

(b) If {v1, . . . , vn} is a linearly independent set in V and f is injective,
then {w1, . . . , wn} is a linearly independent set in W .
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(c) If {w1, . . . , wn} is a linearly independent set inW , then {v1, . . . , vn}
is a linearly independent set in V .

(d) If {w1, . . . , wn} is a linearly independent set in W and {v1, . . . , vn}
is a basis of V , then f is injective.

(e) Assume that {v1, . . . , vn} is a basis of V . Then f is an isomorphism
if and only if {w1, . . . , wn} is a basis of W .

4. Let W be a subspace of V , dimV finite. Define the codimension
of W in V , written codimkW (or codimW if k is understood from
context), by the equation codimW = dimV − dimW . More gener-
ally, we can use Corollary 2.18 as motivation to define codimW by
codimW = dim(V/W ).

(a) If W1,W2 are subspaces of V with codimW1 = codimW2 = 1, then
codim(W1 ∩W2) ≤ 2. If W1 6= W2, then codim(W1 ∩W2) = 2.

(b) Let W1,W2 be subspaces of V . If each codimWi is finite, then

codim(W1 ∩W2) ≤ codimW1 + codimW2.

We have codim(W1 ∩W2) = codimW1 + codimW2 if and only if
W1 +W2 = V .

(c) Let W1, . . . ,Wn be subspaces of V . If each codimWi is finite, then

codim(W1 ∩ · · · ∩Wn) ≤
n∑
i=1

codimWi.

5. Isomorphism is an equivalence relation on vector spaces.

6. Let f : V → W be an isomorphism of vector spaces. Let Y be a
subspace of V . Then Y ∼= f(Y ).

7. Two finitely generated vector spaces, V,W , over k are isomorphic if and
only if dimV = dimW . (One can use Proposition 2.8, and Exercise 5
for one implication, and Exercise 3 (e) for the other implication.)

8. Finish the proof of Proposition 2.10 that L(V,W ) is a vector space over
k.
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9. Let U, V,W be arbitrary sets and let f : U → V and g : V → W be
arbitrary functions.

(a) If f and g are injective, then g ◦ f is injective.

(b) If g ◦ f is injective, then f is injective, but g may not be injective.
Give such an example.

(c) If f and g are surjective, then g ◦ f is surjective.

(d) If g ◦ f is surjective, then g is surjective, but f may not be surjec-
tive. Give such an example.

10. Let V,W be vector spaces, and let f ∈ L(V,W ) and g ∈ L(W,V ).

(a) If fg = 1W , then g is injective and f is surjective. Similarly,
if gf = 1V , then f is injective and g is surjective. (This part
depends only on sets and functions and has nothing to do with
Linear Algebra.)

(b) Assume that dimV = dimW is finite. Then fg = 1W if and only
if gf = 1V .

(c) If dimV 6= dimW , give an example where gf = 1V but fg 6= 1W .

11. Prove Proposition 2.12.

12. Let V = V1
⊕
· · ·
⊕

Vn and W = W1

⊕
· · ·
⊕

Wm. Then

(a) L(V,W ) ∼=
⊕n

i=1 L(Vi,W )

(b) L(V,W ) ∼=
⊕m

j=1 L(V,Wj)

(c) L(V,W ) ∼=
⊕n

i=1

⊕m
j=1 L(Vi,Wj)

(d) If dimV = dimW = 1, then L(V,W ) ∼= k.

13. Show that the definitions of addition and scalar multiplication on V/W
are well defined. Finish the proof of Proposition 2.16 that V/W is a
vector space.

14. Let W be a subspace of V and assume dimV is finite. Let {v1, . . . , vl}
be a basis of W . Extend this basis to a basis {v1, . . . , vl, vl+1, . . . , vn}
of V . Then {vl+1 +W, . . . , vn +W} is a basis of V/W .
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15. Use the previous exercise to give a different proof of Corollary 2.18.
Now use The First Isomorphism Theorem, Exercise 7, and Corollary
2.18 to give a different proof of Proposition 2.6.

16. Show that Proposition 1.15 is a consequence of the Second Isomorphism
Theorem (Theorem 2.20), Exercise 7, and Corollary 2.18.

17. (Strong form of the First Isomorphism Theorem) Let f : V → Z be
a linear transformation of vector spaces over k. Suppose W ⊆ ker(f).
Then show there exists a unique linear transformation f : V/W →
im(f) such that f ◦ π = f , where π : V → V/W . Show f is surjective
and ker(f) ∼= ker(f)/W . Conclude that (V/W )/(ker(f)/W ) ∼= im(f).

18. (Third Isomorphism Theorem) Let V be a vector space and let W ⊆
Y ⊆ V be subspaces. Then

(V/W )/(Y/W ) ∼= V/Y.

(Hint: Consider the linear transformation f : V → V/Y and apply the
strong form of the First Isomorphism Theorem from Exercise 17.)

19. Check the assertion following Proposition 2.9 that in Example 5, the
linear transformation f is surjective, but not injective, while g is injec-
tive, but not surjective.

20. Let V be a vector space and let W ⊆ Y ⊆ V be subspaces. Assume
that dim(V/W ) is finite. Then dim(V/W ) = dim(V/Y ) + dim(Y/W ).
(Hint: We have (V/W )/(Y/W ) ∼= V/Y from Problem 18. Then apply
Corollary 2.18.)

21. Suppose that 0→ U
f→ V

g→ W → 0 is an exact sequence. Prove that
V ∼= U

⊕
W .

22. Recall k∞ from Example 5 above Chapter 1, Proposition 1.8, and recall
k[x] from Example 5 above Definition 2.3. Prove that k[x] and k∞ are
isomorphic vector spaces over k.
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Chapter 3

Matrix Representations of a
Linear Transformation

3.1 Basic Results

Let V,W be vector spaces over a field k and assume that dimV = n and
dimW = m. Let β = {v1, . . . , vn} be a basis of V and let γ = {w1, . . . , wm}
be a basis of W . Let f ∈ L(V,W ). We will construct an m× n matrix that
is associated with the linear transformation f and the two bases β and γ.

Proposition 3.1. Assume the notations above.

1. f is completely determined by {f(v1), . . . , f(vn)}.

2. If y1, . . . , yn ∈ W are chosen arbitrarily, then there exists a unique
linear transformation f ∈ L(V,W ) such that f(vi) = yi, 1 ≤ i ≤ n.

Proof. 1. Let v ∈ V . Then v =
∑n

i=1 civi . Each ci ∈ k is uniquely
determined because β is a basis of V . We have f(v) =

∑n
i=1 cif(vi),

because f is a linear transformation.

2. If f exists, then it is certainly unique by (1). As for the existence of f ,
let v ∈ V , v =

∑n
i=1 civi. Define f : V → W by f(v) =

∑n
i=1 ciyi. Note

that f is well defined because β is a basis of V and so v determines
c1, . . . , cn uniquely. Clearly f(vi) = yi. Now we show that f ∈ L(V,W ).
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Let v′ =
∑n

i=1 divi and let a ∈ k. Then

f(v + v′) = f

(
n∑
i=1

(ci + di)vi

)
=

n∑
i=1

(ci + di)yi =
n∑
i=1

ciyi +
n∑
i=1

diyi

= f(v) + f(v′),

and

f(av) = f

(
a

n∑
i=1

civi

)
=

n∑
i=1

aciyi = a

n∑
i=1

ciyi = af(v).

Definition 3.2. An ordered basis of a finite dimensional vector space V is
a basis {v1, . . . , vn} where the order of the basis vectors v1, . . . , vn is fixed.

Let β = {v1, . . . , vn} be an ordered basis of V , let γ = {w1, . . . , wm} be an
ordered basis of W , and let f ∈ L(V,W ). Assume that f(vj) =

∑m
i=1 aijwi,

1 ≤ j ≤ n. Thus, the linear transformation f gives rise to an m× n matrix
(aij)m×n whose (i, j)-entry is given by aij. Note that the jth column of this
matrix gives the expression of f(vj) in terms of the basis {w1, . . . , wm}. We
shall denote this matrix by [f ]γβ and refer to it as the matrix of f with respect
to the ordered bases β, γ. The notation shows the dependence of this matrix
on the linear transformation f and on the ordered bases β and γ. The
notation

[f ]γβ = (aij)m×n

means that f(vj) =
∑m

i=1 aijwi, 1 ≤ j ≤ n.
LetMm×n(k) denote the set of m×n matrices with entries in the field k.

Let A = (aij), B = (bij) be elements in Mm×n(k) and let c ∈ k. We define
addition in Mm×n(k) by setting A + B to be the matrix C = (cij), where
cij = aij + bij. We define scalar multiplication in Mm×n(k) by setting cA to
be the matrix C = (cij), where cij = caij.

Proposition 3.3. Under the operations defined above, the setMm×n(k) is a
vector space over k that is isomorphic to k(mn). The dimension of Mm×n(k)
is mn.

Proof. See Exercise 1.
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Proposition 3.4. Let β, γ be ordered bases of V,W , as above. The function
φ : L(V,W )→Mm×n(k), defined by φ(f) = [f ]γβ is an isomorphism of vector

spaces. In particular, L(V,W ) ∼=Mm×n(k) ∼= k(mn) and dimL(V,W ) = mn.

Proof. If φ(f) = φ(g), then f(vj) = g(vj), 1 ≤ j ≤ n. Thus f = g by
Proposition 3.1(1). Therefore φ is injective. Now let (aij) ∈ Mm×n(k) be
given. Let yj =

∑m
i=1 aijwi, 1 ≤ j ≤ n. There exists f ∈ L(V,W ) such that

f(vj) = yj, 1 ≤ j ≤ n, by Proposition 3.1(2). Then φ(f) = [f ]γβ = (aij).
Therefore φ is surjective and it follows that φ is a bijection.

Let f, g ∈ L(V,W ) and let [f ]γβ = (aij), [g]γβ = (bij). Then f(vj) =∑m
i=1 aijwi, g(vj) =

∑m
i=1 bijwi, and (cf)(vj) = cf(vj) =

∑m
i=1 caijwi. Since

(f + g)(vj) = f(vj) + g(vj) =
m∑
i=1

(aij + bij)wi,

it follows that

φ(f + g) = [f + g]γβ = (aij + bij) = (aij) + (bij) = [f ]γβ + [g]γβ = φ(f) + φ(g).

Similarly,
φ(cf) = [cf ]γβ = (caij) = c(aij) = c[f ]γβ = cφ(f).

Thus φ is a linear transformation and so φ is an isomorphism.
The rest follows easily from Proposition 3.3.

Note that the isomorphism φ depends on the choice of basis for V and
W , although the notation doesn’t reflect this.

Another proof that dimL(V,W ) = mn can be deduced from the result
in Exercise 12 of Chapter 2 and the special case that dimL(V,W ) = 1 when
dimV = dimW = 1.

We have already defined addition and scalar multiplication of matrices
in Mm×n(k). Next we define multiplication of matrices. We will see in
Proposition 3.5 below that the product of two matrices corresponds to the
matrix of a composition of two linear transformations.

Let A = (aij) be an m × n matrix and let B = (bij) be an n × p matrix
with entries in k. The product AB is defined to be the m×p matrix C = (cij)
whose (i, j)-entry is given by cij =

∑n
k=1 aikbkj. A way to think of cij is to

note that cij is the usual “dot product” of the ith row of A with the jth

column of B. The following notation summarizes this.

Am×nBn×p = Cm×p, where cij =
n∑
k=1

aikbkj.
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An important observation about matrix multiplication occurs in the spe-
cial case that p = 1. In that case B is a “column matrix”. Suppose the
entries of B are (b1, . . . , bn) Then a short calculation shows that AB =∑n

j=1 bj(j
th column of A).

Note that the definition of matrix multiplication puts restrictions on the
sizes of the matrices. An easy way to remember this restriction is to remem-
ber (m× n)(n× p) = (m× p).

Proposition 3.5. Let U, V,W be finite dimensional vector spaces over k.
Let α = {u1, . . . , up}, β = {v1, . . . , vn}, γ = {w1, . . . , wm} be ordered bases
of U, V,W , respectively. Let g ∈ L(U, V ) and f ∈ L(V,W ) (and so fg ∈
L(U,W ) by Proposition 2.11). Then [fg]γα = [f ]γβ[g]βα.

Proof. Let [f ]γβ = (aij)m×n, [g]βα = (bij)n×p, and [fg]γα = (cij)m×p. Then

(fg)(uj) = f(g(uj)) = f

(
n∑
k=1

bkjvk

)
=

n∑
k=1

bkjf(vk)

=
n∑
k=1

bkj

(
m∑
i=1

aikwi

)
=

m∑
i=1

(
n∑
k=1

aikbkj

)
wi.

This shows that cij =
∑n

k=1 aikbkj, which is precisely the (i, j)-entry of
[f ]γβ[g]βα.

Proposition 3.6. Let A ∈ Mm×n(k), B ∈ Mn×p(k), and C ∈ Mp×q(k).
Then (AB)C = A(BC). In other words, multiplication of matrices satisfies
the associative law for multiplication, as long as the matrices have compatible
sizes.

Proof. See Exercise 2.

Exercise 19 gives some properties of matrices that are analogous to Propo-
sition 2.12.

Let In denote the n× n matrix (aij) where aij = 0 if i 6= j and aij = 1 if
i = j. For any A ∈ Mm×n(k), it is easy to check that ImA = AIn = A. If
m = n, then InA = AIn = A For this reason, In is called the n× n identity
matrix.

Definition 3.7. A matrix A ∈Mn×n(k) is invertible if there exists a matrix
B ∈ Mn×n(k) such that AB = In and BA = In The matrix B is called the
inverse of A and we write B = A−1.
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Proposition 3.8.

1. The inverse of an invertible matrix inMn×n(k) is uniquely determined
and thus the notation A−1 is well defined.

2. Let A,B be invertible matrices in Mn×n(k). Then (AB)−1 = B−1A−1.

3. Let A1, . . . , Al be invertible matrices inMn×n(k). Then (A1 · · ·Al)−1 =
A−1l · · ·A

−1
1 . In particular, the product of invertible matrices is invert-

ible.

4. (A−1)−1 = A.

Proof. Suppose AB = BA = In and AC = CA = In. Then B = BIn =
B(AC) = (BA)C = InC = C. This proves (1). The other statements are
easy to check.

Proposition 3.9. Let β be an ordered basis of V and let γ be an ordered
basis of W . Assume that dimV = dimW = n. Suppose that f : V → W is
an isomorphism and let f−1 : W → V denote the inverse isomorphism. (See
Proposition 2.13.) Then ([f ]γβ)−1 = [f−1]βγ .

Proof. [f ]γβ[f−1]βγ = [ff−1]γγ = [1W ]γγ = In. Similarly, [f−1]βγ [f ]γβ = [f−1f ]ββ =

[1V ]ββ = In. The result follows from this and the definition of the inverse of a
matrix.

If U = V = W and α = β = γ in Proposition 3.5, then the result in
Proposition 3.5 implies that the isomorphism in Proposition 3.4 is also a
ring isomorphism. (See the remark preceding Proposition 2.13.) Next we
investigate how different choices of bases of V,W in Proposition 3.4 affect
the matrix [f ]γβ.

Proposition 3.10. Let β, β′ be ordered bases of V and let γ, γ′ be ordered
bases of W . Let f ∈ L(V,W ), and let 1V : V → V and 1W : W → W be the

identity maps on V,W , respectively. Then [f ]γ
′

β′ = [1W ]γ
′
γ [f ]γβ[1V ]ββ′.

Proof. Since f = 1W ◦f ◦1V , the result follows immediately from Proposition
3.5.
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An important special case of Proposition 3.10 occurs when V = W ,
dimV = n, β = γ, and β′ = γ′. Then [f ]β

′

β′ = [1V ]β
′

β [f ]ββ[1V ]ββ′ . Let A = [1V ]ββ′

andB = [1V ]β
′

β . Then AB = [1V ]ββ′ [1V ]β
′

β = [1V ]ββ = In and similarlyBA = In.
Thus B = A−1.

We can summarize this with more compact notation. Let M = [f ]ββ and

let M ′ = [f ]β
′

β′ . Then M ′ = A−1MA.
In Proposition 2.7 we proved that if V has dimension n, then V is iso-

morphic to k(n). We will now extend this idea to help with computations
involving linear transformations.

Let V be a vector space over k with basis β = {v1, . . . , vn} and let W be
a vector space over k with basis γ = {w1, . . . , wm}. Let εn be the standard
basis of k(n). That is, εn = {e1, . . . , en} where ei is the vector in k(n) with
coordinates equal to zero everywhere except in the ith position where the
coordinate equals 1. Similarly, let εm be the standard basis of k(m). Let
φβ : V → k(n) be the isomorphism (as in Proposition 2.7) that takes v =∑n

i=1 bivi to (b1, . . . bn). We will write [v]β for φβ(v). Thus [v]β denotes the
coordinates of v with respect to the basis β. Similarly, let φγ : W → k(m) be
the isomorphism that takes w to [w]γ.

Let A = (aij)m×n ∈ Mm×n(k). We let LA : k(n) → k(m) denote the
function that takes a vector b (considered as an n× 1 column matrix) to the
vector Ab ∈ k(m), where Ab is given by usual matrix multiplication. It is
straightforward to check that LA ∈ L(k(n), k(m)).

Lemma 3.11. Using the notation from above, we have [LA]εmεn = A, [φβ]εnβ =
In, and [φγ]

εm
γ = Im.

Proof. LA(ej) = Aej =
∑m

i=1 aijei, since Aej is the jth column of A. The
result for LA now follows from the definition of [LA]εmεn .

The other two results follow easily upon noting that φβ(vj) = ej ∈ k(n)
and φγ(vj) = ej ∈ k(m).

Proposition 3.12. Let f ∈ L(V,W ) and let A = [f ]γβ. Then the following
diagram commutes. That is, φγ ◦ f = LA ◦ φβ. In particular, [f(v)]γ =
[f ]γβ[v]β.

V
f−−−→ W

φβ

y yφγ
k(n)

LA−−−→ k(m)
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Proof. The second statement follows from the first because

[f(v)]γ = (φγ ◦ f)(v) = (LA ◦ φβ)(v) = A[v]β = [f ]γβ[v]β.

For the first statement, we have

[φγ ◦ f ]εmβ = [φγ]
εm
γ [f ]γβ = ImA = A = AIn = [LA]εmεn [φβ]εnβ = [LA ◦ φβ]εmβ .

Therefore, φγ ◦ f = LA ◦ φβ by Proposition 3.4.

Here is another proof of the second statement of Proposition 3.12 that is
a more concrete calculation.

Let v ∈ V , v =
∑n

j=1 bjvj. Then f(vj) =
∑m

i=1 aijwi, where A = (aij) =
[f ]γβ. We have

f(v) = f(
n∑
j=1

bjvj) =
n∑
j=1

bjf(vj) =
n∑
j=1

bj(
m∑
i=1

aijwi)

=
m∑
i=1

(
n∑
j=1

aijbj)wi.

Therefore,

[f(v)]γ =


∑n

j=1 a1jbj
...∑n

j=1 amjbj

 = A

 b1
...
bn

 = A[v]β = [f ]γβ[v]β.

Proposition 3.13. Let β = {v1, . . . , vn} be an ordered basis of a finite di-
mensional vector space V . If f ∈ L(V, V ) is an isomorphism, define τ(f)
to be the ordered basis f(β), where f(β) = {f(v1), . . . , f(vn)}. Then τ is a
bijection between the set of isomorphisms f ∈ L(V, V ) and the set of ordered
bases of V .

Proof. See Exercise 4.

3.2 The Transpose of a Matrix

Definition 3.14. Let A ∈Mm×n(k). The transpose of A, written At, is the
n × m matrix in Mn×m(k) whose (i, j)-entry is the (j, i)-entry of A. That
is, if A = (aij)m×n and if At = (bij)n×m, then bij = aji.
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It follows that the ith row of A is the ith column of At, 1 ≤ i ≤ m, and
the jth column of A is the jth row of At, 1 ≤ j ≤ n.

Proposition 3.15. 1. Let A,B ∈ Mm×n(k) and let a ∈ k. Then (A +
B)t = At +Bt, (aA)t = aAt, and (At)t = A.

2. The map g : Mm×n(k) → Mn×m(k) given by A 7→ At is an isomor-
phism of vector spaces.

3. Let A ∈Mm×n(k), B ∈Mn×p(k). Then (AB)t = BtAt.

Proof. For (1) and (2), see Exercise 7.
(3) Let C = AB = (cij)m×p. Let At = (a′ij)n×m and Bt = (b′ij)p×n. Then

(i, j)-entry of BtAt =
n∑
l=1

b′ila
′
lj =

n∑
l=1

bliajl =
n∑
l=1

ajlbli = cji

= (j, i)-entry of AB

= (i, j)-entry of (AB)t .

Therefore, (AB)t = BtAt.

Proposition 3.16. Let A ∈Mn×n(k) and assume that A is invertible. Then
At is invertible and (At)−1 = (A−1)t.

Proof. Let B = A−1. Then AtBt = (BA)t = I tn = In and BtAt = (AB)t =
I tn = In. Therefore the inverse of At is Bt = (A−1)t.

A more conceptual description of the transpose of a matrix and the results
in Propositions 3.15 and 3.16 will be given in Chapter 4.

3.3 The Row Space, Column Space, and Null

Space of a Matrix

Definition 3.17. Let A ∈Mm×n(k).

1. The row space of A is the subspace of k(n) spanned by the rows of A.

2. The column space of A is the subspace of k(m) spanned by the columns
of A.
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3. The null space of A is the set of vectors b ∈ k(n) such that Ab = 0.

Let A ∈Mm×n(k) and let

R(A) = row space of A,

C(A) = column space of A,

N (A) = null space of A.

Let LA : k(n) → k(m) be the linear transformation that takes b ∈ k(n) to
Ab ∈ k(m).

The definition of matrix multiplication shows that im(LA) = C(A) and
ker(LA) = N (A). Therefore N (A) is a subspace of k(n). Also, R(A) =
C(At). The subspace N (At) is called the left null space of A. This is because
if c ∈ k(m) is considered as a 1 × m matrix, then cA = 0 ⇐⇒ (cA)t =
0 ⇐⇒ Atct = 0. The dimension formula from Proposition 2.6 implies that
n = dim(ker(LA)) + dim(im(LA)) = dim(N (A)) + dim(C(A)).

Proposition 3.18. Let A ∈ Mm×n(k), D ∈ Mp×m(k), and E ∈ Mn×p(k).
Then

1. R(DA) ⊆ R(A).

2. C(AE) ⊆ C(A).

3. N (DA) ⊇ N (A).

If p = m and D is invertible, then equality occurs in (1) and (3). If p = n
and E is invertible, then equality occurs in (2).

Proof. Let D = (dij). The ith row of DA is given by

di1(first row of A) + · · ·+ din(nth row of A),

which is contained in the row space of A. This shows (1).
Let E = (eij). The jth column of AE is given by

e1j(first column of A) + · · ·+ enj(n
th column of A),

which is contained in the column space of A. This shows (2).
If Ax = 0, then DAx = 0 and thus (3) holds.
If p = m and D is invertible, then apply (1) to A = D−1(DA). If p = n

and E is invertible, then apply (2) to A = (AE)E−1. If D is invertible, then
DAx = 0 implies D−1DAx = D−10 = 0, so Ax = 0.
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Proposition 3.19. Let A ∈Mm×n(k), D ∈Mm×m(k), and E ∈Mn×n(k).
Assume that both D and E are invertible. Then

1. C(DA) = LD(C(A)) ∼= C(A),

2. C(AE) = C(A),

3. N (DA) = N (A),

4. N (AE) = LE−1N (A) ∼= N (A),

5. R(DA) = R(A),

6. R(AE) = LEtR(A) ∼= R(A).

Proof. Statements (2), (3), and (5) were proved in Proposition 3.18. We give
alternative proofs below.

Since E is an invertible matrix, it follows that Et and E−1 are also in-
vertible matrices. Since D is also invertible, it follows that LD, LE, LEt , and
LE−1 are isomorphisms. (See Exercise 5.) Since LD is an isomorphism, we
have

C(DA) = im(LDA) = im(LD ◦ LA) = LD(im(LA)) = LD(C(A)) ∼= C(A).

Since LE is surjective, we have

C(AE) = im(LAE) = im(LA ◦ LE) = im(LA) = C(A).

Since LD is injective, we have

N (DA) = ker(LDA) = ker(LD ◦ LA) = ker(LA) = N (A).

We have

b ∈ N (AE) ⇐⇒ AEb = 0 ⇐⇒ Eb ∈ N (A) ⇐⇒ b ∈ LE−1N (A).

Thus N (AE) = LE−1N (A) ∼= N (A), because LE−1 is an isomorphism.
From (1) and (2), we now have

R(DA) = C((DA)t) = C(AtDt) = C(At) = R(A),

and
R(AE) = C((AE)t) = C(EtAt) ∼= C(At) = R(A).
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3.4 Elementary Matrices

We will define elementary matrices in Mm×n(k) and study their properties.
Let eij denote the matrix inMm×n(k) that has a 1 in the (i, j)-entry and

zeros in all other entries. The collection of these matrices forms a basis of
Mm×n(k) called the standard basis ofMm×n. Multiplication of these simple
matrices satisfies the formula

eijekl = δ(j, k)eil,

where δ(j, k) is defined by δ(j, k) =

{
0 if j 6= k

1 if j = k.

When m = n, there are three types of matrices that we single out. They
are known as the elementary matrices.

Definition 3.20.

1. Let Eij(a) be the matrix In + aeij, where a ∈ k and i 6= j.

2. Let Di(a) be the matrix In + (a− 1)eii, where a ∈ k, a 6= 0.

3. Let Pij, i 6= j, be the matrix In − eii − ejj + eij + eji.

Note that Eij(0) is the identity matrix In, and that Di(a) is the matrix
obtained from In by replacing the (i, i)-entry of In with a. Also note that
Pij can be obtained from the identity matrix by either interchanging the ith

and jth rows, or by interchanging the ith and jth columns.
The notation we are using for the elementary matrices, which is quite

standard, does not indicate that the matrices under consideration are n× n
matrices. We will always assume that the elementary matrices under consid-
eration always have the appropriate size in our computations.

We now relate the basic row and column operations of matrices to the
elementary matrices.

Proposition 3.21. Let A ∈ Mm×n(k). Let A1 = Eij(a)A, A2 = Di(a)A,
A3 = PijA, where the elementary matrices lie in Mm×m(k). Then

A1 is obtained from A by adding a times row j of A to row i of A.
A2 is obtained from A by multiplying row i of A by a.
A3 is obtained from A by interchanging rows i and j of A.
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Proposition 3.22. Let A ∈ Mm×n(k). Let A4 = AEij(a), A5 = ADi(a),
A6 = APij, where the elementary matrices lie in Mn×n(k). Then

A4 is obtained from A by adding a times column i of A to column j of A.
A5 is obtained from A by multiplying column i of A by a.
A6 is obtained from A by interchanging columns i and j of A.

Exercise 8 asks for a proof of the last two propositions. The operations
described in Propositions 3.21, 3.22 are called the elementary row and column
operations.

Proposition 3.23.

1. Eij(a)Eij(b) = Eij(a + b) for all a, b ∈ k. Therefore, Eij(a)−1 =
Eij(−a).

2. Di(a)Di(b) = Di(ab) for all nonzero a, b ∈ k. Therefore, Di(a)−1 =
Di(a

−1), for nonzero a ∈ k.

3. P−1ij = Pij.

Proof. We will prove these results by applying Proposition 3.21. We have
Eij(a)Eij(b)I = Eij(a + b)I because each expression adds a + b times row j
of I to row i of I. Since I = Eij(0) = Eij(a + (−a)) = Eij(a)Eij(−a), it
follows that Eij(a)−1 = Eij(−a).

Similarly,Di(a)Di(b)I = Di(ab)I because each expression multiplies row
i of I by ab.

Finally, PijPijI = I, because the left side interchanges rows i and j of I
twice, which has the net effect of doing nothing. Therefore, PijPij = I and
(3) follows from this.

Here are several useful cases when products of elementary matrices com-
mute.

Proposition 3.24.

1. Eij(a)Eil(b) = Eil(b)Eij(a) for all a, b ∈ k.

2. Eil(a)Ejl(b) = Ejl(b)Eil(a) for all a, b ∈ k.

3. Di(a)Dj(b) = Dj(b)Di(a) for all nonzero a, b ∈ k.
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Proof. (1) Since i 6= j and i 6= l, we have

Eij(a)Eil(b) = (In + aeij)(In + beil)

= In + aeij + beil = (In + beil)(In + aeij) = Eil(b)Eij(a).

(2) Since i 6= l and j 6= l, we have

Eil(a)Ejl(b) = (In + aeil)(In + bejl)

= In + aeil + bejl = (In + bejl)(In + aeil) = Ejl(b)Eil(a).

(3) Since eiiejj = ejjeii, we have

Di(a)Dj(b) = (In + (a− 1)eii)(In + (b− 1)ejj)

= In + (a− 1)eii + (b− 1)ejj + (a− 1)(b− 1)eiiejj

= (In + (b− 1)ejj)(In + (a− 1)eii) = Dj(b)Di(a).

3.5 Permutations and Permutation Matrices

This section is important for Chapter 6 as well as for further results on
elementary matrices.

Definition 3.25. A function σ : {1, . . . , n} → {1, . . . , n} is called a permuta-
tion if σ is bijective. The set of all permutations σ : {1, . . . , n} → {1, . . . , n}
is denoted Sn. If σ(i) = i, 1 ≤ i ≤ n, then σ is called the identity permuta-
tion and is written σ = id.

There are n! permutations in Sn. If σ ∈ Sm and m < n, then we can
consider σ ∈ Sn by setting σ(i) = i for all i satisfying m+ 1 ≤ i ≤ n. In this
way we have S1 ⊆ S2 ⊆ · · · ⊆ Sn ⊆ · · · .

If σ1, σ2 ∈ Sn, then σ1 ◦ σ2 ∈ Sn. We call σ1 ◦ σ2 the product of σ1 and
σ2.

Definition 3.26. A permutation σ ∈ Sn is called a transposition if there
exist i, j ∈ {1, . . . , n}, i 6= j, such that σ(i) = j, σ(j) = i, and σ(l) = l for
all l ∈ {1, . . . , n} with l 6= i, j. Let σij denote this transposition.

Proposition 3.27. Each σ ∈ Sn, n ≥ 2, is a product of transpositions in
Sn.
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Proof. If σ = id, then σ = σ12 ◦ σ12. We now prove the result by induction
on n. Assume that n ≥ 2. Let σ(n) = i and let σ′ = σin ◦ σ. Then
σ′(n) = σin(i) = n, so we can regard σ′ ∈ Sn−1. By induction, σ′ is a product
of transpositions in Sn−1 ⊆ Sn. Therefore, σ = σin ◦ σin ◦ σ = σin ◦ σ′ is a
product of transpositions in Sn.

In Theorem 6.4 of Chapter 6, we will prove that the number of transpo-
sitions in any representation of σ as a product of transpositions is uniquely
determined modulo 2.

Definition 3.28. A matrix P = (pij) ∈ Mn×n(k) is called a permutation
matrix if there exists a permutation σ ∈ Sn such that

pij =

{
0, if i 6= σ(j)

1, if i = σ(j).

Denote this permutation matrix by Pσ.

Each column of a permutation matrix P ∈ Mn×n(k) consists of exactly
one 1 and n − 1 zeros. The same holds for each row of P because if pij =
pil = 1, then σ(j) = i = σ(l). Then j = l because σ is injective.

Conversely, if each row and each column of an n× n matrix has exactly
one 1 and n−1 zeros, then the matrix is a permutation matrix. (See Exercise
14.)

The elementary matrix Pij defined in Section 3.4 is the same as the permu-
tation matrix Pσ where σ is the transposition σij. We call Pij an elementary
permutation matrix.

Let Pn×n denote the set of permutation matrices.

Proposition 3.29. There is a bijection f : Sn → Pn×n given by σ 7→ Pσ
with the property f(σ1 ◦ σ2) = f(σ1)f(σ2). In other words, Pσ1◦σ2 = Pσ1Pσ2.

Proof. The definition of matrix multiplication shows that

(i, j)-entry of Pσ1Pσ2 =

{
1, if i = σ1(l) and l = σ2(j) for some l,

0, otherwise,

=

{
1, if i = σ1 ◦ σ2(j),
0, otherwise,

= (i, j)-entry of Pσ1◦σ2 .
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Thus Pσ1◦σ2 = Pσ1Pσ2 .
Suppose f(σ1) = f(σ2). Then Pσ1 = Pσ2 . This implies σ1(j) = σ2(j) for

all j = 1, 2, . . . , n. Therefore σ1 = σ2, so f is injective.
Finally, f is surjective because every permutation matrix has the form

Pσ = f(σ). Therefore f is a bijection.

Proposition 3.30. Let Pσ be a permutation matrix. Then

1. P−1σ = Pσ−1.

2. P t
σ = P−1σ = Pσ−1, so P t

σ is a permutation matrix.

3. Pσ is a product of elementary permutation matrices Pij.

4. If Pσ is an elementary permutation matrix, then Pσ = P t
σ = P−1σ .

Proof. 1. Proposition 3.29 implies that Pσ−1Pσ = Pid = PσPσ−1 . Since
Pid = In, it follows that P−1σ = Pσ−1 .

2. Direct matrix multiplication shows that PσP
t
σ = P t

σPσ = In. Therefore,
P t
σ = P−1σ . Alternatively, it follows from Definition 3.28 that P t

σ = (qij)
where

qij =

{
0, if j 6= σ(i)

1, if j = σ(i)
=

{
0, if i 6= σ−1(j)

1, if i = σ−1(j).

It follows that P t
σ = Pσ−1 .

3. This follows from Propositions 3.27 and 3.29.

4. If Pσ is an elementary permutation matrix, then σ is a transposition.
Then σ−1 = σ and the result follows from (1) and (2).

The following result will be useful later.

Proposition 3.31.

Pσ

 x1
...
xn

 =

 xσ−1(1)
...

xσ−1(n)

 .
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Proof. We have

Pσ

 x1
...
xn

 =
n∑
j=1

xj( j
th column of Pσ).

Suppose that σ(j) = i. Then the jth column of Pσ has a single 1 in the ith

row. Thus the ith row of Pσ

 x1
...
xn

 is xj = xσ−1(i).

3.6 The Rank of a Matrix

Proposition 3.32. Let A ∈ Mm×n(k). Then there exists an invertible ma-
trix D ∈Mm×m(k), an invertible matrix E ∈Mn×n(k), and an integer r ≥ 0
such that the matrix DAE has the form

DAE =

(
Ir Br×(n−r)
0(m−r)×r 0(m−r)×(n−r)

)
.

In addition we have

1. D is a product of elementary matrices.

2. E is a permutation matrix.

3. 0 ≤ r ≤ min{m,n}.

Proof. We will show that A can be put in the desired form by a sequence of
elementary row operations and a permutation of the columns. It follows from
Proposition 3.21 that performing elementary row operations on A results in
multiplying A on the left by m ×m elementary matrices. Each elementary
matrix is invertible by Proposition 3.23. Let D be the product of these
elementary matrices. Then D is an invertible m × m matrix. Similarly, it
follows from Proposition 3.22 and Proposition 3.30 (3) that permuting the
columns of A results in multiplying A on the right by an n× n permutation
matrix E.

If A = 0, then let r = 0, D = Im, and E = In. Now assume that A 6= 0.
Then aij 6= 0 for some i, j.
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Interchange rows 1 and i and then interchange columns 1 and j. (Replace
A with P1iAP1j.) This lets us assume that a11 6= 0.

Multiply row 1 by a−111 . (Replace A with D1(a
−1
11 )A.) This lets us assume

that a11 = 1.
Add −ai1 times row 1 to row i, 2 ≤ i ≤ m. (Replace A with

Em1(−am1) · · ·E31(−a31)E21(−a21)A.)

This lets us assume that a11 = 1 and ai1 = 0 for 2 ≤ i ≤ m.
Suppose by induction that we have performed elementary row operations

on A and permuted the columns of A such that for some l satisfying 1 ≤ l <
min{m,n}, we have

aij =

{
1 if i = j

0 if i 6= j,

for 1 ≤ i ≤ m and 1 ≤ j ≤ l.
If aij = 0 for all l+1 ≤ i ≤ m and l+1 ≤ j ≤ n, then let r = l and we are

done. Otherwise assume that aij 6= 0 for some i, j with i ≥ l + 1, j ≥ l + 1.
Then interchange rows l + 1 and i, and then interchange columns l + 1 and
j. This lets us assume that al+1,l+1 6= 0. Multiply row l+ 1 by a−1l+1,l+1. This
lets us assume that al+1,l+1 = 1. Add −ai,l+1 times row l + 1 to row i, for
i with 1 ≤ i ≤ m, but i 6= l + 1. This lets us assume that al+1,l+1 = 1 and
ai,l+1 = 0 for all i satisfying 1 ≤ i ≤ m but i 6= l + 1. Observe that columns
j, where 1 ≤ j ≤ l, remain unchanged throughout this step.

By induction, this procedure either eventually ends as above or r =
min{m,n}. This puts A in the required form.

The matrix D in Proposition 3.32 can be found by applying to Im the
same sequence of elementary row operations that were used in the proof of
the proposition. The matrix E in Proposition 3.32 can be found by applying
to In the same sequence of column interchanges that were used in the proof
of the proposition.

Corollary 3.33. Let A ∈ Mn×n(k) be an invertible matrix. Then A is a
product of elementary matrices.

Proof. By Proposition 3.32, there exist invertible matrices D,E ∈Mn×n(k)
such that D and E are each products of elementary matrices and DAE
has the form given in Proposition 3.32. Since A is invertible, DAE is also
invertible, so we must have m− r = 0. Thus r = m = n. Thus DAE = In.
Then A = D−1E−1, so A is a product of elementary matrices.
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Corollary 3.34. Let A ∈Mn×n(k) be an invertible matrix and suppose that
D and E are as in Proposition 3.32 such that DAE = In. Then A−1 = ED.

Proof. If DAE = In, then A = D−1E−1, so A−1 = ED.

Proposition 3.35. Let A ∈Mm×n(k). Then dim(R(A)) = dim(C(A)).

Proof. We find invertible matrices D,E as in Proposition 3.32 Then Propo-
sition 3.18 implies that dim(C(A)) = dim(C(DA)) = dim(C(DAE)), and
dim(R(A)) = dim(R(DA)) = dim(R(DAE)). This shows that we can as-
sume from the start that

A =

(
Ir Br×(n−r)
0(m−r)×r 0(m−r)×(n−r)

)
.

The first r rows of A are linearly independent and the remaining m − r
rows of A are zero. Therefore, dim(R(A)) = r. The first r columns of A
are linearly independent. The columns of A can be regarded as lying in k(r).
Therefore dim(C(A)) = r.

Definition 3.36. Let A ∈Mm×n(k). The rank r(A) of A is the dimension of
the row space or column space of A. Thus r(A) = dim(R(A)) = dim(C(A)).

It is a very surprising result that dim(R(A)) = dim(C(A)). Since R(A) ⊆
k(n) and C(A) ⊆ k(m), there seems to be no apparent reason why the two sub-
spaces should have the same dimension. In Chapter 4, we will see additional
connections between these two subspaces that will give more insight into the
situation.

We end this section with a theorem that gives a number of equivalent
conditions that guarantee an n× n matrix is invertible.

Theorem 3.37. Let A ∈Mn×n(k). The following statements are equivalent.

1. A is invertible.

2. R(A) = k(n).

3. The rows of A are linearly independent.

4. Dim(R(A)) = n.

5. C(A) = k(n).
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6. The columns of A are linearly independent.

7. Dim(C(A)) = n.

8. There exists B ∈Mn×n(k) such that BA = In.

9. There exists C ∈Mn×n(k) such that AC = In.

10. LA : k(n) → k(n) is an isomorphism.

11. LA : k(n) → k(n) is an injection.

12. LA : k(n) → k(n) is a surjection.

13. A is a product of elementary matrices.

Proof. Statements (2)-(4) are equivalent by Proposition 1.14 and Exercise
13 of Chapter 1. The same reasoning shows that statements (5)-(7) are
equivalent. Statements (10)-(12) are equivalent by Proposition 2.9.

(8) ⇒ (2): We have k(n) = R(In) = R(BA) ⊆ R(A) ⊆ k(n). Therefore
equality holds throughout and (2) holds.

(2) ⇒ (8): Since the R(A) = k(n), there exist constants bi1, . . . , bin in k
such that bi1(first row of A) + · · ·+ bin(nth row of A) = ei, where ei is the ith

vector in the standard basis of k(n). If we let B be the n × n matrix whose
(i, j)-entry is bij, then BA = In.

Similarly, if we apply the same reasoning to columns and column opera-
tions as we did to rows and row operations in the proof that (2) and (8) are
equivalent, then we easily see that (5) and (9) are equivalent.

Since [LA]εnεn = A by Lemma 3.11, it follows that (1) and (10) are equiva-
lent by Exercise 5.

The next step is to prove that (1), (8), (10), (11) are equivalent.
(8) ⇒ (11): Lemma 3.11 and Propositions 3.4, 3.5 imply that LBLA =

LBA = LIn = 1k(n) . Then (11) follows from Exercise 9b in Chapter 2.
(11) ⇒ (10) ⇒ (1) comes from above and (1) ⇒ (8) is trivial.
Statements (1), (9), (10), (12) are proved equivalent in the same way as

the equivalence of (1), (8), (10), (11).
It remains to prove that (1) and (13) are equivalent. Since elementary

matrices are invertible and products of invertible matrices are invertible by
Proposition 3.8, it is clear that (13) implies (1). Finally, (13) implies (1) by
Corollary 3.33.
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3.7 Systems of Linear Equations

We begin by describing an algorithm to solve systems of linear equations.
Then we will apply these results to finding bases of ker(f) and im(f) for
a linear transformation f . This will extend the results given at the end of
Chapter 2.

Consider the following system of m linear equations in n variables with
coefficients in k.

a11x1 + a12x2 + · · ·+ a1nxn = c1

a21x1 + a22x2 + · · ·+ a2nxn = c2

...

am1x1 + am2x2 + · · ·+ amnxn = cm

Let A = (aij)m×n, x = (xj)n×1, and c = (ci)m×1. Then the system
of equations above is equivalent to the matrix equation Ax = c. When
c1 = · · · = cm = 0, this system is called a homogeneous system of linear
equations. Otherwise, the system is called an inhomogeneous system of linear
equations.

In Chapter 2, we constructed a linear transformation f : k(n) → k(m)

with the property that f(b) = c if and only if b = (b1, . . . , bn) is a solution for
x = (x1, . . . , xn) in the system of linear equations above. It was shown that if
b is one solution, then all solutions are given by b+ker(f). It is easy to check
that f is the linear transformation LA defined before Lemma 3.11. That is,
f(b) = Ab. Thus, ker(f) = {b ∈ k(n)|Ab = 0} = ker(LA) = N (A). It follows
that finding the solutions of a homogeneous system of linear equations is
equivalent to finding either the null space of a matrix A or the kernel of the
associated linear transformation LA. Also,

im(f) = {c ∈ k(m)|Ab = c for some b ∈ k(n)} = im(LA) = C(A).

Thus

n = dim(ker(f)) + dim(im(f)) = dim(N (A)) + dim(C(A)).

Proposition 3.38. Let A ∈Mm×n(k) and c ∈ k(m). Suppose that D and E
are invertible matrices as in Proposition 3.32 and suppose that r is the rank
of A. Then Ax = c has a solution if and only if the last m − r coordinates
of Dc are zero.
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Proof. Since D is an invertible m × m matrix, the equation Ax = c has a
solution if and only if the equation DAx = Dc has a solution, and this holds
if and only if Dc ∈ C(DA) = C(DAE). The column space of DAE consists
of those vectors in k(m) whose last m − r coordinates are zero. Therefore,
Ax = c has a solution if and only if the last m − r coordinates of Dc are
zero.

Proposition 3.39. Let A ∈Mm×n(k) and c ∈ k(m). Suppose that D and E
are invertible matrices as in Proposition 3.32 and suppose that r is the rank
of A. Assume that the equation Ax = c has a solution. Let

Dc =



d1
...
dr
0
...
0


m×1

and d =



d1
...
dr
0
...
0


n×1

,

where the last m−r coordinates of Dc equal zero and the last n−r coordinates
of d equal zero. (The notation is valid since r = dim(R(A)) ≤ min{m,n}.)
Then a solution of Ax = c is given by x = Ed.

Proof. We have

DAEd = d1

(
1st column
of DAE

)
+ · · ·+ dr

(
rth column
of DAE

)
=



d1
...
dr
0
...
0


m×1

= Dc.

Multiply by D−1 on the left to conclude AEd = c. Thus, x = Ed is a solution
of the equation Ax = c.

We now describe N (A). We have N (A) = N (DA) = LEN (DAE). (See
Proposition 3.19.) We first compute a basis of N (DAE) and dim(N (DAE)).
Since DAE is an m×n matrix and r(DAE) = dim(C(DAE)) = r, it follows
that dim(N (DAE)) = n− r.
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Let DAE = (aij)m×n. It follows from Proposition 3.32 that aij = 0
for r + 1 ≤ i ≤ m, and the upper r × r submatrix of DAE is the r × r
identity matrix Ir. The null space of DAE corresponds to the solutions of
the following homogeneous system of r linear equations in n variables.

x1 + a1,r+1xr+1 + · · ·+ a1nxn = 0

x2 + a2,r+1xr+1 + · · ·+ a2nxn = 0

...

xr + ar,r+1xr+1 + · · ·+ arnxn = 0

The vectors 

−a1,r+1
...

−ar,r+1

1
0
...
0
0


,



−a1,r+2
...

−ar,r+2

0
1
...
0
0


, . . . ,



−a1n
...
−arn

0
0
...
0
1


are n − r linearly independent vectors in N (DAE), which therefore form a
basis of N (DAE).

Finally we have N (A) = LEN (DAE). Since E is a permutation matrix,
the coordinates of the basis vectors of N (DAE) are permuted to obtain a
basis of N (A). The complete solution for the original system is b + N (A),
where b is any solution to Ax = c. If a solution exists, then we saw above
that we may take b = Ed.

3.8 Bases of Subspaces

A number of problems can be solved using the techniques above. Here are
several types of problems and some general procedures based on elementary
row operations.
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1. Let V be a vector space with basis β = {v1, . . . , vn}. Let Y ⊂ V be a
nonzero subspace of V and suppose Y =< y1, . . . , ym >. Find a basis
of Y .

Although Corollary 1.10(3) implies some subset of {y1, . . . , ym} contains
a basis of Y , the Corollary does not produce a method to actually find
the basis. Here is a method.

We follow the notation that precedes Lemma 3.11. Suppose that yi =∑n
j=1 aijvj, 1 ≤ i ≤ m. Let A = (aij)m×n. Then

φβ(yi) = (ai1, ai2, . . . , ain),

the ith row of A. Thus φβ(Y ) = R(A), the row space of A. Since Y is a
nonzero subspace of V , it is clear that A is a nonzero matrix. Therefore
a basis of Y is given by φ−1β (a basis of R(A)).

Find invertible matrices D,E as in Proposition 3.32. Then R(A) =
R(DA). The matrix DA has r nonzero rows which are linearly inde-
pendent. These rows form a basis of R(A).

2. Let y1, . . . , ym ∈ k(n). Determine if these vectors are linearly indepen-
dent.

Let A be an m × n matrix whose rows are y1, . . . , ym. Find invertible
matricesD,E as in Proposition 3.32. The vectors y1, . . . , ym are linearly
independent if and only if r(A) = r(DAE) = m, i.e., each row of
DAE is nonzero. The rows of A are linearly dependent if and only if
elementary row operations can be performed on A to obtain a row of
zeros.

3. Let W ⊂ k(m) be a subspace. Let {u1, . . . , un} be a set of generators of
W . Let c ∈ k(m). Determine whether c ∈ W . If c ∈ W , find b1, . . . , bn
in k such that c = b1u1 + · · ·+ bnun.

Let S be a basis of W . Then c ∈ W if and only if S
⋃
{c} is a linearly

dependent set. (This statement would be false if we replaced S by an
arbitrary set of generators of W . See Exercise 13.) To find b1, . . . , bn,
it is more convenient to change the problem to one about solving a
system of linear equations. Let A be the m× n matrix whose columns
are the vectors {u1, . . . , un}. Then c ∈ W if and only if the equation
Ax = c has a solution.
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4. Let f : V → W be a linear transformation. Let β = {v1, . . . , vn} be a
basis of V and let γ = {w1, . . . , wm} be a basis of W . Let A = [f ]γβ =
(aij). Find a basis of im(f).

Proposition 3.12 implies that

φγ(im(f)) = φγ(f(V )) = LA(φβ(V ))

= LA(k(n)) = {Ab | b ∈ k(n)} = C(A).

Then a basis of im(f) is given by φ−1γ (a basis of C(A)). A basis of C(A)
can be computed by applying elementary column operations on A in
the same manner as was used to compute a basis of R(A) in (1).

Exercises

1. Prove Proposition 3.3 and find a basis of Mm×n(k).

2. Prove Proposition 3.6. (An easy method is to interpret each matrix as
the matrix of a linear transformation with respect to some basis, and
then to recall that composition of functions is associative. For a second
proof, compute the entries of (AB)C and A(BC) directly.)

3. Matrix multiplication is not commutative, even for square matrices.

4. Prove Proposition 3.13.

5. Using our usual notation, f ∈ L(V,W ) is an isomorphism if and only
if [f ]γβ is an invertible matrix.

6. Let A ∈Mm×n(k) and let B ∈Mn×m(k).

(a) Suppose that AB = Im. Then m ≤ n.

(b) Suppose that AB = Im and m = n. Then BA = Im. Thus, if
m = n, then AB = Im ⇐⇒ BA = Im.

(c) Suppose that AB = Im and m < n. Then BA 6= In.

7. Prove Proposition 3.15 (1), (2).

8. Prove Propositions 3.21 and 3.22.
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9. The elementary matrix Pij can be expressed as a product of the other
two types of elementary matrices Eij(a) and Di(a). (First solve this
problem for 2× 2 matrices.)

10. Give another proof of Proposition 3.23 by using the formulas Eij(a) =
In + aeij, Di(a) = In + (a− 1)eii, and Pij = In − eii − ejj + eij + eji.

11. Let β = {v1, . . . , vn} be a basis of V and let γ = {w1, . . . , wm} be a
basis of W . Set Vj =< vj > and Wi =< wi > so that V =

⊕n
j=1 Vj and

W =
⊕m

i=1Wi. Let f ∈ L(V,W ) and suppose [f ]γβ = (aij). Then show
f =

∑m
i=1

∑n
j=1 fij where fij ∈ L(Vj,Wi) and fij(vj) = aijwi. Compare

this exercise to Exercise 12 of Chapter 2.

12. Justify the procedures given in Section 3.8 to solve the problems that
are posed.

13. Justify the statement about S
⋃
{c} in problem 3 of Section 3.8.

14. Suppose that each row and each column of A ∈ Mn×n(k) has exactly
one 1 and n− 1 zeros. Prove that A is a permutation matrix.

15. Let A be an m× n matrix and let r = rank(A). Then

(a) r ≤ min{m,n}.
(b) r = dim(imLA).

(c) dim(kerLA) = n− r.

16. In Proposition 3.12, show that φβ(ker(f)) = ker(LA) and φγ(im(f)) =
im(LA).

17. Suppose that S and T are two sets and that f : S → T is a bijection.
Suppose that S is a vector space. Then there is a unique way to make T
a vector space such that f is an isomorphism of vector spaces. Similarly,
if T is a vector space, then there is a unique way to make S a vector
space such that f is an isomorphism of vector spaces.

18. Use Exercise 17 to develop a new proof of Proposition 3.4. Either
start with the vector space structure ofMm×n(k) to develop the vector
space structure of L(V,W ), or start with the vector space structure of
L(V,W ) to develop the vector space structure of Mm×n(k).
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19. Let A,A1, A2 ∈ Mm×n(k), B,B1, B2 ∈ Mn×p(k), C ∈ Mp×q(k), and
let a ∈ k. Then the following statements hold. (Compare with Propo-
sition 2.12.)

(a) (A1 + A2)B = A1B + A2B

(b) A(B1 +B2) = AB1 + AB2

(c) a(AB) = (aA)B = A(aB)

(d) (AB)C = A(BC)

Note that when m = n = p = q, statements (1) - (4) imply that
Mn×n(k) is an associative algebra.

20. A diagonal matrix A ∈ Mn×n(k) is a matrix that can be written∑n
i=1 aieii. In other words, A = (aij) is a diagonal matrix if aij = 0 for

all i, j where i 6= j.

Let D1 =
∑n

i=1 aieii and D2 =
∑n

i=1 bieii be two diagonal matrices.
Then D1D2 =

∑n
i=1 aibieii. In particular, D1D2 = D2D1 for any two

diagonal n× n matrices.
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Chapter 4

The Dual Space

4.1 Basic Results

Let V be a vector space over k, dimV = n. We shall consider k as a vector
space of dimension one over k by identifying k with the one-dimensional
vector space k(1). That is, the element a ∈ k is identified with the vector
(a) ∈ k(1).

Definition 4.1. The vector space L(V, k) is called the dual space of V , or
simply the dual of V and is written V ∗. The elements of V ∗ are called linear
functionals.

Let β = {v1, . . . , vn} be a basis of V . We use Proposition 3.1 to define
elements φ1, . . . , φn ∈ L(V, k) = V ∗ as follows. Let φi denote the element in
V ∗ such that

φi(vj) =

{
0, if i 6= j

1, if i = j.

Proposition 4.2. The elements φ1, . . . , φn form a basis of V ∗.

Proof. Let f ∈ V ∗ and suppose that f(vj) = cj, cj ∈ k, 1 ≤ j ≤ n. Let
g =

∑n
i=1 ciφi. Then g(vj) =

∑n
i=1 ciφi(vj) = cj. Thus f = g by Proposi-

tion 3.1(1), because both functions agree on the basis β. This shows that
φ1, . . . , φn span V ∗.

Suppose that
∑n

i=1 biφi = 0. Evaluation at vj gives 0 =
∑n

i=1 biφi(vj) =
bj. Therefore each bj = 0 and so φ1, . . . , φn are linearly independent. There-
fore, the elements φ1, . . . , φn form a basis of V ∗.
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The basis in Proposition 4.2 is called the dual basis of V ∗ to β and we
write β∗ = {φ1, . . . , φn} to denote this. Since dimV ∗ = dimL(V, k) = n,
by Proposition 3.4, we could have shortened the proof of Proposition 4.2 by
making use of Proposition 1.14.

Corollary 4.3. Let β = {v1, . . . , vn} be a basis of V and let β∗={φ1, . . . , φn}
be the dual basis of V ∗ to β. Let v ∈ V and let f ∈ V ∗. Then v =∑n

j=1 φj(v)vj and f =
∑n

i=1 f(vi)φi.

Proof. The proof of Proposition 4.2 shows that f =
∑n

i=1 f(vi)φi. Let v ∈ V .
Then v =

∑n
i=1 aivi, with each ai ∈ k uniquely determined. Then φj(v) =∑n

i=1 aiφj(vi) = aj. Therefore v =
∑n

j=1 φj(v)vj.

We now begin to develop the connections between dual spaces, matrix
representations of linear transformations, transposes of matrices, and exact
sequences.

Let V , W be finite dimensional vector spaces over k. Let β = {v1, . . . , vn}
be an ordered basis of V and let γ = {w1, . . . , wm} be an ordered basis of W .
Let β∗ = {φ1, . . . , φn} and γ∗ = {ψ1, . . . , ψm} be the corresponding ordered
dual bases of V ∗ and W ∗. Let f ∈ L(V,W ). Define a function f ∗ : W ∗ → V ∗

by the rule f ∗(τ) = τ ◦f . Then f ∗(τ) lies in V ∗ because τ ◦f is the composite

of the two linear transformations V
f→ W

τ→ k.

Proposition 4.4. Using the notation from above, the following statements
hold.

1. f ∗ ∈ L(W ∗, V ∗).

2. [f ∗]β
∗

γ∗ = ([f ]γβ)t.

Proof. (1) f ∗ ∈ L(W ∗, V ∗) because

f ∗(τ1 + τ2) = (τ1 + τ2) ◦ f = τ1 ◦ f + τ2 ◦ f = f ∗(τ1) + f ∗(τ2)

and
f ∗(aτ) = (aτ) ◦ f = a(τ ◦ f) = af ∗(τ).

(2) Let [f ]γβ = (aij)m×n and let [f ∗]β
∗

γ∗ = (bij)n×m. Then

f ∗(ψj) = ψj ◦ f =
n∑
i=1

(ψj ◦ f)(vi) · φi,
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by Corollary 4.3. This shows that bij = (ψj ◦ f)(vi). But,

(ψj ◦ f)(vi) = ψj(f(vi)) = ψj(
m∑
l=1

aliwl) =
m∑
l=1

aliψj(wl) = aji.

Therefore bij = aji and this proves (2).

Let U
f→ V

g→ W be a sequence of linear transformations of vector spaces.
The linear transformations f, g induce corresponding linear transformations

on the dual spaces. Namely, we have W ∗ g∗→ V ∗
f∗→ U∗. Then (g◦f)∗ = f ∗◦g∗

because for every ψ ∈ W ∗, we have

(g ◦ f)∗(ψ) = ψ ◦ (g ◦ f) = (ψ ◦ g) ◦ f = g∗(ψ) ◦ f = f ∗ ◦ g∗(ψ).

Proposition 4.5. In the situation above, assume that dimU = p, dimV =
n, and dimW = m. Let α, β, γ be ordered bases of U, V,W , respectively,
and let α∗, β∗, γ∗ be the dual bases of U∗, V ∗,W ∗ to α, β, γ. Let A = [g]γβ,

B = [f ]βα, and C = [g ◦ f ]γα.
Then (AB)t = BtAt. In fact, (AB)t = BtAt for any pair of matrices

having compatible sizes.

Proof. AB = [g]γβ[f ]βα = [g ◦ f ]γα = C. Therefore, Proposition 4.4(2) implies
that

(AB)t = Ct = ([g ◦ f ]γα)t = [(g ◦ f)∗]α
∗

γ∗ = [f ∗ ◦ g∗]α∗γ∗ = [f ∗]α
∗

β∗ [g
∗]β
∗

γ∗ = BtAt.

Now let A,B be any pair of matrices having compatible sizes so that A,B
can be multiplied. We may assume that A ∈ Mm×n(k) and B ∈ Mn×p(k).
Then A = [g]γβ for some g ∈ L(V,W ) and B = [f ]βα for some f ∈ L(U, V ).
The rest of the proof follows from above.

Proposition 4.5 furnishes another proof of Proposition 3.15(3). Proposi-
tions 4.4 and 4.5 give a more intrinsic meaning of the transpose of a matrix.

4.2 Exact sequences and more on the rank of

a matrix

Lemma 4.6. Let Y be a vector space and let W ⊆ Y be a subspace. Then
there exists a subspace X ⊆ Y such that W

⊕
X = Y .

72



Proof. Let {v1, . . . , vl} be a basis of W . Extend this basis to a basis

{v1, . . . , vl, vl+1, . . . , vm}

of Y . Let X = 〈vl+1, . . . , vm〉, the span of {vl+1, . . . , vm}. Then Y = W +X
and W ∩ X = (0), and so Y = W

⊕
X by Proposition 1.16 and Definition

1.17.

Proposition 4.7 (Fundamental Mapping Property of Linear Transforma-
tions). Let V, Y, Z be vector spaces over k and let φ : V → Z, g : V → Y be
linear transformations. Assume that ker(g) ⊆ ker(φ).

1. If g is surjective, then there exists a unique linear transformation ψ :
Y → Z such that φ = ψ ◦ g.

2. In general, there always exists at least one linear transformation ψ :
Y → Z such that φ = ψ ◦ g.

Proof. (1) First assume that g is surjective. Define ψ : Y → Z as follows.
Let y ∈ Y . Since g is surjective, we may choose v ∈ V such that g(v) = y.
Define ψ(y) by ψ(y) = φ(v). We must show that ψ is well-defined, ψ is a
linear transformation, φ = ψ ◦ g and ψ is uniquely determined.

Suppose that v′ ∈ V and g(v′) = y. Then

v − v′ ∈ ker(g) ⊆ ker(φ).

Thus φ(v) = φ(v′), and this shows that ψ is well-defined.
To show that ψ : Y → Z is a linear transformation, let y, y′ ∈ Y and

a ∈ k. Let v, v′ ∈ V such that g(v) = y and g(v′) = y′. Then g(v + v′) =
g(v) + g(v′) = y + y′ and g(av) = ag(v) = ay. Thus,

ψ(y + y′) = φ(v + v′) = φ(v) + φ(v′) = ψ(y) + ψ(y′),

and
ψ(ay) = φ(av) = aφ(v) = aψ(y).

This shows that ψ is a linear transformation.
Let v ∈ V . Then (ψ ◦ g)(v) = ψ(g(v)) = φ(v) from the definition of φ.
To show that the linear transformation ψ : Y → Z is unique, suppose

that ψ′ : Y → Z is a linear transformation such that φ = ψ′ ◦ g. Let y ∈ Y
and choose v ∈ V such that g(v) = y. Then

ψ(y) = φ(v) = ψ′(g(v)) = ψ′(y)
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for all y ∈ Y . Therefore, ψ = ψ′.

(2) Now we remove the assumption that g is surjective. Let W = im(g).
Then (1) implies that there exists a unique linear transformation ψ′ : W → Z
such that φ = ψ′ ◦ g. Since Y = W

⊕
X for some subspace X ⊆ Y , there

exists a linear transformation ψ : Y → Z such that ψ|W = ψ′. (For example,
we can take ψ(X) = 0.) It follows that φ = ψ ◦ g.

Remark: Note that the statement and proof of (1) extends to the case of
modules over a commutative ring R. The proof of (2) uses special properties
of vector spaces, namely the existence of a basis.

Proposition 4.8. If U
f→ V

g→ W is an exact sequence of linear transfor-

mations of vector spaces, then W ∗ g∗→ V ∗
f∗→ U∗ is also an exact sequence of

linear transformations.

Proof. First we show that im(g∗) ⊆ ker(f ∗). Let φ ∈ im(g∗). Then g∗(ψ) =
φ, for some ψ ∈ W ∗. It follows that

f ∗(φ) = f ∗(g∗(ψ)) = (g ◦ f)∗(ψ) = ψ ◦ (g ◦ f) = 0,

because im(f) ⊆ ker(g) and so g ◦ f = 0. Thus φ ∈ ker(f ∗), so im(g∗) ⊆
ker(f ∗).

Now let φ ∈ ker(f ∗). Then f ∗(φ) = 0 and so φ ◦ f = 0. Thus ker(g) =
im(f) ⊆ ker(φ). Proposition 4.7 implies that there exists ψ : W → k such
that ψ ◦ g = φ. Thus ψ ∈ W ∗ and g∗(ψ) = ψ ◦ g = φ. Thus φ ∈ im(g∗), and
so ker(f ∗) ⊆ im(g∗). Therefore, im(g∗) = ker(f ∗).

Corollary 4.9. Let f ∈ L(V,W ) and let f ∗ ∈ L(W ∗, V ∗) be the induced
linear transformation on dual spaces.

1. If f is injective, then f ∗ is surjective.

2. If f is surjective, then f ∗ is injective.

Proof. If f is injective, then 0→ V → W is exact at V and so W ∗ → V ∗ → 0
is an exact sequence. Thus f ∗ is surjective.

If f is surjective, then V → W → 0 is exact at W and so 0→ W ∗ → V ∗

is an exact sequence. Thus f ∗ is injective.
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Corollary 4.10. Suppose that W ⊆ V is a subspace and ι : W → V is the
inclusion map. Let ι∗ : V ∗ → W ∗ denote the induced linear transformation
on dual spaces. Let τ ∈ V ∗. Then ι∗(τ) = τ |W .

In particular, if ρ : V ∗ → W ∗ is the function given by restricting the
domain to W , then ρ = ι∗ and ρ is surjective.

Proof. Let τ ∈ V ∗. Then ι∗(τ) = τ ◦ ι = τ |W = ρ(τ). Therefore ρ = ι∗. The
Corollary 4.9 implies that ι∗ is surjective because ι is injective. Thus ρ is
surjective.

Proposition 4.11. Let f ∈ L(V,W ) and let f ∗ ∈ L(W ∗, V ∗) be the induced
linear transformation on dual spaces. Then dim(im(f)) = dim(im(f ∗)).

Proof. The linear transformation f : V → W induces the linear transforma-
tions V

g→ im(f)
ι→ W where ι is the inclusion map and g is the same as f

except that the range of f has been restricted to im(f). Then f = ι ◦ g.

This induces the linear transformations W ∗ ι∗→ im(f)∗
g∗→ V ∗ where f ∗ =

g∗◦ι∗. We have that g∗ is injective because g is surjective, and ι∗ is surjective
because ι is injective. Since f ∗ : W ∗ → V ∗, this gives

dim(W ∗)− dim(im(f ∗)) = dim(ker(f ∗))

= dim(ker(ι∗)), because g∗ is injective,

= dim(W ∗)− dim(im(ι∗))

= dim(W ∗)− dim(im(f)∗), because ι∗ is surjective.

Therefore, dim(im(f ∗)) = dim(im(f)∗) = dim(im(f)).

Lemma 4.12. Let f : V → W be a linear transformation. Let β and γ be
ordered bases of V and W , respectively, and let A = [f ]γβ. Then dim(im(f)) =
dim(C(A)).

Proof. Proposition 3.12 and Exercise 16 of Chapter 3 imply that

φγ(im(f)) = im(LA) = C(A).

Thus dim(im(f)) = dim(φγ(im(f))) = dim(C(A)).

We now can give a new proof of Proposition 3.35.
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Theorem 4.13. Let A ∈Mm×n(k). Then dim(C(A)) = dim(R(A)).

Proof. Let LA : k(n) → k(m) be the linear transformation given by LA(b) =
Ab. Let εn and εm be the standard bases of k(n) and k(m). Then [LA]εmεn = A,
by Lemma 3.11.

Let ε∗n and ε∗m be the dual bases of (k(n))∗ and (k(m))∗ to εn and εm. We
have an induced linear transformation

(LA)∗ : (k(m))∗ → (k(n))∗.

Proposition 4.4 (2) implies that

[(LA)∗]
ε∗n
ε∗m

= ([LA]εmεn )t = At.

It follows from Lemma 4.12 and Proposition 4.11 that

dim(C(A)) = dim(im(LA)) = dim(im((LA)∗)) = dim(C(At)) = dim(R(A)).

Let f : V → W be a linear transformation, with dimV = n and dimW =
m. Let f ∗ : W ∗ → V ∗ be the induced linear transformation of dual spaces
where f ∗(τ) = τ ◦ f , for τ ∈ W ∗. We now construct bases of the subspaces
ker(f), im(f), ker(f ∗), and im(f ∗).

Let r = dim(im(f)). Then n− r = dim(ker(f)). Let {vr+1, . . . , vn} be a
basis of ker(f). Extend this basis to a basis β = {v1, . . . , vr, vr+1, . . . , vn} of
V . Let wi = f(vi), 1 ≤ i ≤ r.

We show now that {w1, . . . , wr} is a basis of im(f). First, {w1, . . . , wr}
spans im(f) because

im(f) = 〈f(v1), . . . , f(vn)〉 = 〈f(v1), . . . , f(vr)〉 = 〈w1, . . . , wr〉.

Since dim(im(f)) = r, it follows that {w1, . . . , wr} is a basis of im(f).
Extend {w1, . . . , wr} to a basis γ = {w1, . . . , wr, . . . , wm} of W . Let

γ∗ = {ψ1, . . . , ψm} be the dual basis of W ∗ to γ. We will now show that
{ψr+1, . . . , ψm} is a basis of ker(f ∗). If r + 1 ≤ j ≤ m then ψj ∈ ker(f ∗)
because f ∗(ψj) = ψj ◦ f and

ψj ◦ f(V ) = ψj(im(f)) = ψj(〈w1, . . . , wr〉) = 0.
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Now let ψ =
∑m

i=1 ciψi ∈ ker(f ∗). Then 0 = f ∗(
∑m

i=1 ciψi) = (
∑m

i=1 ciψi) ◦ f .
Therefore, if 1 ≤ j ≤ r, then

0 =

((
m∑
i=1

ciψi

)
◦ f

)
(vj) =

(
m∑
i=1

ciψi

)
(f(vj)) =

(
m∑
i=1

ciψi

)
(wj) = cj.

Therefore ψ =
∑m

i=r+1 ciψi. This shows that {ψr+1, . . . , ψm} spans ker(f ∗).
Since {ψr+1, . . . , ψm} is part of a linearly independent set, it follows that
{ψr+1, . . . , ψm} is a basis of ker(f ∗).

Let β∗ = {φ1, . . . , φn} be the dual basis of V ∗ to β. We will show that
{φ1, . . . , φr} is a basis of im(f ∗).

Since {ψ1, . . . , ψm} is a basis of W ∗ and since {ψr+1, . . . , ψm} ⊆ ker(f ∗),
it follows that

im(f ∗) = 〈f ∗(ψ1), . . . , f
∗(ψm)〉 = 〈f ∗(ψ1), . . . , f

∗(ψr)〉 = 〈ψ1 ◦ f, . . . , ψr ◦ f〉.

We will show that f ∗(ψi) = ψi ◦ f = φi for 1 ≤ i ≤ r. This will imply that
im(f ∗) = 〈φ1, . . . , φr〉. Since the set {φ1, . . . , φr} is a linearly independent
set, being a subset of β∗, it will follow that {φ1, . . . , φr} is a basis of im(f ∗).

Assume that 1 ≤ i ≤ r. We have

(ψi ◦ f)(vj) = ψi(f(vj)) =

{
ψi(wj), if 1 ≤ j ≤ r

ψi(0), if r + 1 ≤ j ≤ n
=

{
0, if j 6= i

1, if j = i

= φi(vj).

Therefore, f ∗(ψi) = ψi ◦ f = φi for 1 ≤ i ≤ r, because the two linear
transformations agree on a basis of V .

4.3 The double dual of a vector space

L(V ∗, k) is the dual space of V ∗. It is often written V ∗∗ and called the double
dual of V . Each element v ∈ V determines an element fv ∈ V ∗∗ as follows.
Let fv : V ∗ → k be the function defined by fv(φ) = φ(v) for any φ ∈ V ∗.
The function fv is a linear transformation because for φ, τ ∈ V ∗ and a ∈ k,
we have

fv(φ+ τ) = (φ+ τ)(v) = φ(v) + τ(v) = fv(φ) + fv(τ) and
fv(aφ) = (aφ)(v) = a(φ(v)) = afv(φ).
Thus, fv ∈ L(V ∗, k). This gives us a function f : V → V ∗∗ where

f(v) = fv.
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Proposition 4.14. The function f : V → V ∗∗ is an injective linear trans-
formation. If dimV is finite, then f is an isomorphism.

Proof. First we show that f is a linear transformation. Let v, w ∈ V , let a ∈
k, and let φ ∈ V ∗. Since fv+w(φ) = φ(v+w) = φ(v) +φ(w) = fv(φ) + fw(φ),
it follows that fv+w = fv + fw in V ∗∗ Thus,

f(v + w) = fv+w = fv + fw = f(v) + f(w).

Since fav(φ) = φ(av) = aφ(v) = afv(φ), it follows that fav = afv in V ∗∗.
Thus,

f(av) = fav = afv = af(v).

This shows that f is a linear transformation.
Suppose that v ∈ ker f . Then fv = f(v) = 0. That means fv(φ) =

φ(v) = 0 for all φ ∈ V ∗. If v 6= 0, then V has a basis that contains v. Then
there would exist an element φ ∈ V ∗ such that φ(v) 6= 0, because a linear
transformation can be defined by its action on basis elements, and this is a
contradiction. Therefore v = 0 and f is injective.

If dimV = n, then n = dimV = dimV ∗ = dimV ∗∗. Therefore f is also
surjective and so f is an isomorphism.

4.4 Annihilators of subspaces

Definition 4.15. Let S be a subset of a vector space V . The annihilator S◦

of S is the set S◦ = {τ ∈ V ∗ | τ(v) = 0 for all v ∈ S}.

Thus S◦ = {τ ∈ V ∗ | S ⊆ ker(τ)}.

Lemma 4.16. Let S be a subset of V and let W = 〈S〉.

1. S◦ is a subspace of V ∗.

2. S◦ = W ◦.

Proof. If τ1, τ2 ∈ S◦ and a ∈ k, then it is easy to see that τ1 + τ2 ∈ S◦ and
aτ1 ∈ S◦. Therefore (1) holds.

Since S ⊆ W , it follows easily that W ◦ ⊆ S◦. Now let τ ∈ S◦. Then
τ(S) = 0 implies S ⊆ ker(τ). Since ker(τ) is a subspace, it follows that
W = 〈S〉 ⊆ ker(τ). Therefore, τ ∈ W ◦ and (2) holds.
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Proposition 4.17. Let W be a subspace of V . Consider the function ρ :
V ∗ → W ∗ given by restricting the domain to W . That is, ρ(τ) = τ |W .

1. ker(ρ) = W ◦.

2. dim(W ◦) = dim(V )− dim(W ).

Proof. We know from Corollary 4.10 that ρ is a surjective linear transforma-
tion. Then ker(ρ) = {τ ∈ V ∗ | τ |W = 0} = W ◦. Thus

dim(W ◦) = dim(ker(ρ)) = dimV ∗ − dim(im(ρ))

= dimV ∗ − dimW ∗ = dimV − dimW.

Here is a further look at the situation in Proposition 4.17. Let W be a
subspace of V . The following sequence is exact.

0→ W
ι→ V

π→ V/W → 0

Proposition 4.8 implies that the following sequence is exact.

0→ (V/W )∗
π∗→ V ∗

ι∗→ W ∗ → 0

Since ι∗ = ρ (see Corollary 4.10), the exactness implies

π∗((V/W )∗) = im(π∗) = ker(ι∗) = ker(ρ) = W ◦.

Thus π∗ : (V/W )∗ → W ◦ is an isomorphism and so

dim(W ◦) = dim((V/W )∗) = dim(V/W ) = dim(V )− dim(W ).

Since ker(ι∗) = W ◦, we have V ∗/W ◦ ∼= W ∗.
See Exercise 7 for additional proofs of some of these results.

Proposition 4.18. Let f : V → W be a linear transformation and let
f ∗ : W ∗ → V ∗ be the corresponding linear transformation of dual spaces.
Then

1. ker(f ∗) = (im(f))◦

2. (ker(f))◦ = im(f ∗)
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Proof. (1) h ∈ ker(f ∗) ⇐⇒ h ◦ f = 0 ⇐⇒ h(im(f)) = 0 ⇐⇒ h ∈
(im(f))◦.

(2) Let g ∈ im(f ∗). Then g = f ∗(h) = h ◦ f , for some h ∈ W ∗. Since
g(ker(f)) = (h ◦ f)(ker(f)) = h(f(ker(f))) = 0, it follows that g ∈ (ker(f))◦.
Thus, im(f ∗) ⊆ (ker(f))◦. Proposition 4.11 and Proposition 4.17 (2) imply
that

dim(im(f ∗)) = dim(im(f)) = dimV − dim(ker(f)) = dim(ker(f))◦.

It follows that (ker(f))◦ = im(f ∗).

Here is a direct proof that (ker(f))◦ ⊆ im(f ∗) in Proposition 4.18 (2).
Let φ ∈ (ker(f))◦. Then φ ∈ V ∗ and φ(ker(f)) = 0. Since ker(f) ⊆ ker(φ),
Proposition 4.7 (2) implies that there exists ψ ∈ W ∗ such that f ∗(ψ) =
ψ ◦ f = φ. Thus φ ∈ im(f ∗), so (ker(f))◦ ⊆ im(f ∗).

4.5 Subspaces of V and V ∗

The following definition includes Definition 4.15.

Definition 4.19. Let V be a vector space over k of dimension n. Let W be
a subspace of V and let Y be a subspace of V ∗.

1. Let W ◦ = {f ∈ V ∗ |W ⊆ ker(f)}.

2. Let Y◦ =
⋂
f∈Y ker(f).

Thus, W ◦ ⊆ V ∗, Y◦ ⊆ V , and Y◦ = {v ∈ V | f(v) = 0, for all f ∈ Y }.
From Proposition 4.17 (2), we have dim(W ◦) = dim(V )− dim(W ).

It is easy to see that if W1 ⊆ W2, then W ◦
1 ⊇ W ◦

2 , and if Y1 ⊆ Y2, then
(Y1)◦ ⊇ (Y2)◦.

Proposition 4.20. W ⊆ (W ◦)◦ and Y ⊆ (Y◦)
◦.

Proof. If x ∈ W , then f(x) = 0 for all f ∈ W ◦. Thus,

x ∈
⋂
f∈W ◦

ker(f) = (W ◦)◦.

Therefore, W ⊆ (W ◦)◦.
If f ∈ Y , then f(v) = 0 for all v ∈ Y◦. Thus f(Y◦) = 0 and this implies

that f ∈ (Y◦)
◦. Therefore, Y ⊆ (Y◦)

◦.
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Lemma 4.21. If Y is spanned by {f1, . . . , fr}, then Y◦ =
⋂r
i=1 ker(fi).

Proof. We have Y◦ =
⋂
f∈Y ker(f) ⊆

⋂r
i=1 ker(fi), because fi ∈ Y . Now let

x ∈
⋂r
i=1 ker(fi). For each f ∈ Y , we have f = a1f1 + · · ·+ arfr with ai ∈ k.

It follows that f(x) =
∑r

i=1 aifi(x) = 0. Then x ∈ ker(f) and it follows that
x ∈

⋂
f∈Y ker(f) = Y◦. Therefore, Y◦ =

⋂r
i=1 ker(fi).

Proposition 4.22. dim(Y◦) = dim(V ∗)− dim(Y ).

Proof. We have dim(Y ) ≤ dim((Y◦)
◦) = dim(V )−dim(Y◦). Thus, dim(Y◦) ≤

dim(V )− dim(Y ) = dim(V ∗)− dim(Y ).
Suppose that dim(Y ) = r and let {f1, . . . , fr} be a basis of Y . Then

Lemma 4.21 implies that Y◦ =
⋂r
i=1 ker(fi). Since fi 6= 0, it follows that

fi : V → k is surjective and so dim(ker(fi)) = n−1. Thus codim(ker(fi)) = 1
and codim(

⋂r
i=1 ker(fi)) ≤

∑r
i=1 codim(ker(fi)) = r. (See Exercise 4 in

Chapter 2.) Then

dim(Y◦) = dim

(
r⋂
i=1

ker(fi)

)
≥ dim(V )− r = dim(V )− dim(Y ) = dim(V ∗)− dim(Y ).

Therefore, dim(Y◦) = dim(V ∗)− dim(Y ).

Proposition 4.23. W = (W ◦)◦ and Y = (Y◦)
◦.

Proof. dim((W ◦)◦) = dim(V ∗)−dim(W ◦) = dim(V )−(dim(V )−dim(W )) =
dim(W ). Since W ⊆ (W ◦)◦, it follows that W = (W ◦)◦.

dim((Y◦)
◦) = dim(V ) − dim(Y◦) = dim(V ) − (dim(V ∗) − dim(Y )) =

dim(Y ). Since Y ⊆ (Y◦)
◦, it follows that Y = (Y◦)

◦.

Corollary 4.24. Let W1,W2 ⊆ V and Y1, Y2 ⊆ V ∗. If (W1)
◦ = (W2)

◦, then
W1 = W2. If (Y1)◦ = (Y2)◦, then Y1 = Y2.

Proof. If (W1)
◦ = (W2)

◦, then W1 = ((W1)
◦)◦ = ((W2)

◦)◦ = W2. If (Y1)◦ =
(Y2)◦, then Y1 = ((Y1)◦)

◦ = ((Y2)◦)
◦ = Y2.

The results above imply the following Theorem.

Theorem 4.25. Let ∆ : {Subspaces of V } → {Subspaces of V ∗}, where
W → W ◦.

Let Ω : {Subspaces of V ∗} → {Subspaces of V }, where Y → Y◦.
Then ∆ and Ω are inclusion-reversing bijections, and ∆ and Ω are inverse

functions of each other.
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4.6 A calculation

The next result gives a computation in V ∗ that doesn’t involve a dual basis
of V ∗.

Let β = {v1, . . . , vn} be a basis of V and let γ = {τ1, . . . , τn} be a basis
of V ∗ (not necessarily the dual basis of V ∗ to {v1, . . . , vn}). Let τi(vj) = bij,
for 1 ≤ i ≤ n and 1 ≤ j ≤ n.

Let v ∈ V and τ ∈ V ∗. We wish to compute τ(v). Let τ =
∑n

i=1 ciτi and
let v =

∑n
j=1 djvj. Let

c =

 c1
...
cn

 , d =

 d1
...
dn

 , B = (bij)n×n.

Then

τ(v) =

(
n∑
i=1

ciτi

)(
n∑
j=1

djvj

)
=

n∑
i=1

n∑
j=1

cidjτi(vj) =
n∑
i=1

n∑
j=1

cibijdj

=
n∑
i=1

ci

(
n∑
j=1

bijdj

)
= ctBd.

The last equality holds because the ith coordinate of Bd equals
∑n

j=1 bijdj.
If {τ1, . . . , τn} is the dual basis of V ∗ to {v1, . . . , vn}, then B = In because

we would have

bij =

{
0, if i 6= j

1, if i = j.

In this case, the formula reads τ(v) = ctd.

Exercises

1. Suppose that f(v) = 0 for all f ∈ V ∗. Then v = 0.

2. Suppose that V is infinite dimensional over k. Let β = {vα}α∈J be a
basis of V where the index set J is infinite. For each α ∈ J , define a
linear transformation φα : V → k by the rule φα(vλ) = 0 if α 6= λ and
φα(vλ) = 1 if α = λ. Show that {φα}α∈J is a linearly independent set
in V ∗ but is not a basis of V ∗.
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3. In Proposition 4.14, show that f is not surjective if V is infinite dimen-
sional over k. (As in the previous exercise assume that V has a basis,
even though the proof of this fact in this case was not given in Chapter
1.)

4. Let {v1, . . . , vn} be a basis of V and let {φ1, . . . , φn} be the dual basis
of V ∗ to {v1, . . . , vn}. In the notation of Proposition 4.14, show that
{fv1 , . . . , fvn} is the dual basis of V ∗∗ to {φ1, . . . , φn}. Give a second
proof that the linear transformation f in Proposition 4.14 is an iso-
morphism, in the case that dimV is finite, by observing that f takes a
basis of V to a basis of V ∗∗.

5. Let V,W be finite dimensional vector spaces. Let f : V → W be a
linear transformation. Let f ∗ : W ∗ → V ∗ and f ∗∗ : V ∗∗ → W ∗∗ be
the induced linear transformations on the dual spaces and double dual
spaces. Let h : V → V ∗∗ and h′ : W → W ∗∗ be the isomorphisms from
Proposition 4.14. Show that f ∗∗ ◦ h = h′ ◦ f .

6. Let U
f→ V

g→ W be a sequence of linear transformations of finite

dimensional vector spaces. Suppose that W ∗ g∗→ V ∗
f∗→ U∗ is an exact

sequence of linear transformations. Then prove that the original se-
quence is exact. (Hint: One method is to apply Proposition 4.8 to the
given exact sequence and use Proposition 4.14 along with the previous
exercise. One can also give a direct argument.)

7. Give a direct proof that ρ is surjective in Proposition 4.10 and give a
direct proof of the dimension formula in Proposition 4.17 (2) as fol-
lows. Let {v1, . . . , vr} be a basis of W . Extend this basis to a basis
{v1, . . . , vr, vr+1, . . . , vn} of V . Let {φ1, . . . , φn} be the dual basis of V ∗

to {v1, . . . , vn}.

(a) Show that {φ1|W , . . . , φr|W} is the dual basis of W ∗ to {v1, . . . , vr}.
Let τ ∈ W ∗. Show that τ =

∑r
i=1 aiφi|W = ρ(

∑r
i=1 aiφi). Con-

clude that ρ : V ∗ → W ∗ is surjective.

(b) Show that φr+1, . . . , φn ∈ W ◦. If τ =
∑n

i=1 aiφi ∈ W ◦, then show
aj = 0, 1 ≤ j ≤ r. Conclude that {φr+1, . . . , φn} spans W ◦.
Since {φr+1, . . . , φn} is a linearly independent set, conclude that
{φr+1, . . . , φn} is a basis of W ◦. Therefore dim(W ◦) = dim(V )−
dim(W ).
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Chapter 5

Inner Product Spaces

5.1 The Basics

In this chapter, k denotes either the field of real numbers R or the field of
complex numbers C.

If α ∈ C, let α denote the complex conjugate of α. Thus if α = a + bi,
where a, b ∈ R and i =

√
−1, then α = a−bi. Recall the following facts about

complex numbers and complex conjugation. If α, β ∈ C, then α + β = α+β,
αβ = αβ, and α = α. A complex number α is real if and only if α = α. The
absolute value of α ∈ C is defined to be the nonnegative square root of αα.
This is well defined because αα = a2 + b2 is a nonnegative real number. We
see that this definition of the absolute value of a complex number extends
the usual definition of the absolute value of a real number by considering the
case b = 0.

Definition 5.1. Let V be a vector space over k. An inner product on V is
a function 〈 〉 : V × V → k, where (v, w) 7→ 〈v, w〉, satisfying the following
four statements. Let v1, v2, v, w ∈ V and c ∈ k.

1. 〈v1 + v2, w〉 = 〈v1, w〉+ 〈v2, w〉.

2. 〈cv, w〉 = c〈v, w〉.

3. 〈w, v〉 = 〈v, w〉.

4. 〈v, v〉 > 0 for all v 6= 0.
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Statement 3 in Definition 5.1 implies that 〈v, v〉 is a real number. State-
ments 1 and 2 in the definition imply that for any fixed w ∈ V , the function
〈 , w〉 : V → k, given by v 7→ 〈v, w〉, is a linear transformation. It follows
that 〈0, w〉 = 0, for all w ∈ V .

Proposition 5.2. Let 〈 〉 : V × V → k be an inner product on k. Let
v, w, w1, w2 ∈ V and c ∈ k. Then

5. 〈v, w1 + w2〉 = 〈v, w1〉+ 〈v, w2〉.

6. 〈v, cw〉 = c〈v, w〉.

Proof. 〈v, w1 + w2〉 = 〈w1 + w2, v〉 = 〈w1, v〉+ 〈w2, v〉 = 〈w1, v〉 + 〈w2, v〉 =
〈v, w1〉+ 〈v, w2〉.
〈v, cw〉 = 〈cw, v〉 = c〈w, v〉 = c〈w, v〉 = c〈v, w〉.

If k = R, then 〈w, v〉 = 〈v, w〉 and 〈v, cw〉 = c〈v, w〉. If k = C, then
it is necessary to introduce complex conjugation in Definition 5.1 in order
statements (1)-(4) to be consistent. For example, suppose 〈v, cw〉 = c〈v, w〉
for all c ∈ C. Then −〈v, v〉 = 〈iv, iv〉 > 0 when v 6= 0. But 〈v, v〉 > 0 by (4)
when v 6= 0.
Example. Let V = k(n), where k is R or C, and let v, w ∈ k(n). Consider
v, w to be column vectors in k(n) (or n×1 matrices). Define an inner product
〈〉 : V×V → k by (v, w) 7→ vtw. If v is the column vector given by (a1, . . . , an)
and w is the column vector given by (b1, . . . , bn), ai, bi ∈ k, then 〈v, w〉 =∑n

i=1 aibi. It is easy to check that the first two statements in Definition 5.1

are satisfied. The third statement follows from
∑n

i=1 aibi =
∑n

i=1 biai. The
fourth statement follows from

∑n
i=1 aiai =

∑n
i=1 |ai|2 > 0 as long as some ai

is nonzero. This inner product is called the standard inner product on k(n).

Definition 5.3. Let 〈 〉 be an inner product on V and let v ∈ V . The norm
of v, written ||v||, is defined to be the nonnegative square root of 〈v, v〉.

The norm on V extends the absolute value function on k in the following
sense. Suppose V = k(1) and let v ∈ V . Then v = (a), a ∈ k. Assume that
〈 〉 is the standard inner product on V . Then ||v||2 = 〈v, v〉 = aa = |a|2.
Thus ||v|| = |a|.

Proposition 5.4. Let 〈 〉 be an inner product on V and let v, w ∈ V , c ∈ k.
Then the following statements hold.
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1. ||cv|| = |c| ||v||

2. ||v|| > 0, if v 6= 0.

3. |〈v, w〉| ≤ ||v|| ||w|| (Cauchy-Schwarz inequality)

4. ||v + w|| ≤ ||v||+ ||w|| (triangle inequality)

Proof. 1. ||cv||2 = 〈cv, cv〉 = cc〈v, v〉 = |c|2||v||2.
2. If v 6= 0, then ||v||2 = 〈v, v〉 > 0.
3. Let y = ||w||2v − 〈v, w〉w. Then

0 ≤ 〈y, y〉 = 〈||w||2v − 〈v, w〉w, ||w||2v − 〈v, w〉w〉
= ||w||4〈v, v〉 − 〈v, w〉||w||2〈w, v〉 − ||w||2〈v, w〉〈v, w〉+ 〈v, w〉〈v, w〉〈w,w〉
= ||w||2(||v||2||w||2 − |〈v, w〉|2 − |〈v, w〉|2 + |〈v, w〉|2)
= ||w||2(||v||2||w||2 − |〈v, w〉|2).

If w = 0, then 3. is clear. If w 6= 0, then this calculation shows that
0 ≤ ||v||2||w||2 − |〈v, w〉|2 and this gives 3.

4. First we note that 3 implies that

〈v, w〉+ 〈w, v〉 = 〈v, w〉+ 〈v, w〉 = 2Re(〈v, w〉) ≤ 2|〈v, w〉| ≤ 2||v|| ||w||.

Therefore, 4 follows from

||v + w||2 = 〈v + w, v + w〉 = 〈v, v〉+ 〈v, w〉+ 〈w, v〉+ 〈w,w〉
≤ ||v||2 + 2||v|| ||w||+ ||w||2 = (||v||+ ||w||)2.

Proposition 5.5. The inner product 〈 〉 is completely determined by || ||2.
The following formulas hold.

1. If k = R, then 〈v, w〉 = 1
4
||v + w||2 − 1

4
||v − w||2.

2. If k = C, then 〈v, w〉 = 1
4
||v+w||2− 1

4
||v−w||2+ i

4
||v+iw||2− i

4
||v−iw||2.

Proof. See Exercise 2.
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5.2 Orthogonality

In this section, let 〈 〉 denote a fixed inner product on V .

Definition 5.6. Let 〈 〉 be an inner product on V .

1. Vectors v, w ∈ V are orthogonal if 〈v, w〉 = 0.

2. A subset S of vectors in V is an orthogonal set if each pair of distinct
vectors in S is orthogonal.

3. An orthonormal set S in V is an orthogonal set with the additional
property that ||v|| = 1 for each v ∈ S.

Note that the relation of orthogonality is symmetric since 〈v, w〉 = 0 if
and only if 〈w, v〉 = 0.

Proposition 5.7. An orthogonal set of nonzero vectors in V is linearly in-
dependent.

Proof. Let S be an orthogonal set in V and let v1, . . . , vn be distinct nonzero
vectors in S. Suppose c1v1 + · · · + cnvn = 0, ci ∈ k. Then for each j,
0 = 〈0, vj〉 = 〈

∑n
i=1 civi, vj〉 =

∑n
i=1 ci〈vi, vj〉 = cj〈vj, vj〉. Therefore cj = 0

since 〈vj, vj〉 6= 0. Thus v1, . . . , vn is a linearly independent set and so S is a
linearly independent set.

Definition 5.8. Let S ⊆ V be a subset in V . The orthogonal complement
of S in V , written S⊥, is {v ∈ V |〈v, w〉 = 0 for all w ∈ S}.

Note that S⊥ depends on the given inner product on V , although the
notation does not indicate that.

Proposition 5.9. 1. {0}⊥ = V , V ⊥ = {0}.

2. S⊥ is a subspace of V .

3. If S1 ⊆ S2, then S⊥2 ⊆ S⊥1 .

4. Let W = Span(S). Then W⊥ = S⊥.

Proof. If v ∈ V ⊥, then 〈v, v〉 = 0 and so v = 0.
2 and 3 are clear.
4. Let v ∈ S⊥. If w ∈ W , then w =

∑n
i=1 cisi, where ci ∈ k and si ∈ S.

Then 〈v, w〉 = 〈v,
∑n

i=1 cisi〉 =
∑n

i=1 ci〈v, si〉 = 0, since v ∈ S⊥. Thus,
v ∈ W⊥ and so S⊥ ⊆ W⊥. The other inclusion follows easily from 3.
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Lemma 5.10. Let Y ⊆ V be a subspace.

1. If Y is spanned by {v1, . . . , vl}, then Y ⊥ =
⋂l
i=1〈vi〉⊥.

2. If dimV = n and v ∈ V , with v 6= 0, then dim(〈v〉⊥) = n− 1.

Proof. Since 〈vi〉 ⊆ Y , we have Y ⊥ ⊆ 〈vi〉⊥ and it follows Y ⊥ ⊆
⋂l
i=1〈vi〉⊥.

Let w ∈
⋂l
i=1〈vi〉⊥ and let y ∈ Y . Then y =

∑l
i=1 aivi and

〈y, w〉 =
l∑

i=1

ai〈vi, w〉 = 0.

Therefore, w ∈ Y ⊥ and we have Y ⊥ =
⋂l
i=1〈vi〉⊥.

Now suppose dimV = n and let v ∈ V , with v 6= 0. Then 〈v〉⊥ is the
kernel of the linear transformation f : V → k given by f(w) = 〈w, v〉. The
linear transformation f is nonzero since f(v) 6= 0. Therefore, f is surjective
(as k is a one-dimensional vector space over k) and Proposition 2.5 implies
dim(ker(f)) = dim(V )− dim(im(f)) = n− 1.

Proposition 5.11. Let W ⊆ V be a subspace, dimV = n. Then

1. W ∩W⊥ = (0),

2. dim(W⊥) = dimV − dimW ,

3. V = W
⊕

W⊥,

4. W⊥⊥ = W , where W⊥⊥ means (W⊥)⊥.

Proof. Let v ∈ W ∩W⊥. Then 〈v, v〉 = 0 and this implies v = 0. Therefore,
W ∩W⊥ = (0). This proves (1).

Let {v1, . . . , vl} be a basis of W . Lemma 5.10 implies that W⊥ =⋂l
i=1〈vi〉⊥ and dim(〈vi〉)⊥ = n− 1, 1 ≤ i ≤ l. Then

codim(
l⋂

i=1

〈vi〉⊥) ≤
l∑

i=1

codim(〈vi〉⊥) = l.

This implies

dim(V )− dim(
l⋂

i=1

〈vi〉⊥) ≤ l
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and so

dim(
l⋂

i=1

〈vi〉⊥) ≥ n− l.

Therefore, dim(W⊥) ≥ n− l. Since W ∩W⊥ = (0), we have

n = l + (n− l) ≤ dimW + dimW⊥ = dim(W +W⊥) + dim(W ∩W⊥)

= dim(W +W⊥) ≤ dimV = n.

Thus dim(W⊥) = n− l and dim(W +W⊥) = n. This implies W +W⊥ = V .
This proves (2) and (3).

It is easy to check that W ⊆ W⊥⊥. We have equality since

dimW⊥⊥ = dimV − dimW⊥ = dimV − (dimV − dimW ) = dimW.

This proves (4).

The next two results give a computational procedure to find the orthog-
onal complement of a subspace.

Proposition 5.12 (Gram-Schmidt Orthogonalization). Let 〈 〉 be an inner
product on V and let {v1, . . . , vn} be a linearly independent set in V . Then
there exists w1, . . . , wn ∈ V such that the following two statements hold.

1. {w1, . . . , wn} is an orthogonal set of nonzero vectors.

2. Span{v1, . . . , vl} = Span{w1, . . . , wl}, 1 ≤ l ≤ n.

In particular, if {v1, . . . , vn} is a basis of V , then {w1, . . . , wn} is an orthog-
onal basis of V . Therefore, every finite dimensional inner product space has
an orthogonal basis.

Proof. The proof is by induction on n. If n = 1, let w1 = v1. Now assume by
induction that the result has been proved for all values m < n. That means
we can assume there exist w1, . . . , wn−1 ∈ V such that {w1, . . . , wn−1} is an
orthogonal set of nonzero vectors and Span{v1, . . . , vl} = Span{w1, . . . , wl},
1 ≤ l ≤ n− 1.

Let

wn = vn −
n−1∑
j=1

〈vn, wj〉
||wj||2

wj.
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If wn = 0, then vn ∈ Span{w1, . . . , wn−1} = Span{v1, . . . , vn−1}, which would
contradict the linear independence of {v1, . . . , vn}. Therefore, wn 6= 0.

If 1 ≤ i ≤ n− 1, then

〈wn, wi〉 = 〈vn, wi〉 −
n−1∑
j=1

〈vn, wj〉
||wj||2

〈wj, wi〉

= 〈vn, wi〉 −
〈vn, wi〉
||wi||2

〈wi, wi〉 = 0.

Therefore, {w1, . . . , wn} is an orthogonal set of nonzero vectors and it is
easy to check that Span{v1, . . . , vn} = Span{w1, . . . , wn}. The remaining
statements now follow easily.

Corollary 5.13. Assume dimV = n.

1. If {v1, . . . , vn} is a basis of V , then an orthogonal basis {w1, . . . , wn}
of V is given by the following formulas.

w1 = v1

w2 = v2 −
〈v2, w1〉
||w1||2

w1

w3 = v3 −
〈v3, w1〉
||w1||2

w1 −
〈v3, w2〉
||w2||2

w2

...

wi = vi −
i−1∑
j=1

〈vi, wj〉
||wj||2

wj

...

wn = vn −
n−1∑
j=1

〈vn, wj〉
||wj||2

wj

2. Let yi = 1
||wi||wi. Then {y1, . . . , yn} is an orthonormal basis of V .

In particular, every finite dimensional inner product space has an or-
thonormal basis.

Proof. 1. The wi’s are well defined since each wi is defined in terms of
vi, w1, . . . , wi−1. The proof of the previous proposition shows {w1, . . . , wn} is
an orthogonal basis of V .

2. Proposition 5.4(1) implies that ||yi|| = 1.
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5.3 The Matrix of an Inner Product on V

Definition 5.14. Let A ∈Mm×n(k), A = (aij)m×n.

1. The adjoint of A, written A∗, is defined to be At. That is, A∗ ∈
Mn×m(k) and if A∗ = (bij)n×m, then bij = aji.

2. If A∗ = A, then A is called a hermitian matrix. Note that if A is
hermitian, then m = n.

Observe that At =
(
A
)t

.

Proposition 5.15. Let A,B ∈ Mm×n(k) and let C ∈ Mn×p(k). Let c ∈ k.
Then

1. (A+B)∗ = A∗ +B∗ and (cA)∗ = cA∗,

2. (AC)∗ = C∗A∗,

3. A∗∗ = A, where A∗∗ means (A∗)∗.

Proof. (1) and (3) are easy using basic facts about complex conjugation and
transposes of matrices. Here is a proof of (2).

(AC)∗ = (AC)t = CtAt = Ct At = C∗A∗.

Since we sometimes work with more than one inner product at a time,
we modify our notation for an inner product function in the following way.
We denote an inner product by a function B : V × V → k, where B(x, y) =
〈x, y〉B. If there is no danger of confusion, we write instead B(x, y) = 〈x, y〉.

Definition 5.16. Let B : V × V → k be an inner product on V and let
β = {v1, . . . , vn} be an ordered basis of V . Let [B]β ∈Mn×n(k) be the matrix
whose (i, j)-entry is given by 〈vi, vj〉B. Then [B]β is called the matrix of B
with respect to the basis β.

Proposition 5.17. Let B : V × V → k be an inner product on V and let
β = {v1, . . . , vn} be an ordered basis of V . Let G = [B]β, the matrix of B
with respect to the basis β.

Let x =
∑n

i=1 aivi and y =
∑n

j=1 bjvj. Then the following statements
hold.
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1. 〈x, y〉 = [x]tβG[y]β.

2. G is a hermitian matrix.

3. G is an invertible matrix.

Proof. 1.

〈x, y〉 = 〈
n∑
i=1

aivi,

n∑
j=1

bjvj〉 =
n∑
i=1

n∑
j=1

〈aivi, bjvj〉

=
n∑
i=1

n∑
j=1

aibj〈vi, vj〉 =
n∑
i=1

ai(
n∑
j=1

〈vi, vj〉bj) = [x]tβG[y]β.

2. The (i, j)-entry of G∗ = (j, i)− entry of G = 〈vj, vi〉 = 〈vi, vj〉 =
(i, j)-entry of G. Thus, G∗ = G.

3. Suppose G[y]β = 0 for some y ∈ V . Then G[x]β = 0 where [x]β = [y]β.

Now 〈x, x〉 = [x]tβG[x]β = 0. This implies x = 0 and thus y = 0. Therefore,
the null space of G equals zero. This implies that ker(LG) = 0 and thus G is
invertible by Theorem 3.24.

Proposition 5.18. Let β = {v1, . . . , vn} be a basis of V . Let B denote
the set of all inner products B : V × V → k on V . Consider the function
gβ : B →Mn×n(k) given by gβ(B) = [B]β where B ∈ B. Then gβ is injective.
The image of gβ is contained in the set of all hermitian matrices inMn×n(k).

Proof. The function gβ is injective since the entries of [B]β, 〈vi, vj〉, uniquely
determine B. The image of gβ is contained in the set of hermitian matrices
in Mn×n(k) by Proposition 5.17.

The precise image of gβ is determined in Corollary 5.21 below.
If β and γ are two bases of V , the next result gives the relation between

[B]β and [B]γ.

Proposition 5.19. Let β = {v1, . . . , vn} and γ = {w1, . . . , wn} be two bases
of V . Let G = [B]β and H = [B]γ. Let P = [1V ]βγ . Then H = P tGP .

Proof. The formula [x]β = [1V ]βγ [x]γ = P [x]γ and Proposition 5.17 imply for

any x, y ∈ V that [x]tγH[y]γ = 〈x, y〉 = [x]tβG[y]β = [x]tγP
tGP [y]γ. Since this

holds for all x, y ∈ V , it follows that H = P tGP .
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Exercise 5 asks for another proof of Proposition 5.19.

Theorem 5.20. Let V be a vector space over k of dimension n and let
β = {v1, . . . , vn} be a basis of V . Let B : V × V → k be an inner product on
V . Then G = [B]β = P tP for some invertible matrix P ∈Mn×n(k).

Conversely, let P ∈ Mn×n(k) be an invertible matrix. Then there exists
a unique inner product B : V × V → k such that [B]β = P tP .

Proof. First assume B : V × V → k is an inner product on V . Let γ =
{w1, . . . , wn} be an orthonormal basis of V with respect to the inner product
B. Let P = [1V ]γβ. Then [x]γ = [1V ]γβ[x]β = P [x]β. Thus, P is invertible since
1V is invertible. We have [B]γ = In because γ is an orthonormal basis of V
with respect to B. We now have

[x]tβ[B]β[y]β = 〈x, y〉B = [x]tγ[B]γ[y]γ = [x]tγIn[y]γ = [x]tβP
tInP [y]β

= [x]tβP
tP [y]β.

Since this holds for all x, y ∈ V , it follows that [B]β = P tP .
Now let P ∈ Mn×n(k) be an arbitrary invertible matrix. We will show

that the function B : V × V → k defined by B(x, y) = [x]tβP
tP [y]β is an

inner product on V . Statements (1),(2) of Definition 5.1 are easily seen to
hold. For statement (3) of Definition 5.1, we have

B(y, x) = [y]tβP
tP [x]β = [x]β

t
P
t
P [y]β = [x]tβP

tP [y]β = B(x, y).

For statement (4), we have

B(x, x) = [x]tβP
tP [x]β = (P [x]β)tP [x]β = [y]tβ[y]β,

for the unique vector y ∈ V satisfying [y]β = P [x]β. Thus, B(x, x) =

[y]tβ[y]β ≥ 0, with equality holding if and only if [y]β = 0. But [y]β = 0
if and only if [x]β = 0 since P is invertible. Therefore B(x, x) > 0 if x 6= 0.
This shows that statements (1)-(4) of Definition 5.1 hold, and thus B is an
inner product.

To see that [B]β = P tP , we observe that the (i, j)-entry of [B]β =
B(vi, vj) = etiP

tPej = the (i, j)-entry of P tP . The uniqueness follows from
Proposition 5.18.

We have now proved the following Corollary.

93



Corollary 5.21. im(gβ) = {P tP |P ∈ Mn×n(k), P invertible}. Thus a
matrix G has the form G = [B]β if and only if G = P tP for some invertible
matrix P ∈Mn×n(k).

Corollary 5.22. Let V = k(n) and let β = εn, the standard basis of k(n). Let
G ∈Mn×n(k). Consider the function B : V × V → k, where (x, y) 7→ xtGy.
Then B is an inner product on k(n) if and only if G = P tP for some invertible
matrix P ∈Mn×n(k).

Let us now check how P tP depends on the choice of the orthonormal basis
γ of V in the proof of Theorem 5.20. Suppose δ = {y1, . . . , yn} is another
orthonormal basis of V . Let Q = [1V ]δγ. Then [x]δ = [1V ]δγ[x]γ = Q[x]γ. Since

δ is an orthonormal basis of V , we have 〈x, y〉B = [x]tδIn[y]δ = [x]tγQ
tInQ [y]γ.

Since this equation holds for all x, y ∈ V , and we saw earlier that 〈x, y〉B =
[x]tγIn[y]γ, it follows that QtQ = In.

Now we repeat the computation of 〈x, y〉B above with δ in place of γ. We
have [1V ]δβ = [1V ]δγ[1V ]γβ = QP . Therefore, 〈x, y〉B = [x]tβ(QP )tQP [y]β. But

(QP )tQP = P tQtQ P = P tP . This shows that a different choice of γ would
replace P by QP where QtQ = In.

5.4 The Adjoint of a Linear Transformation

Lemma 5.23. Let (V, 〈 〉) be given and assume that dimV = n. Let T :
V → V be a linear transformation. Let w ∈ V be given. Then

1. The function h : V → k, given by v 7→ 〈Tv, w〉, is a linear transforma-
tion.

2. There is a unique w′ ∈ V such that h(v) = 〈v, w′〉 for all v ∈ V . That
is, h = 〈 , w′〉.

Proof. 1. h(v1 + v2) = 〈T (v1 + v2), w〉 = 〈Tv1 + Tv2, w〉 = 〈Tv1, w〉 +
〈Tv2, w〉 = h(v1) + h(v2).

h(cv) = 〈T (cv), w〉 = 〈cTv, w〉 = c〈Tv, w〉 = ch(v).
2. Let {y1, . . . , yn} be an orthonormal basis of V . Let ci = h(yi), 1 ≤ i ≤ n,
and let w′ =

∑n
i=1 ciyi. Then 〈yj, w′〉 = 〈yj,

∑n
i=1 ciyi〉 =

∑n
i=1 ci〈yj, yi〉 =

cj = h(yj), 1 ≤ j ≤ n. Therefore h = 〈, w′〉, since both linear transformations
agree on a basis of V .
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To show that w′ is unique, suppose that 〈v, w′〉 = 〈v, w′′〉 for all v ∈ V .
Then 〈v, w′−w′′〉 = 0 for all v ∈ V . Let v = w′−w′′. Then w′−w′′ = 0 and
so w′ = w′′.

Proposition 5.24. Let (V, 〈 〉) be given and assume that dimV = n. Let
T : V → V be a linear transformation. Then there exists a unique linear
transformation T ∗ : V → V such that 〈Tv, w〉 = 〈v, T ∗w〉 for all v, w ∈ V .

Proof. Define T ∗ : V → V by w 7→ w′ where 〈Tv, w〉 = 〈v, w′〉, for all v ∈ V .
Therefore, 〈Tv, w〉 = 〈v, T ∗w〉 for all v, w ∈ V . It remains to show that T ∗

is a linear transformation. The uniqueness of T ∗ is clear from the previous
result.

For all v ∈ V ,

〈v, T ∗(w1 + w2)〉 = 〈Tv, w1 + w2〉 = 〈Tv, w1〉+ 〈Tv, w2〉
= 〈v, T ∗w1〉+ 〈v, T ∗w2〉 = 〈v, T ∗w1 + T ∗w2〉.

Therefore, T ∗(w1 + w2) = T ∗w1 + T ∗w2. For all v ∈ V ,

〈v, T ∗(cw)〉 = 〈Tv, cw〉 = c〈Tv, w〉 = c〈v, T ∗w〉 = 〈v, cT ∗w〉.

Therefore, T ∗(cw) = cT ∗w.

Definition 5.25. The linear transformation T ∗ constructed in Proposition
5.24 is called the adjoint of T .

Proposition 5.26. Let T, U ∈ L(V, V ) and let c ∈ k. Then

1. (T + U)∗ = T ∗ + U∗.

2. (cT )∗ = cT ∗.

3. (TU)∗ = U∗T ∗.

4. T ∗∗ = T . (T ∗∗means(T ∗)∗ .)

Proof. We have

〈v, (T + U)∗w〉 = 〈(T + U)v, w〉 = 〈Tv + Uv,w〉 = 〈Tv, w〉+ 〈Uv,w〉
= 〈v, T ∗w〉+ 〈v, U∗w〉 = 〈v, T ∗w + U∗w〉 = 〈v, (T ∗ + U∗)w〉.

Thus, (T + U)∗w = (T ∗ + U∗)w for all w ∈ V and so (T + U)∗ = T ∗ + U∗.
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Next, we have

〈v, (cT )∗w〉 = 〈(cT )v, w〉 = 〈c(Tv), w〉 = c〈Tv, w〉 = c〈v, T ∗w〉 = 〈v, cT ∗w〉.

Thus, (cT )∗w = cT ∗w for all w ∈ V and so (cT )∗ = cT ∗.
Since 〈v, (TU)∗w〉 = 〈(TU)v, w〉 = 〈Uv, T ∗w〉 = 〈v, U∗T ∗w〉, it follows

that (TU)∗w = U∗T ∗w for all w ∈ V . Thus (TU)∗ = U∗T ∗.
Since 〈v, T ∗∗w〉 = 〈T ∗v, w〉 = 〈w, T ∗v〉 = 〈Tw, v〉 = 〈v, Tw〉, it follows

that T ∗∗w = Tw for all w ∈ V . Thus T ∗∗ = T .

Proposition 5.27. Let T ∈ L(V, V ) and assume that T is invertible. Then
T ∗ is invertible and (T ∗)−1 = (T−1)∗.

Proof. Let 1V : V → V be the identity linear transformation. Then (1V )∗ =
1V , since 〈v, (1V )∗w〉 = 〈1V (v), w〉 = 〈v, w〉. Thus (1V )∗w = w for all w ∈ V
and so (1V )∗ = 1V .

Then (T−1)∗T ∗ = (TT−1)∗ = (1V )∗ = 1V , and T ∗(T−1)∗ = (T−1T )∗ =
(1V )∗ = 1V . Therefore, (T ∗)−1 = (T−1)∗.

Proposition 5.28. Let (V, 〈 〉) be given and assume that dimV = n. Let
β = {v1, . . . , vn} be an ordered orthonormal basis of V . Let T : V → V be a

linear transformation. Let A = [T ]ββ and let B = [T ∗]ββ. Then B = A∗(= A
t
).

Proof. Let A = (aij)n×n and let B = (bij)n×n Then T (vj) =
∑n

i=1 aijvi,
1 ≤ j ≤ n, and T ∗(vj) =

∑n
i=1 bijvi, 1 ≤ j ≤ n. But

T (vj) =
n∑
i=1

〈T (vj), vi〉vi

by Exercise 3 at the end of this chapter, since β is an orthonormal basis.
Thus, aij = 〈Tvj, vi〉. Similar reasoning applied to T ∗ implies that bij =

〈T ∗(vj), vi〉 = 〈vi, T ∗(vj)〉 = 〈Tvi, vj〉 = aji. Therefore B = A∗.

5.5 Normal Transformations

Definition 5.29. Let (V, 〈 〉) be given and let T ∈ L(V, V ).

1. T is normal if TT ∗ = T ∗T .

2. T is hermitian if T ∗ = T .
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3. T is skew-hermitian if T ∗ = −T .

4. T is unitary if TT ∗ = T ∗T = 1V .

5. T is positive if T = SS∗ for some S ∈ L(V, V ).

Clearly, hermitian, skew-hermitian, and unitary transformations are spe-
cial cases of normal transformations.

Definition 5.30. Let T ∈ L(V, V ).

1. An element α ∈ k is an eigenvalue of T if there is a nonzero vector
v ∈ V such that Tv = αv.

2. An eigenvector of T is a nonzero vector v ∈ V such that Tv = αv for
some α ∈ k.

3. For α ∈ k, let Vα = ker(T − α1V ). Then Vα is called the eigenspace of
V associated to α.

The definition of Vα depends on T although the notation doesn’t indicate
this. If α is not an eigenvalue of T , then Vα = {0}.

The three special types of normal transformations above are distinguished
by their eigenvalues.

Proposition 5.31. Let α be an eigenvalue of T .

1. If T is hermitian, then α ∈ R.

2. If T is skew-hermitian, then α is pure imaginary. That is, α = ri
where r ∈ R and i =

√
−1.

3. If T is unitary, then |α| = 1.

4. If T is positive, then α ∈ R and α is positive.

Proof. Let Tv = αv, v 6= 0.
1. α〈v, v〉 = 〈αv, v〉 = 〈Tv, v〉 = 〈v, T ∗v〉 = 〈v, Tv〉 = 〈v, αv〉 = α〈v, v〉.
Since 〈v, v〉 6= 0, it follows that α = α and so α ∈ R.
2. Following the argument in (1), we have α〈v, v〉 = 〈v, T ∗v〉 = 〈v,−Tv〉 =
〈v,−αv〉 = −α〈v, v〉. Therefore α = −α and so 2Re(α) = α + α = 0. This
implies α = ri where r ∈ R and i =

√
−1.
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3. 〈v, v〉 = 〈v, T ∗Tv〉 = 〈Tv, Tv〉 = 〈αv, αv〉 = αα〈v, v〉. Thus, αα = 1 and
so |α| = 1.
4. As in (1), we have α〈v, v〉 = 〈v, T ∗v〉 = 〈v, SS∗v〉 = 〈S∗v, S∗v〉 > 0. Since
〈v, v〉 > 0, it follows that α > 0.

Definition 5.32. Let W ⊆ V be a subspace and let T ∈ L(V, V ). Then W
is a T -invariant subspace of V if T (W ) ⊆ W .

Proposition 5.33. Let T ∈ L(V, V ) and let W be a subspace of V . Assume
that dimV = n.

1. If W is a T -invariant subspace of V , then W⊥ is a T ∗-invariant sub-
space of V .

2. If W is a T -invariant subspace of V and T is normal, then W⊥ is a
T -invariant subspace of V .

3. Assume that W is a T -invariant subspace of V and T is normal. Using
(2), let T |W : W → W and T |W⊥ : W⊥ → W⊥ be the linear transfor-
mations induced by T by restriction of domains. Then T |W and T |W⊥
are each normal.

Proof. 1. Let x ∈ W and let y ∈ W⊥. Then Tx ∈ W and 〈x, T ∗y〉 =
〈Tx, y〉 = 0, since y ∈ W⊥. Since x is an arbitrary vector in W , it follows
that T ∗y ∈ W⊥ and so T ∗(W⊥) ⊆ W⊥.
2. Let {v1, . . . , vl} be an orthonormal basis of W and let {vl+1, . . . , vn}
be an orthonormal basis of W⊥. Then β = {v1, . . . , vl, vl+1, . . . , vn} is an
orthonormal basis of V . Let A = [T ]ββ. Then A∗ = [T ∗]ββ by Proposition
5.28, since β is an orthonormal basis of V . We have AA∗ = A∗A, since
TT ∗ = T ∗T . Since W is a T -invariant subspace of V , we have

A =

(
C D
0 E

)
,

where

C ∈Ml×l(k), D ∈Ml×(n−l)(k), 0 ∈M(n−l)×l(k), andE ∈M(n−l)×(n−l)(k).

Note that the submatrix 0 appears because W is T -invariant. The equation
AA∗ = A∗A gives(

C D
0 E

)(
C∗ 0
D∗ E∗

)
=

(
C∗ 0
D∗ E∗

)(
C D
0 E

)
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(
CC∗ +DD∗ DE∗

ED∗ EE∗

)
=

(
C∗C C∗D
D∗C D∗D + E∗E

)
.

It is necessary to check carefully that the block matrix multiplication
shown here works as indicated. The upper l × l matrix shows that CC∗ +
DD∗ = C∗C and so DD∗ = C∗C − CC∗. It follows from this that D = 0.
(See Exercise 10 for the details of this conclusion.) Therefore,

A =

(
C 0
0 E

)
.

Since A = [T ]ββ, it follows that W⊥ is T -invariant.
3. Since D = 0, the matrix equations above show that CC∗ = C∗C and
EE∗ = E∗E. If we let β

′
= {v1, . . . , vl} and β

′′
= {vl+1, . . . , vn}, then we

have C = [T |W ]β
′

β′
and E = [T |W⊥ ]β

′′

β′′
. It follows that T |W and T |W⊥ are both

normal.

In order to apply Proposition 5.33 we require the following two facts.
These two facts will be proved later in these notes.

Facts: Let T : V → V be a linear transformation. (There is no assump-
tion here that V has an inner product.)

1. If k = C, then V contains a one-dimensional T -invariant subspace.

2. If k = R, then V contains a T -invariant subspace of dimension ≤ 2.

When k = C, statement 1 implies that V contains an eigenvector. To
see this, let W be a one-dimensional T -invariant subspace generated by the
nonzero vector v. Then Tv = αv for some α ∈ k since Tv ∈ W . Thus v is
an eigenvector with eigenvalue α.

Theorem 5.34. Let (V, 〈 〉) be given and assume dimV = n. Let T : V →
V be a linear transformation and assume that T is normal.

1. If k = C, then V can be written as an orthogonal direct sum of one-
dimensional T -invariant subspaces. Thus, V has an orthonormal basis
β consisting of eigenvectors of T and [T ]ββ is a diagonal matrix.

2. If k = R, then V can be written as an orthogonal direct sum of T -
invariant subspaces of dimension ≤ 2. Let

V = W1

⊕
· · ·
⊕

Wl

⊕
Wl+1

⊕
· · ·
⊕

Wl+s,
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where

dimWi =

{
1, if 1 ≤ i ≤ l

2, if l + 1 ≤ i ≤ l + s.

Each T |Wi
: Wi → Wi is a normal transformation.

3. If k = R, then V can be written as an orthogonal direct sum of one-
dimensional T -invariant subspaces if and only if T is hermitian (T ∗ =
T ). That is, V has an orthonormal basis β consisting of eigenvectors
of T if and only if T ∗ = T .

Proof. 1. The proof is by induction on n. If n = 1, the result is clear. Now
assume the result has been proved if dimV < n and assume dimV = n.
Using Fact 1, there exists a one-dimensional T -invariant subspace W1. Then
V = W1

⊕
W⊥

1 , where W⊥
1 is T -invariant and T |W⊥1 is normal. Since

dimW⊥
1 = n − 1, the induction hypothesis implies that W⊥

1 can be writ-
ten as an orthogonal direct sum of one-dimensional T |W⊥1 -invariant sub-

spaces. Thus, W⊥
1 = W2

⊕
· · ·
⊕

Wn, where dimWi = 1, 2 ≤ i ≤ n, Wi

is T |W⊥1 -invariant, and the Wi’s are pairwise orthogonal. Therefore V =
W1

⊕
W2

⊕
· · ·
⊕

Wn where each Wi is a one-dimensional T -invariant sub-
space and the Wi’s are pairwise orthogonal. Let Wi = 〈vi〉, where ||vi|| = 1,
1 ≤ i ≤ n. Then β = {v1, . . . , vn} is an orthonormal basis of V and [T ]ββ is a
diagonal matrix with (i, i)-entry equal to αi, where Tvi = αivi.

2. The proof of (2) is also by induction and is similar to the proof of
(1) except we use Fact 2 in place of Fact 1. Let Wi = 〈vi〉, 1 ≤ i ≤ l,
where ||vi|| = 1 and Tvi = αivi. Let {yi, zi} be an orthonormal basis of
Wi, l + 1 ≤ i ≤ l + s. Then β = {v1, . . . , vl, yl+1, zl+1, . . . , yl+s, zl+s} is an
orthonormal basis of V . We know that T |Wi

is normal by Proposition 5.33.
It remains to describe normal transformations T : V → V when k = R

and dimV = 2. We will do that now before proving 3.

Proposition 5.35. Let k = R, dimV = 2, T ∈ L(V, V ), and assume that
T is normal. Then either T ∗ = T or T ∗ = λT−1 for some λ ∈ R, λ > 0.

Proof. Let β be an orthonormal basis of V and let A = [T ]ββ. Then A∗ =

[T ∗]ββ, since β is an orthonormal basis of V . Since k = R, we have A∗ = At.
Let

A =

(
a b
c d

)
.
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Since T is normal, we have TT ∗ = T ∗T and so AAt = AA∗ = A∗A = AtA.
Then AAt = AtA gives(

a b
c d

)(
a c
b d

)
=

(
a c
b d

)(
a b
c d

)
(
a2 + b2 ac+ bd
ac+ bd c2 + d2

)
=

(
a2 + c2 ab+ cd
ab+ cd b2 + d2

)
.

Comparing the (1, 1)-entry gives b2 = c2. If b = c, then A = At = A∗ and
so T ∗ = T . Now assume that b = −c 6= 0. Then ac + bd = ab + cd implies
ac + (−c)d = a(−c) + cd and so 2c(a − d) = 0. Since 2c 6= 0, we must have
a = d. We now have

A =

(
a −c
c a

)
.

It is easy to check that AAt = AtA = (a2 + c2)I2. Therefore, A∗ = At =
(a2 + c2)A−1 and so T ∗ = λT−1 for some λ ∈ R.

Proposition 5.36. Let k = R, dimV = 2, T ∈ L(V, V ), and assume that T
is normal. Then T ∗ = T if and only if V has a one-dimensional T -invariant
subspace.

Proof. First assume that V has a one-dimensional T -invariant subspace W .
Then V = W

⊕
W⊥ and W⊥ is also a T -invariant subspace by Proposition

5.33. Let W = 〈v1〉 and let W⊥ = 〈v2〉, where ||vi|| = 1, i = 1, 2. Then
β = {v1, v2} is an orthonormal basis of V and A = [T ]ββ is a diagonal matrix,
since v1, v2 are each eigenvectors of T . Since A∗ = At = A and β is an
orthonormal basis of V , it follows that T ∗ = T by Proposition 5.28.

Now assume that T ∗ = T . Let β be an orthonormal basis of V and let

A = [T ]ββ =

(
a b
c d

)
.

Since β is an orthonormal basis of V , we have A = A∗ = At and so b = c.
A straight forward calculation shows that A2 − (a + d)A + (ad − b2)I2 = 0.
It follows that T 2 − (a + d)T + (ad − b2)1V = 0. Let f(x) = x2 − (a +
d)x + (ad− b2). Then f(x) = 0 has two (not necessarily distinct) real roots
since the discriminant (a + d)2 − 4(ad − b2) = (a − d)2 + 4b2 ≥ 0. Thus,
f(x) = (x−α)(x−γ), where α, γ ∈ R. It follows that (T−α1V )(T−γ1V ) = 0.
We may assume that ker(T − α1V ) 6= 0. That means there exists a nonzero
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vector v ∈ V such that Tv = αv. Then W = 〈v〉 is a one-dimensional
T -invariant subspace of V .

Now we can finish the proof of 3 in Theorem 5.34. Let β be the orthonor-
mal basis from the proof of 2 and let A = [T ]ββ. Let βi = {vi}, if 1 ≤ i ≤ l,
and let βi = {yi, zi}, if l + 1 ≤ i ≤ l + s. Then βi is an orthonormal basis
of Wi, 1 ≤ i ≤ l + s and β = β1 ∪ · · · ∪ βl+s. Let Ai = [T |Wi

]βiβi . Since each
Wi is a T-invariant subspace of V , βi is an orthonormal basis of Wi, β is an
orthonormal basis of V , each T |Wi

is normal (by 2), Proposition 5.36, and
k = R, we have the following conclusions.

T is hermitian ⇔ T ∗ = T ⇔ A∗ = A ⇔ At = A ⇔ Ati = Ai ⇔
A∗i = Ai ⇔ (T |Wi

)∗ = T |Wi
⇔ each Wi has a one-dimensional T |Wi

-invariant
subspace ⇔ each Wi can be written as an orthogonal direct sum of one-
dimensional T |Wi

-invariant subspaces ⇔ V can be written as an orthogonal
direct sum of one-dimensional T -invariant subspaces.

Some special terminology for the case k = R:

Definition 5.37. Assume k = R and let T : V → V be a linear transforma-
tion.

1. If T ∗ = T , then T is symmetric.

2. If T ∗ = −T , then T is skew-symmetric.

3. If TT ∗ = T ∗T = 1V , then T is orthogonal.

Some terminology for matrices over C and R:

Definition 5.38. Let A ∈Mn×n(k). Recall that A∗ = A
t

= At.

1. A is normal ⇔ AA∗ = A∗A⇔ AAt = AtA.

2. A is hermitian ⇔ A∗ = A ⇔ At = A. If k = R and A is hermitian,
then At = A and A is called symmetric.

3. A is skew-hermitian ⇔ A∗ = −A ⇔ At = −A. If k = R and A is
skew-hermitian, then At = −A and A is called skew-symmetric.

4. A is unitary ⇔ AA∗ = A∗A = In ⇔ AtA = AAt = In. If k = R and
A is unitary, then AAt = AtA = In and A is called orthogonal.
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If A is a unitary matrix, then the columns of A are orthonormal with
respect to the standard inner product (pairwise orthogonal and have norm
1) because A∗A = In implies AtA = In. The rows of A are also orthonormal
with respect to the standard inner product because AA∗ = In. If k = R
and A is orthogonal, note that this requires the rows and columns to be
orthonormal, not just orthogonal. Tradition requires us to live with this
confusing terminology.

Theorem 5.39. Let A ∈Mn×n(k).

1. Assume k = C. Then A is normal if and only if there exists a unitary
matrix P such that P ∗AP is a diagonal matrix.

2. Assume k = R. Then A is a symmetric matrix if and only if there
exists an orthogonal matrix P such that P tAP is a diagonal matrix.

Proof. 1. First assume that P is a unitary matrix such that P ∗AP = D is a
diagonal matrix. Then

(P ∗AP )(P ∗AP )∗ = DD∗ = D∗D = (P ∗AP )∗(P ∗AP )

P ∗APP ∗A∗P = P ∗A∗PP ∗AP.

Then AA∗ = A∗A, since PP ∗ = In and P, P ∗ are both invertible.
Now assume that A is normal. We may assume that A = [T ]γγ for some

T ∈ L(V, V ) and some orthonormal basis γ of V . Since k = C, V contains
an orthonormal basis β consisting of eigenvectors of T , by Theorem 5.34. Let
P = [1V ]γβ. Then P is a unitary matrix since β and γ are both orthonormal

bases of V . (See Exercise 8(b).) Then [T ]ββ is a diagonal matrix and [T ]ββ =

[1V ]βγ [T ]γγ[1V ]γβ = P−1AP = P ∗AP .

2. First assume that P is an orthogonal matrix such that P tAP = D is a
diagonal matrix. Then (P tAP )t = Dt = D = P tAP. Thus, P tAtP = P tAP
and so At = A, since P is invertible. Therefore A is symmetric.

Now assume that A is symmetric. We may assume that A = [T ]γγ for
some T ∈ L(V, V ) and some orthonormal basis γ of V . Since A = At = A∗

and γ is an orthonormal basis of V , it follows that T = T ∗ and T is her-
mitian. By Theorem 5.34(3), V contains an orthonormal basis β consist-
ing of eigenvectors of T . Then [T ]ββ is a diagonal matrix. As in 1, let
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P = [1V ]γβ. Then P is an orthogonal matrix since β and γ are both or-

thonormal bases of V . (See Exercise 8(b).) Then [T ]ββ is a diagonal matrix

and [T ]ββ = [1V ]βγ [T ]γγ[1V ]γβ = P−1AP = P tAP .

If k is an arbitrary field, char k different from 2, and A ∈ Mn×n(k) is a
symmetric matrix, then it can be shown that there exists an invertible matrix
P such that P tAP is a diagonal matrix. The field of real numbers R has
the very special property that one can find an orthogonal matrix P such that
P tAP is diagonal.

Let A ∈ Mn×n(R), A symmetric. Here is a nice way to remember how
to find the orthogonal matrix P in Theorem 5.39(2). Let εn be the standard
basis of R(n). Let β = {v1, . . . , vn} be an orthonormal basis of R(n) consisting
of eigenvectors of A. Let P be the matrix whose jth column is the eigenvector
vj expressed in the standard basis εn. Then P = [1V ]εnβ . Recall that P is an
orthogonal matrix since the columns of P are orthonormal. Let Avj = αjvj,
1 ≤ j ≤ n. Let D ∈ Mn×n(R) be the diagonal matrix whose (j, j)-entry is
αj. Then it is easy to see that AP = PD and so D = P−1AP = P tAP .

Exercises

1. In proposition 5.4(3), equality in the Cauchy-Schwarz inequality holds
if and only if v, w are linearly dependent.

2. Prove Proposition 5.5.

3. Let {v1, . . . , vn} be an orthogonal set of nonzero vectors. If w =∑n
i=1 civi, ci ∈ k, then

cj =
〈w, vj〉
||vj||2

.

4. Let (V, 〈 〉) be given, with dimV finite. Let S1, S2 be subsets of V and
let W1 = Span(S1), W2 = Span(S2). Recall that S⊥i = W⊥

i , i = 1, 2.
Assume that 0 ∈ Si, i = 1, 2. Show the following are true.

(a)
(S1 + S2)

⊥ = (W1 +W2)
⊥ = W⊥

1 ∩W⊥
2 = S⊥1 ∩ S⊥2

(W1 ∩W2)
⊥ = W⊥

1 +W⊥
2 = S⊥1 + S⊥2 .
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(b) It is possible that (S1 ∩ S2) ( (W1 ∩ W2) and (W1 ∩ W2)
⊥ (

(S1 ∩ S2)
⊥.

5. Give another proof of Proposition 5.19 by directly computing the (r, s)-
entry of H, namely 〈wr, ws〉, and showing that it is equal to the (r, s)-
entry of P tGP .

6. Let G,H ∈ Mn×n(k) and suppose xtGy = xtHy for all x, y ∈ k(n).
Then show G = H.

7. Suppose RtR = P tP , where P,R are invertible matrices in Mn×n(k).
Let Q = PR−1. Then QtQ = In.

8. (a) Suppose that β, γ are bases of V . Then [B]γ = ([1V ]βγ)t[B]β[1V ]βγ .

(b) Assume that β, γ are orthonormal bases of V . Let R = [1V ]γβ.

Then RtR = In.

9. Let T ∈ L(V, V ) and let W be a subspace of V . Assume that W
is a T -invariant subspace of V and that T is normal. Then W is a
T ∗-invariant subspace of V .

10. Let A ∈ Mn×n(k), A = (aij)n×n. Define the trace of A to be trA =
a11 + a22 + · · · ann, the sum of the diagonal entries of A.

(a) If A,B ∈Mn×n(k), then tr(A+B) = trA+ trB.

(b) If A,B ∈Mn×n(k), then tr(AB) = tr(BA).

(c) If A ∈Mn×n(k), compute tr(AA∗).

(d) If tr(AA∗) = 0, then A = 0.

(e) If BB∗ = A∗A− AA∗, then B = 0.

11. Let T : V → V be a normal linear transformation. Use the following
parts to show that if Tmv = 0 for some vector v ∈ V and some positive
integer m, then Tv = 0. (Tm = T ◦ · · · ◦ T .)

(a) If R : V → V is a linear transformation and R∗Rv = 0, then
Rv = 0.

(b) If S : V → V is hermitian and S2v = 0, then Sv = 0.

(c) If S : V → V is hermitian and Smv = 0, then Sv = 0.
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(d) Let S = T ∗T . Then Sm = (T ∗)mTm.

(e) If Tmv = 0, then Tv = 0.

12. Suppose k = R, dimV = 2, T ∈ L(V, V ), and T is normal. Describe
all such T ’s such that T ∗ = T and T ∗ = λT−1. In Proposition 5.35,
if b = −c 6= 0, then V does not contain a one-dimensional T -invariant
subspace.

13. Describe all orthogonal matrices A ∈M2×2(R).

14. Let A ∈M2×2(R) be a symmetric matrix. Find an orthogonal matrix
P ∈M2×2(R) such that P tAP is diagonal.
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Chapter 6

Determinants

6.1 The Existence of n-Alternating Forms

In this chapter, k denotes an arbitrary field.

Definition 6.1. Let V1, . . . , Vn,W be vector spaces over k. A function

f : V1 × · · · × Vn → W

is multilinear (or n-multilinear) if f is linear in each variable. That is, if
j is given and vi ∈ Vi, i 6= j, then the function fj : Vj → W , given by
fj(x) = f(v1, . . . , vj−1, x, vj+1, . . . , vn) is a linear transformation.

We will usually assume that V = V1 = · · · = Vn and W = k. In this case,
a multilinear function (or n-multilinear function) is called a multilinear form
(or n-multilinear form) on V .

Definition 6.2. An n-multilinear function f : V × · · · × V → W is called
an alternating function (or n-alternating function) if

1. f is a multilinear function and

2. f(v1, . . . , vn) = 0 whenever two adjacent arguments of f are equal. That
is, if vi = vi+1, for some i, 1 ≤ i ≤ n− 1, then f(v1, . . . , vn) = 0.

If W = k, we call f an alternating form (or n-alternating form) on V .

If f : V ×· · ·×V → W is defined by f(v1, . . . , vn) = 0 for all v1, . . . , vn ∈
V , then f is clearly an n-alternating form on V .
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Proposition 6.3. Let f : V × · · · × V → W be an n-alternating function.
Let v1, . . . , vn ∈ V . Then the following statements hold.

1. f(v1, . . . , vi+1, vi, . . . , vn) = −f(v1, . . . , vi−1, vi, vi+1, vi+2, . . . , vn). (In-
terchanging two adjacent arguments of f multiplies f(v1, . . . , vn) by
−1.)

2. If vi = vj, i 6= j, then f(v1, . . . , vi, . . . vj, . . . , vn) = 0.

3. If i < j, then

f(v1, . . . , vi, . . . , vj, . . . , vn) = −f(v1, . . . , vj, . . . , vi, . . . , vn).

(Interchanging any two distinct arguments of f multiplies the value of
f by −1.)

4. Let a ∈ k and let i 6= j. Then

f(v1, . . . , vn) = f(v1, . . . , vi−1, vi + avj, vi+1, . . . , vn).

Proof. (1) Let g(x, y) = f(v1, . . . , vi−1, x, y, vi+2, . . . , vn), x, y ∈ V . Then g is
also multilinear and alternating, and so we have

0 = g(x+ y, x+ y) = g(x, x) + g(x, y) + g(y, x) + g(y, y) = g(x, y) + g(y, x).

Thus, g(y, x) = −g(x, y), and so g(vi+1, vi) = −g(vi, vi+1). This gives (1).
(2) We successively interchange adjacent arguments of f until two adja-

cent arguments are equal. Then (1) implies that this changes the value of
f(v1, . . . , vi, . . . vj, . . . , vn) by a factor of ±1. Since f is alternating, the new
value of f is 0. Therefore f(v1, . . . , vi, . . . vj, . . . , vn) = 0.

(3) This follows immediately from (2) using the argument in (1).
(4) The multilinearity of f and the result in (2) give

f(v1, . . . , vi−1,vi + avj, vi+1, . . . , vn)

= f(v1, . . . , vi, . . . , vn) + af(v1, . . . , vi−1, vj, vi+1, . . . , vn)

= f(v1, . . . , vi, . . . , vn).
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If char k 6= 2, then condition (1) of Proposition (6.3) can be taken as the
definition of an alternating function. To see this, suppose that

f : V × · · · × V → W

is an n-multilinear function and suppose that condition (1) of Proposition
(6.3) holds. Assume that vi = vi+1, where 1 ≤ i ≤ n−1, and define g(x, y) as
in the proof of condition (1) of Proposition 6.3. Then condition (1) implies
that g(x, x) = −g(x, x) for all x ∈ V . Then 2g(x, x) = 0. If char k 6= 2,
then g(x, x) = 0, and thus the original defining condition of an alternating
function holds.

If char k = 2, then there are n-multilinear functions that satisfy condition
(1) of Proposition 6.3, but don’t satisfy the original defining condition of an
alternating function.

We have not yet given an example of a nonzero alternating function as
it requires some work to produce such examples. We seemingly digress for a
moment to discuss some results about permutations and then return to the
problem of producing nontrivial alternating functions. (Permutations were
introduced in Chapter 3, Section 5.)

We now recall some concepts from Chapter 3, Section 5. Let Tn denote
the set of all functions σ : {1, 2, . . . , n} → {1, 2, . . . , n}. Let Sn be the subset
of Tn consisting of all bijective functions

σ : {1, 2, . . . , n} → {1, 2, . . . , n}.

The elements of Sn are called permutations of {1, 2, . . . , n} since each σ ∈
Sn corresponds to a rearrangement or reordering of {1, 2, . . . , n}. An easy
calculation shows that |Tn| = nn and |Sn| = n!.

Let σ ∈ Sn. The ordered set {σ(1), σ(2), . . . , σ(n)} can be rearranged
to the ordered set {1, 2, . . . , n} by a sequence of steps, called transpositions,
that only interchange two elements at time. Let ε(σ) denote the number of
interchanges required to do this. Although ε(σ) is not necessarily well defined,
Theorem 6.4 below states that ε(σ) is well defined modulo 2. We’ll see below
that the result in Theorem 6.4 is essentially equivalent to the existence of
a nonzero n-alternating function on V . Namely, in Proposition 6.6, we will
show that if char k 6= 2 and if there exists a nonzero n-alternating function
on V , then ε(σ) is well defined modulo 2. Conversely, if ε(σ) is well defined
modulo 2, then Exercise 1 shows that there is a nonzero n-alternating form
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on V . We will prove that ε(σ) is well defined modulo 2 as a consequence of
Proposition 6.6 and Theorem 6.10.

Theorem 6.4. Using the notation above, ε(σ) is well defined modulo 2.

We will prove Theorem 6.4 later. Theorem 6.4 allows us to make the
following definition.

Definition 6.5. A permutation σ ∈ Sn is called even (or odd), if ε(σ) is
even (or odd).

Proposition 6.6. Let V,W be vector spaces defined over k and assume that
char k 6= 2. Suppose that there exists a nonzero n-alternating function

f : V × · · · × V → W.

Then ε(σ) is well defined modulo 2 for every σ ∈ Sn.

Proof. Choose v1, . . . , vn ∈ V such that f(v1, . . . , vn) 6= 0 and let σ ∈ Sn.
We apply Proposition 6.3(3) repeatedly to see that f(vσ(1), . . . , vσ(n)) =
(−1)ε(σ)f(v1, . . . , vn). Since f(v1, . . . , vn) 6= −f(v1, . . . , vn), it follows that
for any sequence of transpositions bringing (vσ(1), . . . , vσ(n)) back to the orig-
inal order v1, . . . , vn, the value (−1)ε(σ) is always the same. Therefore, ε(σ)
well defined modulo 2.

The statement that ε(σ) is well defined modulo 2 has nothing to do with
whether a field has characteristic different from 2. Thus, although we will
show in Theorem 6.10 that there exist n-alternating functions over all fields,
Proposition 6.6 implies that in order to show that ε(σ) is well defined modulo
2, we need only show the existence of an n-alternating function over just one
field k having characteristic different from 2.

The following Proposition contains a calculation that is central to the rest
of this chapter.

Proposition 6.7. Assume that ε(σ) is well defined modulo 2 and let

f : V × · · · × V → W

be an n-alternating function on V . Let v1, . . . , vn ∈ V be arbitrary vectors.
Let wj =

∑n
i=1 aijvi, 1 ≤ j ≤ n, aij ∈ k. Then

f(w1, . . . , wn) =
∑
σ∈Sn

(−1)ε(σ)aσ(1)1 · · · aσ(n)nf(v1, . . . , vn).
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Proof.

f(w1, . . . , wn) = f(a11v1 + · · ·+ an1vn, . . . , a1nv1 + · · ·+ annvn)

=
∑
σ∈Tn

aσ(1)1 · · · aσ(n)nf(vσ(1), . . . , vσ(n))

=
∑
σ∈Sn

aσ(1)1 · · · aσ(n)nf(vσ(1), . . . , vσ(n))

=
∑
σ∈Sn

(−1)ε(σ)aσ(1)1 · · · aσ(n)nf(v1, . . . , vn).

Notations. Let A ∈Mn×n(k).

1. Let Aj denote the jth column of A. Sometimes we will write A =
(A1, . . . , An)

2. Let Aij denote the (n−1)×(n−1) submatrix of A obtained by deleting
the ith row and jth column of A.

Definition 6.8. Let A ∈ Mn×n(k) and consider the columns of A as ele-
ments of k(n). An n×n determinant is a function det :Mn×n(k)→ k, where
A→ detA, that satisfies the following two conditions.

1. det : k(n) × · · · × k(n) → k is an n-alternating form on the columns of
A.

2. det In = 1.

If A ∈Mn×n(k), we will write either detA or det(A1, . . . , An), whichever
is more convenient.

Proposition 6.9. Suppose that char k 6= 2. If a determinant function det :
Mn×n(k) → k exists, then it is unique. In particular, ε(σ) is well defined
modulo 2, and if A = (aij)n×n, then

detA =
∑
σ∈Sn

(−1)ε(σ)aσ(1)1 · · · aσ(n)n.
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Proof. The existence of a determinant function implies that ε(σ) is well de-
fined modulo 2 by Definition 6.8 and Proposition 6.6.

Let {e1, . . . , en} be the standard basis of k(n) and let A ∈Mn×n(k). Then
Aj =

∑n
i=1 aijei. Proposition 6.7 implies that

detA = det(A1, . . . , An) =
∑
σ∈Sn

(−1)ε(σ)aσ(1)1 · · · aσ(n)n det(e1, . . . , en)

=
∑
σ∈Sn

(−1)ε(σ)aσ(1)1 · · · aσ(n)n,

because det(e1, . . . , en) = det In = 1. This shows that det is uniquely deter-
mined by the entries of A.

We now show that a determinant function det : Mn×n(k) → k exists.
One possibility would be to show that the formula given in Proposition 6.9
satisfies the two conditions in Definition 6.8. (See Exercise 1.) Instead we
shall follow a different approach that will yield more results in the long run.

Theorem 6.10. For each n ≥ 1 and every field k, there exists a determinant
function det :Mn×n(k)→ k.

Proof. The proof is by induction on n. If n = 1, let det : M1×1(k) → k,
where det(a)1×1 = a. Then det is linear (1-multilinear) on the column of
(a)1×1 and det I1 = 1. The alternating condition is satisfied vacuously.

Now let n ≥ 2 and assume that we have proved the existence of a determi-
nant function det : M(n−1)×(n−1)(k) → k. Let A ∈ Mn×n(k), A = (aij)n×n.
Choose an integer i, 1 ≤ i ≤ n, and define detA =

∑n
j=1(−1)i+jaij detAij.

This expression makes sense because detAij is defined by our induction hy-
pothesis. Showing that detA is a multilinear form on the n columns of A
is the same as showing that detA is a linear function (or transformation)
on the lth column of A, 1 ≤ l ≤ n. Since a sum of linear transformations
is another linear transformation, it is sufficient to consider separately each
term (−1)i+jaij detAij.

If j 6= l, then aij doesn’t depend on the lth column of A and detAij is a
linear function on the lth column of A, by the induction hypothesis, because
Aij is an (n − 1) × (n − 1) matrix. Therefore, (−1)i+jaij detAij is a linear
function on the lth column of A.

If j = l, then aij = ail is a linear function on the lth column of A and
detAij = detAil doesn’t depend on the lth column of A because Ail is ob-
tained from A by deleting the lth column of A. Therefore, (−1)i+jaij detAij
is a linear function on the lth column of A in this case also.
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We conclude that detA is a multilinear form on the n columns of A. Next
we show that detA is an alternating form on the n columns of A. Suppose
Al = Al+1. If j 6= l, l + 1, then Aij has two adjacent columns that are equal.
Therefore detAij = 0 by the induction hypothesis. The remaining two terms
in the expression for detA are

(−1)i+lail detAil + (−1)i+(l+1)ai(l+1) detAi(l+1).

We have Ail = Ai(l+1) and ail = ai(l+1) because the lth, (l + 1)th columns of
A are equal. Therefore,

(−1)i+lail detAil + (−1)i+(l+1)ai(l+1) detAi(l+1)

= ail detAil((−1)i+l + (−1)i+(l+1)) = 0.

Thus detA = 0 and so detA is an alternating form on the n columns of A.
Now we show that det In = 1. Letting In = A in the formula for detA

and noting that aij = 0 when i 6= j and aii = 1, we have

det In =
n∑
j=1

(−1)i+jaij detAij = (−1)i+iaii detAii = detAii = 1,

by the induction hypothesis, because Aii = In−1. Therefore det is a determi-
nant function.

The formula given for detA in Theorem 6.10 is called the expansion of
detA along the ith row of A.

We have now established the existence of a nonzero n-alternating form
on k(n) for an arbitrary field k. Since any vector space V of dimension n over
k is isomorphic to k(n), it follows that we have established the existence of
nonzero n-alternating forms on V for any n-dimensional vector space V over
k. By Proposition 6.6, we have now proved that ε(σ) is well defined modulo
2 for any σ ∈ Sn.

The uniqueness part of Proposition 6.9 shows that our definition of detA
does not depend on the choice of i given in the proof of Theorem 6.10.
Therefore, we can compute detA by expanding along any row of A.

We now restate Proposition 6.7 in the following Corollary using the result
from Proposition 6.9.
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Corollary 6.11. Let f : V × · · · × V → W be an n-alternating function on
V . Let v1, . . . , vn ∈ V be arbitrary vectors. Let wj =

∑n
i=1 aijvi, 1 ≤ j ≤ n,

aij ∈ k. Let A = (aij)n×n ∈Mn×n(k). Then

f(w1, . . . , wn) = (detA)f(v1, . . . , vn).

The next result summarizes the information we need for the function ε(σ),
where σ ∈ Sn.

Proposition 6.12. 1. ε(σ) is well defined modulo 2 for all σ ∈ Sn.

2. ε(στ) ≡ ε(σ) + ε(τ) (mod 2), for all σ, τ ∈ Sn.

3. ε(σ−1) ≡ ε(σ) (mod 2), for all σ ∈ Sn.

Proof. (1) This follows from Proposition 6.6 and Theorem 6.10.
(2) This follows from counting the number of interchanges needed to pass

through the sequences {στ(1), . . . , στ(n)}, {τ(1), . . . , τ(n)}, {1, 2, . . . , n}.
(3) ε(σ) + ε(σ−1) ≡ ε(σσ−1) ≡ ε(identity) ≡ 0 (mod 2). Therefore,

ε(σ−1) ≡ ε(σ) (mod 2), for all σ ∈ Sn.

Proposition 6.13. Let A ∈Mn×n(k). Then det(At) = detA.

Proof. Let A = (aij)n×n and let At = (bij)n×n. Then bij = aji and

det(At) =
∑
σ∈Sn

(−1)ε(σ)bσ(1)1 · · · bσ(n)n

=
∑
σ∈Sn

(−1)ε(σ)a1σ(1) · · · anσ(n)

=
∑
σ∈Sn

(−1)ε(σ
−1)aσ−1(σ(1))σ(1) · · · aσ−1(σ(n))σ(n)

=
∑
σ∈Sn

(−1)ε(σ
−1)aσ−1(1)1 · · · aσ−1(n)n

=
∑
σ∈Sn

(−1)ε(σ)aσ(1)1 · · · aσ(n)n

= detA.

Proposition 6.14.
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1. The function det :Mn×n(k)→ k is an n-alternating form on the rows
of n× n matrices.

2. The determinant of a matrix A ∈ Mn×n(k) can be computed by ex-
panding along any row or any column of A.

Proof. (1) Since det(At) = detA and the rows of A are the columns of At,
the result follows from the properties of det applied to the columns of At.

(2) We have already seen that detA can be computed by expanding along
any row of A. Now let B = At, B = (bij)n×n. Then bij = aji and Bij = (Aji)

t.
If we expand along the jth column of A, we have

n∑
i=1

(−1)i+jaij detAij =
n∑
i=1

(−1)i+jbji det(Bji)
t

=
n∑
i=1

(−1)i+jbji detBji = detB = det(At) = detA,

where we have expanded along the jth row of B.

6.2 Further Results and Applications

Theorem 6.15. Let A,B ∈Mn×n(k). Then det(AB) = (detA)(detB).

Proof. Let A = (aij)n×n, let B = (bij)n×n and let C = AB. Denote the
columns of A,B,C by Aj, Bj, Cj, respectively, 1 ≤ j ≤ n. Let e1, . . . , en
denote the standard basis of k(n). Our results on matrix multiplication imply
that Cj = ABj =

∑n
i=1 bijAi, 1 ≤ j ≤ n. Since Aj =

∑n
i=1 aijei, Corollary

6.11 implies that

det(AB) = detC = det(C1, . . . , Cn)

= (detB) det(A1, . . . , An)

= (detB)(detA) det(e1, . . . , en)

= (detA)(detB) det In

= (detA)(detB).
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Here is a second proof of Theorem 6.15: Define f : Mn×n(k) → k by
f(B) = det(AB). Then f(B1, . . . , Bn) = det(AB1, . . . , ABn), because the
columns of AB are AB1, . . . , ABn. It is straightforward to check that f is
an n-alternating form on k(n). Let B = (bij)n×n. Then Bj =

∑n
i=1 bijei,

1 ≤ j ≤ n, where e1, . . . , en denotes the standard basis of k(n). Corollary
6.11 implies that

det(AB) = f(B) = f(B1, . . . , Bn)

= (detB)f(e1, . . . , en)

= (detB)f(In)

= (detB) det(AIn)

= (detA)(detB).

Proposition 6.16. Let A ∈ Mn×n(k). Then A is invertible if and only if
detA 6= 0.

Proof. If A is invertible, then there exists a matrix B ∈ Mn×n(k) such
that AB = In. Then (detA)(detB) = det(AB) = det In = 1. Therefore,
detA 6= 0.

Now suppose that A is not invertible. Then Theorem 3.37 implies that
there is a linear dependence relation b1A1+· · ·+bnAn = 0 among the columns
of A with some bi 6= 0. We now use Proposition 6.3(4) to see that

bi detA = bi det(A1, . . . , Ai−1, Ai, Ai+1, . . . An)

= det(A1, . . . , Ai−1, biAi, Ai+1, . . . An)

= det(A1, . . . , Ai−1, b1A1 + · · ·+ bnAn, Ai+1, . . . An)

= det(A1, . . . , Ai−1, 0, Ai+1, . . . An)

= 0.

Since bi 6= 0, it follows that detA = 0.

Proposition 6.17 (Cramer’s Rule). Let A ∈ Mn×n(k). Consider the sys-
tem of equations represented by Ax = b, where x = (x1, . . . xn)t and b =
(b1, . . . bn)t ∈ k(n).

1. If the system of equations has a solution, then

xi detA = det(A1, . . . , Ai−1, b, Ai+1, . . . , An).
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2. If detA 6= 0, then the system of equations has a unique solution given
by

xi =
det(A1, . . . , Ai−1, b, Ai+1, . . . , An)

detA
, 1 ≤ i ≤ n.

Proof. (1) The system of linear equations represented by Ax = b is equivalent
to the matrix equation x1A1 + · · ·+ xnAn = b. This gives

det(A1, . . . , Ai−1, b,Ai+1, . . . , An)

= det(A1, . . . , Ai−1,

n∑
j=1

xjAj, Ai+1, . . . , An)

= det(A1, . . . , Ai−1, xiAi, Ai+1, . . . , An)

= xi det(A1, . . . , An) = xi detA.

(2) If detA 6= 0, then A is invertible by Proposition 6.16. Then there is
a unique solution given by x = A−1b. Since detA 6= 0, the result in the first
part gives the desired formula for xi.

Definition 6.18. Let T ∈ L(V, V ), dimV = n. Let β = {v1, . . . , vn} be an
ordered basis of V . The determinant of T , detT , is defined to be det[T ]ββ.

Proposition 6.19. The determinant of a linear transformation is well de-
fined. That is, detT does not depend on the choice of the ordered basis β.

Proof. Let β, γ be two ordered bases of V . Then [T ]γγ = [1V ]γβ[T ]ββ[1V ]βγ . Let

P = [1V ]βγ , A = [T ]ββ, and B = [TV ]γγ. Then [1V ]γβ = P−1 since [1V ]βγ [1V ]γβ =

[1V ]ββ = In.
Thus B = P−1AP and so

detB = det(P−1)(detA)(detP ) = det(P−1)(detP )(detA) = detA.

Therefore, detT is well defined.

6.3 The Adjoint of a matrix

Definition 6.20. Let A ∈ Mn×n(k). If n ≥ 2, the adjoint matrix of
A, written Adj(A), is defined as the matrix (bij) ∈ Mn×n(k) where bij =
(−1)i+j det(Aji). If n = 1, we define Adj(A) = (1) (even if A = 0).
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Note that the entries of Adj(A) are polynomial expressions of the entries
of A.

The adjoint matrix of A is sometimes called the classical adjoint matrix
of A. It is natural to wonder if there is a connection between the adjoint of A
just defined and the adjoint of a linear transformation T defined in Chapter
5 in relation to a given inner product. There is a connection, but it requires
more background than has been developed so far.

Lemma 6.21. Let A ∈Mn×n(k). Then (Adj(A))t = Adj(At).

Proof. The (i, j)-entry of (Adj(A))t is the (j, i)-entry of Adj(A), which is
(−1)i+j detAij. The (i, j)-entry of Adj(At) equals

(−1)i+j det((At)ji) = (−1)i+j det((Aij)
t) = (−1)i+j detAij.

Therefore, (Adj(A))t = Adj(At).

Proposition 6.22. Let A ∈Mn×n(k).

1. Adj(A)A = AAdj(A) = (detA)In.

2. If det(A) 6= 0, then A is invertible and

Adj(A) = (detA)A−1.

Proof. (1) The (i, l)-entry of AAdj(A) equals

n∑
j=1

aijbjl =
n∑
j=1

aij(−1)j+l detAlj.

If i = l, this expression equals detA, because this is the formula for detA
given in the proof of Theorem 6.10 if we expand along the ith row. If i 6= l,
then let A′ be the matrix obtained from A by replacing the lth row of A with
the ith row of A. Then detA′ = 0 by Proposition 6.14(1) because A has two
rows that are equal. Thus, if we compute detA′ by expanding along the lth

row, we get 0 =
∑n

j=1(−1)l+jaij detAlj, because the (l, j)-entry of A′ is aij
and (A′)lj = Alj. Therefore, the (i, l)-entry of AAdj(A) equals detA if i = l
and equals 0 if i 6= l. This implies that AAdj(A) = (detA)In.

Now we prove that Adj(A)A = (detA)In. We have

(Adj(A)A)t = At(Adj(A))t = At Adj(At) = det(At)In = (detA)In.

Thus, Adj(A)A = ((detA)In)t = (detA)In.
(2) This is clear from (1) and Proposition 6.16.
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The equality Adj(A)A = (detA)In in Proposition 6.22 (1) could also
have been proved in a way similar to the proof of the equality AAdj(A) =
(detA)In. In this case, we could have computed detA by expanding along
the lth column of A and at the appropriate time replace the lth column of A
with the jth column of A. See Exercise 8.

Note that if detA 6= 0, then the formula in Proposition 6.22 (1) could be
used to give a different proof of the implication in Proposition 6.16 stating
that A is invertible when detA 6= 0.

Lemma 6.23. Let A,B ∈Mn×n(k). Then Adj(AB) = Adj(B) Adj(A).

Proof. First assume that A,B are both invertible. Then AB is invertible, so
Proposition 6.22 implies that

Adj(AB) = det(AB)(AB)−1 = det(A) det(B)B−1A−1

= (det(B)B−1)(det(A)A−1) = Adj(B) Adj(A).

Now assume that A,B ∈ Mn×n(k) are arbitrary. Let k(x) denote the
rational function field over k. Then A+xIn, B+xIn ∈Mn×n(k(x)) are both
invertible (because det(A+ xIn) = xn + · · · 6= 0). Thus

Adj((A+ xIn)(B + xIn)) = Adj(B + xIn) Adj(A+ xIn).

Since each entry in these matrices lies in k[x], it follows that we may set
x = 0 to obtain the result.

If A ∈Mn×n(k), let rk(A) denote the rank of A.

Proposition 6.24. Let A ∈Mn×n(k).

1. If rk(A) = n, then rk(Adj(A)) = n.

2. If rk(A) = n− 1, then rk(Adj(A)) = 1.

3. If rk(A) ≤ n− 2, then Adj(A) = 0, so rk(Adj(A)) = 0.

Proof. If n = 1, then (1) and (2) hold, while (3) is vacuous. Now assume
that n ≥ 2. If rk(A) = n, then A is invertible. Thus Adj(A) = det(A)A−1

has rank n. This proves (1). If rk(A) ≤ n − 2, then det(Aji) = 0 for
each (n− 1)× (n− 1) submatrix Aji. The definition of Adj(A) implies that
Adj(A) = 0, and so rk(Adj(A)) = 0. This proves (3).
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Now assume that rk(A) = n−1. For any matrix A ∈Mn×n(k), there exist
invertible matrices B,C ∈ Mn×n(k) such that BAC is a diagonal matrix.
Let D = BAC. Then rk(D) = rk(A). Lemma 6.23 implies that

Adj(D) = Adj(BAC) = Adj(C) Adj(A) Adj(B).

Since Adj(B) and Adj(C) are invertible by (1), it follows that

rk(Adj(D)) = rk(Adj(A)).

For a diagonal matrix D, it is easy to check that if rk(D) = n − 1, then
rk(Adj(D)) = 1. Thus the same folds for A and this proves (2).

Proposition 6.25. Let A ∈Mn×n(k).

1. Adj(cA) = cn−1 Adj(A) for all c ∈ k.

2. If A is invertible, then Adj(A−1) = (Adj(A))−1.

3. Adj(At) = (Adj(A))t.

4. Adj(Adj(A)) = (det(A))n−2A for n ≥ 3. If n = 1, this result holds
when A 6= 0. If n = 2, then the result holds if we set (det(A))n−2 = 1,
including when det(A) = 0.

Proof. (1) follows from the definition of the adjoint matrix. For (2), we have

In = Adj(In) = Adj(AA−1) = Adj(A−1) Adj(A).

Thus, Adj(A−1) = (Adj(A))−1.
Although we already proved (3) in Lemma 6.21, here is a different proof.

First assume that A is invertible. Then

At Adj(At) = det(At)In = det(A)In

= Adj(A)A = (Adj(A)A)t = At(Adj(A))t.

Since At is also invertible, we have Adj(At) = (Adj(A))t.
Now assume that A is arbitrary. Then consider A + xIn over the field

k(x). Since A+ xIn is invertible over k(x), we have

Adj(At + xIn) = Adj((A+ xIn)t) = (Adj(A+ xIn))t .
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Since all entries lie in k[x], we may set x = 0 to obtain the result.
(4) If n = 1 and A 6= 0, then

Adj(Adj(A)) = (1) and (det(A))n−2A = A/ det(A) = (1).

Now assume that n ≥ 2. First assume that A is invertible. Then Adj(A) is
invertible and we have

Adj(Adj(A)) = det(Adj(A))(Adj(A))−1

= det(det(A)A−1)
(
det(A)A−1

)−1
= (det(A))n(1/ det(A))(1/ det(A))A = (det(A))n−2A.

Now assume that A is not invertible and n ≥ 3. Then det(A) = 0 and so
(det(A))n−2A = 0. Since rk(A) ≤ n − 1, we have rk(Adj(A)) ≤ 1 ≤ n − 2,
by Proposition 6.24. Thus Adj(Adj(A)) = 0 by Proposition 6.24 again.

Now assume that n = 2 and A is not invertible. One checks directly that
Adj(Adj(A)) = A when n = 2. We have (det(A))n−2A = A (because we set
(det(A))n−2 = 1, including when det(A) = 0).

6.4 The vector space of alternating forms

Let V be a vector space over a field k and assume that dimV = n. For
an integer m ≥ 1, let Mulm(V ) denote the set of m-multilinear forms f :
V × · · · × V → k. Then Mulm(V ) is a vector space over k and

dim(Mulm(V )) = (dimV )m = nm,

To see this, consider a basis β = {v1, . . . , vn} of V and let f : V ×· · ·×V → k
be an m-multilinear map. Then f is uniquely determined by

{f(vi1 , . . . , vim) | i1, . . . , im ∈ {1, 2, . . . , n}}.

Thus a basis of Mulm(V ) consists of nm elements.
Let Altm(V ) denote the subset of Mulm(V ) consisting of m-alternating

forms f : V × · · · × V → k. Then Altm(V ) is a subspace of Mulm(V ) over k.
We will compute the dimension of Altm(V ) below.

Proposition 6.26. If m ≥ 1, then dim(Altm(V )) =
(
n
m

)
. In particular,

dim(Altm(V )) = 0 if m > n, and dim(Altn(V )) = 1.
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Proof. Let {v1, . . . , vn} be a basis of V and let f ∈ Altm(V ). Since f ∈
Mulm(V ), we know that f is uniquely determined by

{f(vi1 , . . . , vim) | i1, . . . , im ∈ {1, 2, . . . , n}}.

Since f ∈ Altm(V ), Proposition 6.3 (2) and (3) implies that f is uniquely
determined by

{f(vi1 , . . . , vim) | 1 ≤ i1 < i2 < · · · < im ≤ n}.

Thus Altm(V ) = (0) if m > n. If 1 ≤ m ≤ n, it follows that Altm(V ) is
spanned by

(
n
m

)
elements. To show that these elements are linearly indepen-

dent over k, it is sufficient to construct for each 1 ≤ i1 < i2 < · · · < im an
element g ∈ Altm(V ) such that g(vi1 , · · · , vim) = 1 and g(vj1 , · · · , vjm) = 0 for
all j1, . . . , jm satisfying 1 ≤ j1 < j2 · · · < jm and {j1, . . . , jm} 6= {i1, . . . , im}.

We define g by

g(vj1 , · · · , vjm) =

{
(−1)ε(σ) if (j1, . . . , jm) = (iσ(1), . . . , iσ(m))

0 otherwise.

6.5 The adjoint as a matrix of a linear trans-

formation

In this section, we identify the adjoint of a matrix as the matrix of a particular
linear transformation.

Let V,W be vector spaces over k and let T : V → W be a linear
transformation. Then for each m ≥ 1, there exists a linear transforma-
tion T ′m : Altm(W )→ Altm(V ) defined by T ′m(g) = g ◦T where g ∈ Altm(W )
and (g ◦ T )(u1, . . . , um) = g(T (u1), . . . , T (um)) for u1, . . . , um ∈ V . It is
straightforward to check that g ◦ T ∈ Altm(V ).

Now let U
S→ V

T→ W be two linear transformations. Then for each
m ≥ 1, we obtain linear transformations

Altm(W )
T ′m→ Altm(V )

S′m→ Altm(U).
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Lemma 6.27. With the notation above, we have

(T ◦ S)′m = S ′m ◦ T ′m.

Proof. Let g ∈ Altm(W ). Then

(S ′m◦T ′m)(g) = S ′m(T ′m(g)) = S ′m(g◦T ) = (g◦T )◦S = g◦(T ◦S) = (T ◦S)′m(g).

Assume now that dim(V ) = dim(W ) = n and m = n− 1. Let T ′ = T ′n−1
where T ′ : Altn−1(W )→ Altn−1(V ) is the linear transformation from above.

Let β = {v1, . . . , vn} be a basis of V and let γ = {w1, . . . , wn} be a basis
of W . Let T (vj) =

∑n
i=1 aijwi, 1 ≤ j ≤ n. Then [T ]γβ = (aij)n×n.

Let β′ = {f1, . . . , fn} be the basis of Altn−1(V ) where

fj(v1, . . . , vj−1, vj+1, . . . , vn) = (−1)j−1

and fj(vi1 , . . . , vin−1) = 0 when 1 ≤ i1 < · · · < in−1 ≤ n and {i1, . . . , in−1} 6=
{1, 2, . . . , j − 1, j + 1, . . . , n}.

Define γ′ = {g1, . . . , gn} to be a basis of Altn−1(W ) with similar properties
with respect to the basis γ.

Let T ′(gj) =
∑n

i=1 cijfi, 1 ≤ j ≤ n. Then [T ′]β
′

γ′ = (cij)n×n.

Proposition 6.28. Using the notation above, we have [T ′]β
′

γ′ = Adj([T ]γβ).

Proof. Let A = [T ]γβ and let C = [T ′]β
′

γ′ . We now make two computations.
First,(

n∑
i=1

cijfi

)
(v1, . . . , vl−1, vl+1, . . . , vn) = cljfl(v1, . . . , vl−1, vl+1, . . . , vn)

= (−1)l−1clj.
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Second,

T ′(gj)(v1, . . . , vl−1, vl+1, . . . , vn) = gj(T (v1), . . . , T (vl−1), T (vl+1), . . . , T (vn))

= gj

(
n∑
i=1

ai1vi, . . . ,

n∑
i=1

ai,l−1vi,

n∑
i=1

ai,l+1vi, . . . ,

n∑
i=1

ainvi

)

= gj

 n∑
i=1
i 6=j

ai1vi, . . . ,

n∑
i=1
i 6=j

ai,l−1vi,

n∑
i=1
i 6=j

ai,l+1vi, . . . ,

n∑
i=1
i 6=j

ainvi


= det(Ajl)gj(v1, . . . , vj−1, vj+1, . . . , vn)

= det(Ajl)(−1)j−1.

Since T ′(gj) =
∑n

i=1 cijfi, it follows that

(−1)l−1clj = (−1)j−1 det(Ajl).

Thus clj = (−1)l+j(det(Ajl)). Therefore, C = Adj(A) and so [T ′]β
′

γ′ =
Adj([T ]γβ).

Let U
S→ V

T→ W be two linear transformations and assume that

dim(U) = dim(V ) = dim(W ) = n.

Let β, β′, γ, γ′ be as before. Let α be a basis of U and let α′ be the
corresponding basis of Altn−1(U).

Let A = [T ]γβ and B = [S]βα.

Proposition 6.29. Using the notations above, we have

Adj(AB) = Adj(B) Adj(A).

Proof.

Adj(AB) = Adj([T ]γβ[S]βα) = Adj([T ◦ S]γα)

= [(T ◦ S)′]α
′

γ′ = [S ′ ◦ T ′]α′γ′ = [S ′]α
′

β′ [T
′]β
′

γ′

= Adj([S]βα) Adj([T ]γβ) = Adj(B) Adj(A).
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6.6 The Vandermonde Determinant and Ap-

plications

Definition 6.30. Let a1, . . . , an ∈ k. The Vandermonde determinant of
a1, . . . , an, written V (a1, . . . , an), is defined to be detA where

A =


1 1 · · · 1
a1 a2 · · · an
a21 a22 · · · a2n

...
an−11 an−12 · · · an−1n


n×n

.

The matrix A is called the Vandermonde matrix of a1, . . . , an.

Proposition 6.31.

V (a1, . . . , an) =
∏

1≤i<j≤n

(aj − ai).

Proof. We prove the result by induction on n. For n = 1 the result holds
since an empty product is defined to be 1 and det(1) = 1. For n = 2, the
result holds since

det

(
1 1
a1 a2

)
= a2 − a1.

Now assume that n ≥ 3.
replace row n by (row n - a1·row (n− 1) ),
replace row (n− 1) by (row (n− 1) −a1·row (n− 2) ),

...
replace row 2 by (row 2 −a1·row 1 ).

These row operations do not change V (a1, . . . , an) by Proposition 6.3(4)
since det is an alternating function on the rows of A. Therefore,

V (a1, . . . , an) = det


1 1 · · · 1
0 a2 − a1 · · · an − a1
0 a2(a2 − a1) · · · an(an − a1)

...
0 an−22 (a2 − a1) · · · an−2n (an − a1)


n×n

.
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Now we expand the determinant along the first column to obtain

V (a1, . . . , an) = det


a2 − a1 · · · an − a1

a2(a2 − a1) · · · an(an − a1)
...

an−22 (a2 − a1) · · · an−2n (an − a1)


(n−1)×(n−1)

.

Since det is multilinear on the columns, we can factor out common factors
from entries in each column to obtain

V (a1, . . . , an) = (a2 − a1) · · · (an − a1) det


1 1 · · · 1
a2 a3 · · · an
a22 a23 · · · a2n

...
an−22 an−23 · · · an−2n

 .

By induction on n, we conclude now that

V (a1, . . . , an) =
∏

1≤i<j≤n

(aj − ai).

We will now apply the Vandermonde determinant and related ideas to
the problem of finding polynomials in one variable which pass through given
points in the affine plane.

For each integer n ≥ 1, let Vn denote the vector space of polynomials in
k[x] of degree ≤ n, including the zero polynomial. Thus

Vn = {g ∈ k[x] | g = c0 + c1x+ · · ·+ cnx
n},

where ci ∈ k. Then β = {1, x, x2, . . . , xn} is a basis of Vn. It is easy to check
that Vn ∼= k(n+1) by the isomorphism φ : Vn → k(n+1), where

∑n
j=0 cjx

j 7→
(c0, . . . , cn). Thus φ maps β to the standard basis of k(n+1).

We will shortly construct some other special bases of Vn.

Proposition 6.32. Let a0, a1, . . . , an be distinct elements in k and suppose
that b0, b1, . . . , bn are arbitrary elements in k. Then there is a unique poly-
nomial g ∈ Vn such that g(ai) = bi, 0 ≤ i ≤ n.
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Proof. We will give two proofs of this result.
(1) The conditions g(ai) = bi, 0 ≤ i ≤ n, are equivalent to finding

c0, c1, . . . , cn ∈ k such that g(x) = c0 + c1x + · · · + cnx
n and

∑n
j=0 cja

j
i = bi,

0 ≤ i ≤ n. Let

A =


1 a0 a20 · · · an0
1 a1 a21 · · · an1

...
1 an a2n · · · ann

 , c =


c0
c1
...
cn

 , b =


b0
b1
...
bn

 .

The stated conditions are equivalent to finding c such that Ac = b. Proposi-
tions 6.31 and 6.13 imply that detA 6= 0 because the ai’s are distinct. Propo-
sition 6.16 implies that A is invertible and therefore c = A−1b is the unique so-
lution to the system of equations. This implies that g(x) = c0+c1x+· · ·+cnxn
is the unique polynomial in Vn such that g(ai) = bi, 0 ≤ i ≤ n.

(2) Let

fj,a0,...,an(x) =
(x− a0) · · · (x− aj−1)(x− aj+1) · · · (x− an)

(aj − a0) · · · (aj − aj−1)(aj − aj+1) · · · (aj − an)
, 0 ≤ j ≤ n.

Then fj,a0,...,an(x) ∈ Vn because deg fj,a0,...,an(x) = n. We have

fj,a0,...,an(ai) =

{
0 if i 6= j

1 if i = j
.

Let g(x) =
∑n

j=0 bjfj,a0,...,an(x). Then g(ai) = bi, 0 ≤ i ≤ n, and g ∈ Vn.
Suppose that h ∈ Vn and h(ai) = bi, 0 ≤ i ≤ n. Then (g − h)(ai) = 0,

0 ≤ i ≤ n. This implies that g − h ∈ Vn and g − h has n + 1 distinct zeros.
A theorem from Algebra implies that g − h = 0 and so g = h. This proves
the existence and uniqueness of g.

The first proof of Proposition 6.32 depended on knowledge of the Van-
dermonde determinant, while the second proof used no linear algebra, but
used a theorem from Algebra on polynomials. We will now develop a third
approach to Proposition 6.32 and the Vandermonde determinant using the
polynomials fj,a0,...,an(x) from above.

Proposition 6.33. 1. Let a ∈ k and consider the function a∗ : Vn → k,
defined by a∗(h) = h(a). Then a∗ ∈ V ∗n .
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2. Let a0, . . . , an be distinct elements in k. Then

γ = {fj,a0,...,an(x) |0 ≤ j ≤ n}

is a basis of Vn. The set γ∗ = {a∗0, a∗1, . . . , a∗n} is a dual basis of V ∗n to
γ.

Proof. (1) Let g, h ∈ Vn and let c ∈ k. Then a∗(g+ h) = (g+ h)(a) = g(a) +
h(a) = a∗(g) + a∗(h), and a∗(ch) = (ch)(a) = ch(a) = ca∗(h). Therefore
a∗ ∈ V ∗n .

(2) We first show that γ is a linearly independent set in Vn. Suppose that∑n
j=0 bjfj,a0,...,an(x) = 0. Since

a∗i (fj,a0,...,an(x)) = fj,a0,...,an(ai) =

{
0 if i 6= j

1 if i = j
,

we apply a∗i to both sides to obtain bifi,a0,...,an(ai) = 0. Thus, bi = 0, 0 ≤
i ≤ n, and so γ is a linearly independent set in Vn. Since dimVn = n+ 1, it
follows that γ is a basis of Vn. Therefore, γ∗ is a dual basis of V ∗n to γ by
Proposition 4.2.

Proposition 6.34. Let a0, a1, . . . , an be distinct elements of k.

1. If g(x) ∈ Vn, then g(x) =
∑n

j=0 g(aj)fj,a0,...,an(x).

2. Suppose that b0, b1, . . . , bn are arbitrary elements in k. Then there is a
unique polynomial g ∈ Vn such that g(ai) = bi, 0 ≤ i ≤ n.

3. V (a0, a1, . . . , an) 6= 0.

Proof. (1) Let g(x) ∈ Vn. Then g(x) =
∑n

j=0 cjfj,a0,...,an(x) where each cj ∈ k,
because γ is a basis of Vn. For 0 ≤ i ≤ n, we have

g(ai) = a∗i (g(x)) = a∗i

(
n∑
j=0

cjfj,a0,...,an(x)

)
= cifi,a0,...,an(ai) = ci.

(2) We saw above that g(x) =
∑n

j=0 bjfj,a0,...,an(x) has the property that
g(ai) = bi, 0 ≤ i ≤ n. Now suppose that h ∈ Vn and h(ai) = bi, 0 ≤ i ≤ n.
Let h(x) =

∑n
j=0 cjfj,a0,...,an(x). Then the proof of (1) implies that ci =
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h(ai) = bi for 0 ≤ i ≤ n. Therefore the polynomial h = g, so g is uniquely
determined.

(3) Apply (1) to the polynomials g(x) = xj, 0 ≤ j ≤ n. Then

xj =
n∑
i=0

ajifi,a0,...,an(x), 0 ≤ j ≤ n.

Let

A =


1 a0 a20 · · · an0
1 a1 a21 · · · an1

...
1 an a2n · · · ann

 .

Then A = [1Vn ]γβ. Therefore, A is an invertible matrix, being a change of
basis matrix. In particular, V (a0, a1, . . . , an) = detA 6= 0, by Proposition
6.16.

The next application of Vandermonde matrices is to the linear indepen-
dence of exponential functions.

Proposition 6.35. Let a1, . . . , an be distinct complex numbers. Then the
functions ea1x, . . . , eanx are linearly independent over C.

Proof. Suppose that c1e
a1x + · · · + cne

anx = 0, where ci ∈ C. Differentiate
this equation n− 1 times to obtain the system of equations

c1e
a1x + · · ·+ cne

anx = 0
a1c1e

a1x + · · ·+ ancne
anx = 0

a21c1e
a1x + · · ·+ a2ncne

anx = 0
...

an−11 c1e
a1x + · · ·+ an−1n cne

anx = 0.

This is equivalent to
1 1 · · · 1
a1 a2 · · · an
a21 a22 · · · a2n

· · ·
an−11 an−12 · · · an−1n




c1e
a1x

c2e
a2x

...
cne

anx

 =


0
0

...
0

 .
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Since a1, . . . , an are distinct, it follows that the Vandermonde determinant
V (a1, . . . , an) 6= 0. Therefore, the coefficient matrix is invertible and so
we must have c1e

a1x = · · · = cne
anx = 0. Since eaix 6= 0, this implies

c1 = · · · = cn = 0. Therefore ea1x, . . . , eanx are linearly independent functions
over C.

Proposition 6.35 can be strengthened as follows.

Proposition 6.36. Let a1, . . . , an be distinct complex numbers. Then the
functions ea1x, . . . , eanx are linearly independent over C(x), the field of ratio-
nal functions in x. (C(x) = {g(x)/h(x) | g, h ∈ C[x]}).

Proof. Suppose that ea1x, . . . , eanx are linearly dependent over C(x). Then
there exists an equation

n∑
i=1

fi(x)eaix = 0,

where each fi(x) ∈ C(x) and at least one fi(x) 6= 0. After multiplying by a
common denominator of the fi(x)’s, we may assume that each fi(x) ∈ k[x].

Of all such equations, choose one with the minimal number of nonzero
coefficients. Then after relabeling, we may assume that

∑n
i=1 fi(x)eaix =

0, where each fi(x) ∈ k[x] is nonzero and no nontrivial linear dependence
relation exists with fewer summands. Of all such linear dependence relations,
choose one where

∑n
i=1 deg fi(x) is minimal.

Clearly n ≥ 2. Differentiate the equation to obtain

n∑
i=1

(aifi(x) + f ′i(x))eaix = 0.

From this equation, subtract the equation a1
∑n

i=1 fi(x)eaix = 0. This gives

f ′1(x)ea1x +
n∑
i=2

((ai − a1)fi(x) + f ′i(x)) eaix = 0.

If this is a nontrivial linear dependence relation, then each coefficient must
be nonzero from our assumptions. But we now show that the sum of the
degrees of the coefficients has decreased, which is a contradiction. If i ≥ 2,
then we have deg((ai− a1)fi(x) + f ′i(x)) = deg fi(x) because ai− a1 6= 0 and
deg f ′i(x) < fi(x) (since fi(x) 6= 0). For i = 1 we have deg f ′1(x) < f1(x).
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Therefore, we must have a trivial linear dependence relation. This implies
that (ai − a1)fi(x) + f ′i(x) = 0 for i ≥ 2. This is also impossible because
(ai − a1)fi(x) is nonzero and has degree greater than f ′i(x).

Therefore ea1x, . . . , eanx are linearly independent over C(x).

Exercises

1. Let A = (aij)n×n. Define

f(A) = f(A1, . . . , An) =
∑
σ∈Sn

(−1)ε(σ)aσ(1)1 · · · aσ(n)n.

Prove directly (without use of Theorem 6.10, for example) that f is an
n-alternating form on k(n) such that f(e1, . . . , en) = 1. (Assume the
fact that ε(σ) is well defined modulo 2.)

2. Compute the determinant of an arbitrary 2× 2 and 3× 3 matrix.

3. Suppose that A ∈Mn×n(k) with A = (aij)n×n. If A is either a diagonal
matrix, an upper triangular matrix, or a lower triangular matrix, then
detA = a11a22 · · · ann. (Try to find several solutions. Methods could
rely on Problem 3, or Proposition 6.9 or Theorem 6.10, for example.)

4. Let A ∈Mn×n(k). Suppose that A has the following block form.

A =

(
Br×r Cr×s
0s×r Ds×s

)
Then detA = (detB)(detD).

5. Consider the situation in Proposition 6.17 and assume that detA = 0
in each of the following parts.

(a) If Ax = b has a solution, then det(A1, . . . , Ai−1, b, Ai+1, . . . , An) =
0, 1 ≤ i ≤ n.

(b) Suppose that det(A1, . . . , Ai−1, b, Ai+1, . . . , An) = 0, 1 ≤ i ≤ n,
and dim(column space of A) = n − 1. Then the system Ax = b
has a solution.

(c) If Ax = b has a solution and k is infinite, then there are infinitely
many solutions to the system.
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6. Let A ∈ Mn×n(k) and let A = (aij)n×n. The trace of A is defined by
trA =

∑n
i=1 aii. Verify the following statements for A,B ∈ Mn×n(k)

and c ∈ k.

(a) tr(A+B) = trA+ trB

(b) tr(cA) = c trA

(c) tr :Mn×n(k)→ k is a linear transformation.

(d) dim(ker(tr)) = n2 − 1.

(e) tr(AB) = tr(BA)

(f) If B is invertible, then tr(B−1AB) = trA.

7. Let T ∈ L(V, V ), dimV = n. Let β = {v1, . . . , vn} be an ordered basis
of V . The trace of T , trT , is defined to be tr[T ]ββ. Then trT is well
defined. That is, trT does not depend on the choice of the ordered
basis β.

8. Prove that Adj(A)A = (detA)In using the ideas in the proof of Propo-
sition 6.22, but in this case expand along the lth column of A and at
the appropriate time replace the lth column of A with the jth column
of A.
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Chapter 7

Canonical Forms of a Linear
Transformation

7.1 Preliminaries

Let V be a vector space over k. We do not assume in this chapter that V is
finite dimensional over k, unless it is explicitly stated. Let T : V → V be a
linear transformation.

We let T i denote the linear transformation T ◦ T ◦ · · · ◦ T , where T is
composed with itself i times. Let T 0 = 1V . If

f(x) = amx
m + am−1x

m−1 + · · ·+ a1x+ x0 ∈ k[x],

then f(T ) denotes the linear transformation

amT
m + am−1T

m−1 + · · ·+ a1T + a01V .

Let A ∈ Mn×n(k). The characteristic polynomial of A is defined to be
the polynomial det(xIn−A) that lies in k[x]. The methods in Chapter 6 for
computing a determinant show that det(xIn − A) is a monic polynomial in
k[x] of degree n. (A polynomial in k[x] of degree n is monic if the coefficient
of xn is 1). Thus the characteristic polynomial of A is a monic polynomial
of degree n. We let fA(x) denote the characteristic polynomial of A and so
fA(x) = det(x1n − A).

Suppose that dimV = n. We define the characteristic polynomial of T
to be det(x1V − T ) by setting det(x1V − T ) = det(xIn −A) where A = [T ]ββ
and β is a basis of V . The characteristic polynomial of T is independent
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of the choice of basis of V by Proposition 6.19. We let fT (x) denote the
characteristic polynomial of T . Thus fT (x) = det(x1V − T ).

7.2 The Cayley-Hamilton Theorem

Let V be a vector space over k and let T : V → V be a linear transformation.

Proposition 7.1. If dimV is finite, then there exists a nonzero polynomial
g ∈ k[x] such that g(T ) = 0.

Proof. Assume that dimV = n. Then the n2 + 1 linear transformations
1V , T, T

2, T 3, . . . , T n
2

are linearly dependent over k since dim(L(V, V )) = n2.
Thus there exist a0, a1, . . . , an2 ∈ k, not all zero, such that

an2T n
2

+ · · ·+ a1T + a01V = 0.

Then g(T ) = 0 where g(x) = an2xn
2
+ · · ·+a1x+a0 is a nonzero polynomial.

Proposition 7.1 shows that we can choose g such that deg g ≤ n2. A
stronger theorem, known as the Cayley-Hamilton Theorem, states that there
exists a polynomial g with deg g ≤ n such that g(T ) = 0. We prove the
Cayley-Hamilton Theorem in Theorem 7.7 below.

Definition 7.2. Let v ∈ V . We define the T -cyclic subspace of V generated
by v to be the subspace k[T ]v = {h(T )v | h ∈ k[x]}. If V = k[T ]v, then v is
called a cyclic vector for T .

Thus k[T ]v is the subspace of V spanned by {v, Tv, T 2v, . . .}.

Lemma 7.3. Suppose that dimV = n ≥ 1 and that V = k[T ]v for some
v ∈ V . Then {v, T (v), T 2(v), . . . , T n−1(v)} is a basis of V .

Proof. Suppose that {v, T (v), T 2(v), . . . , T n−1(v)} is a linearly dependent set
over k. Then there is a dependence relation

aiT
i(v) + ai−1T

i−1(v) + · · ·+ a1T (v) + a0v = 0

where ai 6= 0 and 1 ≤ i ≤ n− 1. We can divide by ai so that we may assume
from the start that ai = 1. Then

T i(v) ∈ Span({v, T (v), T 2(v), . . . , T i−1(v)}).
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It follows that T j(v) ∈ Span({v, T (v), T 2(v), . . . , T i−1(v)}) for all j ≥ i. Thus
k[T ]v = Span({v, T (v), T 2(v), . . . , T i−1(v)}), and so n = dim k[T ]v ≤ i. This
is impossible because i ≤ n − 1. Thus {v, T (v), T 2(v), . . . , T n−1(v)} is a
linearly independent set over k. Since dimV = n, it follows that this set is a
basis of V .

A subspace W ⊆ V is called a T -invariant subspace of V if T (W ) ⊆ W .
For example, it is easy to see that k[T ]v is a T -invariant subspace of V .

Let W be a T -invariant subspace of V and assume that dimV = n. Then
T induces a linear transformation T |W : W → W . Let β1 = {v1, . . . , vm} be
a basis of W . Extend β1 to a basis β = {v1, . . . , vm, vm+1, . . . , vn} of V . Let
[T |W ]β1β1 = A, where A ∈Mm×m(k). Then

[T ]ββ =

(
A B
0 C

)
,

where B ∈ Mm×(n−m)(k), C ∈ M(n−m)×(n−m)(k), and 0 ∈ M(n−m)×m(k).
Let fT |W denote the characteristic polynomial of T |W . Thus fT |W = det(x1W−
T |W ).

Lemma 7.4. Suppose that V = V1⊕V2 where V1 and V2 are each T -invariant
subspaces of V . Let T1 = T |V1 and T2 = T |V2. Suppose that γ = {w1, . . . , wl}
is a basis of V1 and that δ = {y1, . . . , ym} is a basis of V2. Let β = γ ∪ δ =
{w1, . . . , wl, y1, . . . , ym}. Then

[T ]ββ =

(
A 0
0 B

)
,

where A = [T1]
γ
γ and B = [T2]

δ
δ.

Proof. We have that T (wj) =
∑l

i=1 aijwi and T (yj) =
∑m

i=1 bijyi. Then
A = (aij)l×l = [T1]

γ
γ and B = (bij)m×m = [T2]

δ
δ.

Lemma 7.5. Let V be a finite dimensional vector space over k and let W
be a T -invariant subspace of V . Then fT |W divides fT .

Proof. As above, we select a basis β1 of W and extend β1 to a basis β of V
so that β1 ⊆ β. Then

fT (x) = det

(
xIn −

(
A B
0 C

))
= det

(
xIm − A −B

0 xIn−m − C

)
= det(xIm − A) det(xIn−m − C) = fT |W det(xIn−m − C).

Thus fT |W divides fT .
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For n ≥ 1, let f(x) = xn + an−1x
n−1 + · · · + a1x + a0 ∈ k[x]. For n ≥ 2,

the companion matrix of f is defined to be the n× n matrix

Af =



0 0 0 · · · 0 0 −a0
1 0 0 · · · 0 0 −a1
0 1 0 · · · 0 0 −a2
0 0 1 · · · 0 0 −a3
...

...
...

...
...

...
...

0 0 0 · · · 1 0 −an−2
0 0 0 · · · 0 1 −an−1


.

For n = 1 and f(x) = x+ a0, we let Af = (−a0).
Let β = {v1, . . . , vn} be a basis of V . For n ≥ 2, let T : V → V be the

linear transformation defined by T (vi) = vi+1 for 1 ≤ i ≤ n− 1, and

T (vn) = −a0v1 − a1v2 − · · · − an−2vn−1 − an−1vn.

For n = 1, we define T by T (v1) = −a0v1. Then [T ]ββ = Af . Note that for

n ≥ 2, we have T i(v1) = vi+1 for 1 ≤ i ≤ n− 1.
We now show that f(T )(v1) = 0.

f(T )(v1) = T n(v1) + an−1T
n−1(v1) + · · ·+ a1T (v1) + a0v1

= T (T n−1(v1)) + an−1vn + an−2vn−1 + · · ·+ a1v2 + a0v1

= T (vn) + an−1vn + an−2vn−1 + · · ·+ a1v2 + a0v1

= 0,

because T (vn) = −a0v1 − a1v2 − · · · − an−2vn−1 − an−1vn.

Proposition 7.6. Let T : V → V be the linear transformation defined above.
Then the characteristic polynomial of T is f .

Proof. Since [T ]ββ = Af , we must show that det(xIn−Af ) = f . The proof is
by induction on n. If n = 1, then

det(xI1 − Af ) = det(xI1 + a0) = x+ a0 = f.

If n = 2, then

det(xI2 − Af ) = det

(
x a0
−1 x+ a1

)
= x2 + a1x+ a0 = f.
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Now assume that n ≥ 3. We have

xIn − Af =



x 0 0 · · · 0 0 a0
−1 x 0 · · · 0 0 a1
0 −1 x · · · 0 0 a2
0 0 −1 · · · 0 0 a3
...

...
...

...
...

...
...

0 0 0 · · · −1 x an−2
0 0 0 · · · 0 −1 x+ an−1


.

Expanding along the first row and using induction gives

det(xIn − Af ) = x(xn−1 + an−1x
n−2 + · · ·+ a2x+ a1) + (−1)n+1a0 · (−1)n−1

= xn + an−1x
n−1 + · · ·+ a2x

2 + a1x+ a0 = f.

Theorem 7.7 (Cayley-Hamilton Theorem). Let V be a finite dimensional
vector space over k and let T : V → V be a linear transformation. Let
fT (x) be the characteristic polynomial of T . Then fT (T ) = 0 as a linear
transformation.

Proof. It is sufficient to show that fT (T )(v) = 0 for each v ∈ V . This is
clearly true if v = 0. Now assume that v 6= 0. Let W = k[T ]v be the cyclic
subspace generated by v. Since W is a T -invariant subspace of V , we know
that fT |W divides fT . It is sufficient to show that fT |W (T )(v) = 0. Thus
we can assume from the beginning that V = k[T ]v. Let dimV = n. Then
{v, T (v), T 2(v), . . . , T n−1(v)} is a basis of V by Lemma 7.3.

Let T n(v) = −a0v − a1T (v) − · · · − an−1T
n−1(v) and let f(x) = xn +

an−1x
n−1 + · · · + a1x + a0. Then fT (x) = f and it follows that fT (T )(v) =

f(T )(v) = 0, as desired.

7.3 Eigenvectors, eigenvalues, diagonalizabil-

ity

Let T : V → V be a linear transformation.

Definition 7.8. An element a ∈ k is an eigenvalue of T if there exists a
nonzero vector v ∈ V such that T (v) = av. A nonzero vector v ∈ V is an
eigenvector of T with eigenvalue a, a ∈ k, if T (v) = av.
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Lemma 7.9. An element a ∈ k is an eigenvalue of T if and only if ker(T −
aIV ) is nonzero. The nonzero elements of ker(T − aIV ) are the set of eigen-
vectors of T having eigenvalue a.

Proof. A vector v ∈ V satisfies T (v) = av if and only if (T − aIV )(v) = 0,
which is equivalent to v ∈ ker(T − aIV ). Thus an element a ∈ k is an
eigenvalue of T if and only if ker(T − aIV ) is nonzero. The second statement
follows easily from this.

Proposition 7.10. Assume that dimV is finite and let fT (x) = det(x1V −T )
be the characteristic polynomial of T . An element a ∈ k is an eigenvalue of
T if and only if fT (a) = 0.

Proof. Assume first that a ∈ k and fT (a) = 0. Then det(a1V − T ) = 0, so
T − a1V is not an invertible linear transformation. (See Exercise 1.) Thus
ker(T − a1V ) is nonzero, so a is an eigenvalue of T .

Now assume that a ∈ k is an eigenvalue of T . Then ker(T − a1V ) is
nonzero. Thus T − a1V is not an invertible linear transformation, and so
det(a1V − T ) = 0. Therefore, fT (a) = 0.

Definition 7.11. A matrix A ∈ Mn×n(k) is diagonalizable (or, can be di-
agonalized) if there exists C ∈ Mn×n(k) such that C−1AC is a diagonal
matrix.

If dimV is finite, a linear transformation T ∈ L(V, V ) is diagonalizable
(or, can be diagonalized) if there exists a basis β of V such that [T ]ββ is a
diagonal matrix.

If β is an arbitrary basis of V , dimV finite, then T is diagonalizable if
and only if [T ]ββ is diagonalizable. (See Exercise 2.)

Proposition 7.12. Let T : V → V be a linear transformation, dimV finite.
The following statements are equivalent.

1. T is diagonalizable.

2. There exists a basis of V consisting of eigenvectors of T .

Proof. Assume that T is diagonalizable. Then there exists a basis β =
{v1, . . . , vn} of V such that [T ]ββ is a diagonal matrix A = (aij). Then
T (vi) = aiivi for 1 ≤ i ≤ n. Thus β is a basis of V consisting of eigen-
vectors of T .
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Now assume that there exists a basis β = {v1, . . . , vn} of V consisting of
eigenvectors of T . Let T (vi) = civi for 1 ≤ i ≤ n. Then [T ]ββ = (aij) where

aij = 0 for i 6= j and aij = ci if i = j. Thus [T ]ββ is a diagonal matrix, so T
is diagonalizable.

If T : V → V is a linear transformation with dimV finite, then the
Cayley-Hamilton Theorem guarantees that there is a monic polynomial g ∈
k[x] such that g(T ) = 0. Namely, we can take g = fT . In general, for a linear
transformation T : V → V , suppose that there exists a nonzero polynomial
g ∈ k[x] such that g(T ) = 0. Then there is a nonzero polynomial f ∈ k[x]
of least degree such that f(T ) = 0. We can multiply f by a nonzero scalar
so that we may assume that f is also a monic polynomial. Suppose that h
is another monic polynomial of least degree such that h(T ) = 0 with f 6= h.
Then (f − h)(T ) = f(T ) − h(T ) = 0. Since deg(f) = deg(h), both are f
and h are monic, and f − h 6= 0, it follows that deg(f − h) < deg f . This
is impossible because there is no nonzero polynomial h of degree less that
deg(f) such that h(T ) = 0. Thus f = h. Therefore, there exists a unique
monic polynomial f of least degree such that f(T ) = 0. This justifies the
following definitions.

Definition 7.13. Let T : V → V be a linear transformation. Suppose that
there exists a nonzero polynomial g ∈ k[x] such that g(T ) = 0. (This always
occurs if dimV is finite.) The minimal polynomial of T is the unique monic
polynomial pT (x) of least degree such that pT (T ) = 0. Similarly, the minimal
polynomial of a matrix A ∈ Mn×n(k) is the unique monic polynomial pA(x)
of least degree such that pA(A) = 0.

Lemma 7.14. Let T : V → V be a linear transformation. Suppose that
f ∈ k[x] and f(T ) = 0. Let pT (x) ∈ k[x] be the minimal polynomial of T .
Then pT (x) | f(x). In particular, if dimV is finite, then pT (x) | fT (x).

A similar result holds for the minimal polynomial of a matrix A ∈Mn×n(k).

Proof. Use the division algorithm to write f(x) = pT (x)q(x) + r(x) where
q(x), r(x) ∈ k[x] and either r(x) = 0 or deg r(x) < deg pT (x). Then

0 = f(T ) = pT (T )q(T ) + r(T ) = r(T ).

If r(x) 6= 0, then we can write r(x) = cs(x) where s(x) is a monic poly-
nomial with deg(s(x)) = deg(r(x)) and c ∈ k is nonzero. Then r(T ) = 0
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implies s(T ) = 0. This is impossible because s(x) is a monic polynomial with
deg(s(x)) < deg(pT (x)). Therefore r(x) = 0 and so pT (x) | f(x).

If dimV is finite, then fT (T ) = 0 by the Cayley-Hamilton Theorem. It
follows that pT (x) | fT (x).

An analogous proof holds for the minimal polynomial of a matrix A ∈
Mn×n(k).

7.4 More results on T-Invariant Subspaces

Let T : V → V be a linear transformation.

Lemma 7.15. Let g ∈ k[x] be a polynomial and suppose that deg(g) = m ≥
1. If ker(g(T )) 6= 0, then V contains a nonzero T -invariant subspace W of
dimension ≤ m. If g is irreducible in k[x], then dimW = m.

Proof. Let v ∈ ker(g(T )) and assume that v 6= 0. Let

W = 〈v, Tv, T 2v, . . . , Tm−1v〉.

Let g = amx
m + · · · + a1x + a0 with am 6= 0. Since g(T )(v) = 0, it follows

that Tm(v) = −a−1m (am−1T
m−1 + · · ·+a1T +a01V )(v). Then Tm(v) lies in W

and thus T (T iv) ∈ W for 0 ≤ i ≤ m − 1. Then W is a nonzero T -invariant
subspace of V and dim(W ) ≤ m.

Now assume that g is an irreducible polynomial. We will show that
dimW = m. Suppose that v, Tv, T 2v, . . . , Tm−1v are linearly dependent
over k. Then there exist b0, . . . , bm−1 in k, not all zero, such that

b0v + b1Tv + · · ·+ bm−1T
m−1 = 0.

Then h(T )(v) = 0, where h(x) = bm−1x
m−1 + · · · + b1x + b0 is a nonzero

polynomial. Let f = gcd(g, h). Recall that there exist polynomials r(x)
and s(x) in k[x] such that f = rg + sh. Then f(T )(v) = 0 because
g(T )(v) = 0 and h(T )(v) = 0. We have f = 1 because g is irreducible
in k[x] and deg(h) < deg(g). Therefore, v = 0, a contradiction. It fol-
lows that v, Tv, T 2v, . . . , Tm−1v are linearly independent over k and that
dim(W ) = m.

Corollary 7.16. Suppose that there exists a nonzero polynomial f ∈ k[x]
such that f(T ) = 0. Write f(x) = f1(x) · · · fm(x) where each fi(x) is an
irreducible polynomial in k[x]. Then V contains a nonzero T -invariant sub-
space of dimension equal to dim fi(x) for some i.
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Proof. First suppose that ker(fi(T )) = 0 for 1 ≤ i ≤ m. Then fi(T ) is
injective for each i and it follows that the composition f(T ) = f1(T ) · · · fm(T )
is injective. This is a contradiction because f(T ) = 0. Therefore ker(fi(T )) 6=
0 for some i. Then the result follows from Lemma 7.15.

Proposition 7.17. Suppose that there exists a nonzero polynomial f ∈ k[x]
such that f(T ) = 0.

1. If k = C, the field of complex numbers (or any algebraically closed
field), then V contains a one-dimensional T -invariant subspace. In
other words, V contains an eigenvector for T .

2. If k = R, the field of real numbers (or any real closed field), then V
contains a T -invariant subspace of dimension ≤ 2.

Proof. Let f(T ) = 0, where f ∈ k[x] is a nonzero polynomial of degree m.
(1) Since k is algebraically closed, f factors as a product of linear poly-

nomials over k. Thus we have f(x) = b(x − c1)(x − c2) · · · (x − cm) where b
and each ci lie in k. The result now follows from Corollary 7.16.

(2) Since k is the field of real numbers (or is real closed), f factors as a
product of linear and irreducible quadratic polynomials over k. Thus we have
f(x) =

∏m
i=1 gi(x), where deg gi ≤ 2 and each gi is an irreducible polynomial

in k[x]. The result follows from Corollary 7.16.

In the next two sections, we attempt to find bases of V so that the matrix
[T ]ββ is as simple as possible.

7.5 Primary Decomposition

Let T : V → V be a linear transformation.

Proposition 7.18. Suppose that f is a nonzero polynomial in k[x] such that
f(T ) = 0. Let f(x) = f1(x)f2(x), where f1, f2 ∈ k[x] and gcd(f1, f2) = 1.

Let Vi = ker(fi(T )), i = 1, 2. Then the following statements hold.

1. V = V1 ⊕ V2.

2. Vi is a T -invariant subspace of V for i = 1, 2.

3. Let Ti = T |Vi : Vi → Vi be the induced linear transformation from (2).
Let pTi(x) denote the minimal polynomial of Ti. Then pTi(x) | fi(x).
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4. If dimVi is finite, let fTi(x) denote the characteristic polynomial of Ti.
Then pTi(x) | fTi(x).

5. We have pT (x) = pT1(x)pT2(x). If dimV1 and dimV2 are both finite,
then fT (x) = fT1(x)fT2(x).

Proof. There exist polynomials g1, g2 ∈ k[x] such that f1g1 + f2g2 = 1.
Let v ∈ V . Then v = 1V (v) = f1(T )g1(T )(v) + f2(T )g2(T )(v). Let v1 =
f2(T )g2(T )(v) and let v2 = f1(T )g1(T )(v), so that v = v1 + v2. Then v1 ∈ V1
because

f1(T )(v1) = f1(T )f2(T )g2(T )(v) = f(T )(g2(T )(v)) = 0.

Similarly, v2 ∈ V2. Thus V = V1 + V2.
Now suppose that v1 ∈ V1, v2 ∈ V2 and v1 + v2 = 0. Then

0 = f2(T )(v1 + v2) = f2(T )(v1) + f2(T )(v2) = f2(T )(v1).

Since f1(T )(v1) = 0, it follows that

v1 = 1V (v1) = g1(T )f1(T )(v1) + g2(T )f2(T )(v1) = 0.

Similarly, it follows that v2 = 0. Therefore, V = V1 ⊕ V2, which proves (1).
For (2), let vi ∈ Vi. Then fi(T )(T (vi)) = Tfi(T )(vi) = T (0) = 0. Thus

T (vi) ∈ ker(fi(T )) = Vi, so (2) holds.
For (3), let v ∈ Vi. Then fi(Ti)(v) = fi(T )(v) = 0 because v ∈ Vi =

ker(fi(T )). Thus fi(Ti) = 0, so pTi(x) | fi(x) by Lemma 7.14.
If dimVi is finite, then pTi(x) | fTi(x) by Lemma 7.14 because fTi(Ti) = 0

by the Cayley-Hamilton Theorem. This proves (4).
Now we prove (5). Let v ∈ Vi. Then pT (Ti)(v) = pT (T )(v) = 0. Thus, for

i = 1, 2, we have pTi(x) | pT (x) by Lemma 7.14. Since pTi(x) | fi(x) by (3)
and gcd(f1, f2) = 1, it follows that gcd(pT1 , pT2) = 1, so pT1(x)pT2(x) | pT (x).

Now let v ∈ V and let v = v1 + v2 where vi ∈ Vi. Then

pT1(T )pT2(T )(v) = pT1(T )pT2(T )(v1 + v2)

= pT2(T )pT1(T )(v1) + pT1(T )pT2(T )(v2) = 0 + 0 = 0.

Thus pT (x) | pT1(x)pT2(x). Therefore, pT (x) = pT1(x)pT2(x).
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Now assume that dimV1 and dimV2 are both finite. Then Lemma 7.4
(with its notation) implies that

fT (x) = det(xIn − T ) = det

(
xIl − A 0

0 xIm −B

)
= det(xIl − A) det(xIm −B) = fT1(x)fT2(x).

Proposition 7.19. Suppose that f ∈ k[x] is a nonzero polynomial such that
f(T ) = 0. Let f(x) = f1(x) · · · fm(x), where f1, . . . , fm ∈ k[x] are pairwise
relatively prime polynomials.

Let Vi = ker(fi(T )), 1 ≤ i ≤ m. Then the following statements hold.

1. V = V1 ⊕ · · · ⊕ Vm.

2. Vi is a T -invariant subspace of V .

3. Let Ti = T |Vi : Vi → Vi be the induced linear transformation from (2).
Let pTi(x) denote the minimal polynomial of Ti. Then pTi(x) | fi(x).

4. If dimVi is finite, let fTi(x) denote the characteristic polynomial of Ti.
Then pTi(x) | fTi(x).

5. We have pT (x) = pT1(x) · · · pTm(x). If dimVi is finite, 1 ≤ i ≤ m, then
fT (x) = fT1(x) · · · fTm(x).

Proof. We prove this by induction on m. The case m = 1 is trivial and the
case m = 2 follows from Proposition 7.18. Now assume that m ≥ 3. Let
g = f1(x) · · · fm−1(x), and let W = ker(g(T )). Then gcd(g, fm) = 1 and
V = W ⊕ Vm by Proposition 7.18(1). By induction, we have that W = V1 ⊕
· · ·⊕Vm−1 and thus (1) holds. The remaining statements are easy conclusions
from the induction hypothesis and Proposition 7.18. (See Exercise 4.)

The next result gives the so called Primary Decomposition of V respect
to T .

Corollary 7.20. Suppose that f ∈ k[x] is a monic polynomial such that
f(T ) = 0. Let f(x) = f1(x)e1 · · · fm(x)em, where f1, . . . , fm ∈ k[x] are dis-
tinct monic irreducible polynomials and each ei > 0.

Let Vi = ker(fi(T )ei), 1 ≤ i ≤ m. Then the following statements hold.
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1. V = V1 ⊕ · · · ⊕ Vm.

2. Vi is a T -invariant subspace of V .

3. Let Ti = T |Vi : Vi → Vi be the induced linear transformation from (2).
Let pTi(x) denote the minimal polynomial of Ti. Then pTi(x) | f eii (x).

4. If dimVi is finite, let fTi(x) denote the characteristic polynomial of Ti.
Then pTi(x) | fTi(x).

5. We have pT (x) = pT1(x) · · · pTm(x). If dimVi is finite, 1 ≤ i ≤ m, then
fT (x) = fT1(x) · · · fTm(x).

Proof. The result follows immediately from Proposition 7.19.

We now use a slightly more abstract way to obtain the primary decom-
position of V with respect to T .

Lemma 7.21. Suppose that Ei : V → V , 1 ≤ i ≤ m, are linear transforma-
tions satisfying the following statements.

1. E1 + · · ·+ Em = 1V ,

2. EiEj = 0 if i 6= j.

Let Vi = im(Ei), 1 ≤ i ≤ m. Then

i. E2
i = Ei, 1 ≤ i ≤ m.

ii. V = V1 ⊕ · · · ⊕ Vm.

iii. ker(Ei) =
m∑
j=1
j 6=i

im(Ej) =
m∑
j=1
j 6=i

Vj.

Proof. Since EiEj = 0 when i 6= j, we have

E2
i = Ei(E1 + E2 + · · ·+ Ei + · · ·+ Em) = Ei1V = Ei.

Let v ∈ V . Then v = 1V v = (E1 + · · · + Em)v ∈ V1 + · · · + Vm, since
Ejv ∈ im(Ej) = Vj. Thus V = V1 + · · ·+ Vm.

Suppose that v ∈ V1∩(V2+· · ·+Vm). Then there exist yi ∈ Vi, 1 ≤ i ≤ m,
such that

v = E1y1 = E2y2 + · · ·+ Emym.
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Applying E1 gives

E1v = E2
1y1 = E1E2y2 + · · ·+ E1Emym = 0,

because E1Ej = 0 for j ≥ 2. Since E2
1 = E1, we have 0 = E2

1y1 = E1y1 = v.
Thus V1 ∩ (V2 + · · ·+ Vm) = 0. Similarly,

Vi ∩ (V1 + · · ·+ Vi−1 + Vi+1 + · · ·+ Vm) = 0,

for 1 ≤ i ≤ m. Therefore, V = V1 ⊕ · · · ⊕ Vm.
Since EiEj = 0 if i 6= j, it follows that im(Ej) ⊆ ker(Ei), for i 6= j. Thus

m∑
j=1
j 6=i

im(Ej) ⊆ ker(Ei). Let v ∈ ker(Ei). Then

v = (E1 + · · ·+ Em)v =
m∑
j=1

Ej(v) =
m∑
j=1
j 6=i

Ej(v) ∈
m∑
j=1
j 6=i

im(Ej).

Therefore, ker(Ei) =
m∑
j=1
j 6=i

im(Ej).

We now use Lemma 7.21 to obtain a second proof of Proposition 7.19(1).

Proposition 7.22. Suppose that f is a nonzero monic polynomial f ∈ k[x]
such that f(T ) = 0. Let f(x) = f1(x) · · · fm(x), where f1, . . . , fm ∈ k[x] are
pairwise relatively prime polynomials.

Let Vi = ker(fi(T )), 1 ≤ i ≤ m. Then V = V1 ⊕ · · · ⊕ Vm.

Proof. Let gj(x) =
f(x)

fj(x)
, 1 ≤ j ≤ m. Then gcd(g1(x), . . . , gm(x)) = 1. Thus

there exist hj(x) ∈ k[x], 1 ≤ j ≤ m, such that
∑m

j=1 gj(x)hj(x) = 1. If i 6= j,

then fi(x) | gj(x) and so f(x) | gi(x)gj(x). In other words,
gi(x)gj(x)

f(x)
=

gi(x)gj(x)

gi(x)fi(x)
∈ k[x].

Now we show that Lemma 7.21 can be applied. Let Ej = gj(T )hj(T ).
Since

∑m
j=1 gj(x)hj(x) = 1, we have

m∑
j=1

Ej =
m∑
j=1

gj(T )hj(T ) = 1V .
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Since f(x) | gi(x)gj(x) when i 6= j and f(T ) = 0, we have gi(T )gj(T ) = 0,
and thus

EiEj = gi(T )hi(T )gj(T )hj(T ) = gi(T )gj(T )hi(T )hj(T ) = 0.

Therefore, the hypotheses of Lemma 7.21 hold.
Now we show that im(Ei) = ker(fi(T )). Since fi(T )gi(T ) = f(T ) = 0,

we have im(gi(T )) ⊆ ker(fi(T )). Thus

im(Ei) = im(gi(T )hi(T )) ⊆ im(gi(T )) ⊆ ker(fi(T )).

Let v ∈ ker(fi(T )). If i 6= j, then fi(x) | gj(x), and so fi(T )(v) = 0 implies
that gj(T )(v) = 0. Thus Ej(v) = gj(T )hj(T )(v) = hj(T )gj(T )(v) = 0. Thus

v = (E1 + · · ·+ Em)(v) = Ei(v) ∈ im(Ei).

Therefore, im(Ei) = ker(fi(T )) = Vi, 1 ≤ i ≤ m. Now the result follows from
Lemma 7.21.

We can now extend Proposition 7.12 by giving another condition that
characterizes when a linear transformation T is diagonalizable.

Proposition 7.23. Let T : V → V be a linear transformation. The following
statements are equivalent.

1. T is diagonalizable.

2. There exists a basis of V consisting of eigenvectors of T .

3. The minimal polynomial pT (x) of T is square-free and factors com-
pletely over k.

Proof. We have already proved in Proposition 7.12 that (1) and (2) are equiv-
alent. Assume that (2) holds and let β = {v1, . . . , vn} be a basis of V consist-
ing of eigenvectors of T . Let A = [T ]ββ = (aij). Then A is a diagonal matrix
and T (vi) = aiivi for 1 ≤ i ≤ m. Let c1, . . . , cm be the distinct elements that
lie in {a11, . . . , ann}. Thus m ≤ n.

Let g(x) = (x− c1) · · · (x− cm). Let v ∈ β and suppose that T (v) = civ.
Since all linear transformations in k[T ] commute with one another, we have

g(T )(v) = (T−c11V ) · · · (T−ci−11V )(T−ci+11V ) · · · (T−cm1V )(T−ci1V )(v).
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Since (T−ci1V )(v) = T (v)−civ = 0, it follows that g(T )(v) = 0 for all v ∈ β.
Then g(T )(v) = 0 for all v ∈ V . Therefore g(T ) = 0. Then pT (x) | g(x)
by Lemma 7.14. Since g(x) is square-free and factors completely over k, it
follows that the same holds for pT (x). Thus (3) holds.

Now assume that (3) holds, so that the minimal polynomial pT (x) of T is
square-free and factors completely over k. Then pT (x) = (x−c1) · · · (x−cm),
where c1, . . . , cm ∈ k are distinct elements. Proposition 7.19 implies that
V = V1 ⊕ · · · ⊕ Vm, where Vi = ker(T − ci1V ), 1 ≤ i ≤ m. Each element of
ker(T − ci1V ) is an eigenvector of T with eigenvalue ci. Let βi be a basis of
ker(T−ci1V ). Then β = β1∪· · ·∪βm is a basis of V consisting of eigenvectors
of T . Thus (2) holds.

In the proof of (2) implies (3) in the proof of Proposition 7.23, we can
prove even more. We now prove that g(x) = pT (x). We have already proved
that pT (x) | g(x). If g(x) 6= pT (x), then we can relabel to assume that
pT (x) | (x− c1) · · · (x− cm−1). There exists v ∈ β such that T (v) = cmv. We
have

(T − c11V ) · · · (T − cm−11V )(v) = g(T )(v) = 0.

Since (T − ci1V )(v) = (cm − ci)v, it follows that

(T − c11V ) · · · (T − cm−11V )(v) =
m−1∏
i=1

(cm − ci)v 6= 0.

This is impossible, and therefore g(x) = pT (x).

7.6 Further Decomposition

We begin with two definitions that are similar to Definition 7.13.

Definition 7.24. Let v ∈ V and let W ⊆ V be a subspace. Suppose that
there exists a nonzero polynomial f ∈ k[x] such that f(T )(v) ∈ W .

1. We let p(v,W ) ∈ k[x] denote the unique monic polynomial g ∈ k[x] of
least degree such that g(T )(v) ∈ W .

2. In the special case of (1) when W = (0) and f(T )(v) = 0, we let pv(x)
denote the unique monic polynomial g ∈ k[x] of least degree such that
pv(T )(v) = 0. We call pv(x) the T -order of v.
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The following lemma is proved as in Lemma 7.14.

Lemma 7.25. Let v ∈ V and let W ⊆ V be a T -invariant subspace. If
f ∈ k[x] and f(T )(v) ∈ W , then p(v,W ) | f(x). If f(T )(v) = 0, then
pv(x) | f(x).

Proof. Use the division algorithm to write f(x) = p(v,W )q(x) + r(x) where
either r(x) = 0 or deg(r(x)) < deg(p(v,W )). We have that f(T )(v) ∈ W and
p(v,W )(T )q(T )(v) = q(T )p(v,W )(T )(v) ∈ W because p(v,W )(T )(v) ∈ W
and W is a T -invariant subspace. Then r(T )(v) ∈ W . The proof finishes as
in Lemma 7.14.

Since (0) is a T -invariant subspace of V , it follows that if f(T )(v) = 0,
then pv(x) | f(x).

Proposition 7.26. Let v ∈ V and suppose that deg pv(x) = m. Then
{v, Tv, T 2v, . . . , Tm−1v} is a basis of k[T ]v and dim k[T ]v = deg pv(x).

Proof. Let pv(x) = xm + am−1x
m−1 + · · ·+ a1x+ a0. Since pv(T )(v) = 0, we

have Tmv = −(am−1T
m−1v + · · · + a1Tv + a0v). It follows easily that k[T ]v

is spanned by {v, Tv, T 2v, . . . , Tm−1v}.
Suppose that

∑m−1
i=0 biT

iv = 0 is a nontrivial linear dependence rela-
tion. Then g(x) = bm−1x

m−1 + · · · + b1x + b0 is a nonzero polynomial with
deg g(x) ≤ m − 1 < deg pv(x) such that g(T )(v) = 0. Since we may multi-
ply by a scalar to obtain a monic polynomial with the same property, this
contradicts the definition of pv(x). Therefore, {v, Tv, T 2v, . . . , Tm−1v} is a
linearly independent set and thus forms a basis of k[T ]v. It is now clear that
dim k[T ]v = deg pv(x).

Definition 7.27. Let W be a subspace of V . Then W is a T -admissible
subspace of V if the following two statements hold.

1. W is a T -invariant subspace of V .

2. If y ∈ V , g ∈ k[x], and g(T )y ∈ W , then there exists z ∈ W such that
g(T )z = g(T )y.

For example, (0) and V are T -admissible subspaces of V . For if W = (0),
we may always take z = 0, while if W = V , then we may always take z = y.

The following lemma constitutes the key step in the proofs of Theorems
7.30 and 7.31 below.
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Lemma 7.28. Let W ( V be a T -admissible subspace. Suppose that f(x) ∈
k[x] is a polynomial such that f(T ) = 0. Then there exists v ∈ V , v /∈ W ,
such that

1. W ∩ k[T ]v = (0)

2. W + k[T ]v is a T -admissible subspace of V .

Proof. Choose y ∈ V such that deg p(y,W ) is maximal. This is possible
because p(y,W ) | f(x) and hence deg p(y,W ) ≤ deg f(x). We have y /∈ W
because W ( V . Let g(x) = p(y,W ). Then g(T )y ∈ W . Since W is
T -admissible, there exists y′ ∈ W such that g(T )y = g(T )y′.

Let v = y − y′. Thus v /∈ W because y /∈ W and y′ ∈ W . We now show
that W ∩ k[T ]v = (0). Suppose that h ∈ k[x] and h(T )v ∈ W . Then

h(T )y − h(T )y′ = h(T )(y − y′) = h(T )v ∈ W.

We have h(T )y′ ∈ W because y′ ∈ W and W is T -invariant. Thus h(T )y ∈
W . Therefore, g(x) | h(x). We have

g(T )v = g(T )(y − y′) = g(T )y − g(T )y′ = 0.

Thus h(T )v = 0 because g(x) | h(x). Therefore W ∩k[T ]v = (0). This proves
(1).

For (2), we first note that W + k[T ]v is T -invariant because W and k[T ]
are each T -invariant.

Suppose that u ∈ V and h(T )u ∈ W+k[T ]v. We must find u′ ∈ W+k[T ]v
such that h(T )u = h(T )u′. We can assume that h(x) = p(u,W + k[T ]v)
because if h(T )u = h(T )u′, then s(T )h(T )u = s(T )h(T )u′ for all s(x) ∈ k[x].

Let h(T )u = w + j(T )v, where w ∈ W and j(x) ∈ k[x]. We now prove
that h(x) | j(x). Use the division algorithm to write j(x) = h(x)q(x) + r(x)
where either r(x) = 0 or deg r(x) < deg h(x). Let z = u − q(T )v. Then
z − u ∈ k[T ]v, and so p(z,W + k[T ]v) = p(u,W + k[T ]v) = h(x). We have

h(T )z = h(T )(u− q(T )v) = h(T )u− h(T )q(T )v

= w + j(T )v − h(T )q(T )v = w + (j(T )− h(T )q(T ))v = w + r(T )v.

Let n(x) = p(z,W ). Since h(x) = p(z,W+k[T ]v), it follows that h(x) | n(x).
Let n(x) = h(x)m(x). Then

n(T )z = m(T )h(T )z = m(T )(w + r(T )v) = m(T )w +m(T )r(T )v.
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Since n(T )z ∈ W (because n(x) = p(z,W )) and m(T )w ∈ W , we have
m(T )r(T )v ∈ W . If r(x) 6= 0, then

deg(m(x)r(x)) ≥ deg p(v,W ) = deg p(y,W ) ≥ deg p(z,W )

= deg n(x) = deg h(x)m(x).

(The y above is the y from the proof of (1). We also used that deg(p(y,W ))
is maximal.)

Thus deg r(x) ≥ deg h(x), a contradiction. Therefore, r(x) = 0 and
h(x) | j(x). Thus j(x) = h(x)q(x).

From above, h(T )z = w + r(T )v = w. Since w = h(T )z and W is
T -admissible, we have w = h(T )z = h(T )z′ for some z′ ∈ W . Thus,

h(T )u = w + j(T )v = h(T )z′ + h(T )q(T )v = h(T )(z′ + q(T )v) = h(T )u′,

where u′ = z′ + q(T )v ∈ W + k[T ]v. Therefore, W + k[T ]v is a T -admissible
subspace of V .

Lemma 7.29. Let W be a subspace of V and suppose that W = W1 ⊕
· · · ⊕Wm. Assume that W1, . . . ,Wm are each T -invariant subspaces of V . If
W is a T -admissible subspace of V , then W1, . . . ,Wm are each T -admissible
subspaces of V .

Proof. Let y ∈ V and suppose that g(T )y ∈ Wi. Since Wi ⊆ W , there exists
z ∈ W such that g(T )y = g(T )z. Let z = z1 + · · ·+ zm where zj ∈ Wj. Since
each Wj is T -invariant, we have g(T )y = g(T )z = g(T )z1 + · · ·+g(T )zm with
g(T )zj ∈ Wj, 1 ≤ j ≤ m. Since g(T )y ∈ Wi, it follows that g(T )y = g(T )zi
with zi ∈ Wi. Thus each Wi is a T -admissible subspace of V .

Theorem 7.30. Assume that f(T ) = 0 for some polynomial f ∈ k[x]. The
following statements are equivalent for a subspace W of V .

1. W is a T -admissible subspace of V .

2. W is a T -invariant subspace of V and there exists a T -invariant sub-
space W ′ of V such that V = W ⊕W ′.

Proof. First assume that (2) holds. Since V is a T -admissible subspace,
Lemma 7.29 implies that W is a T -admissible subspace of V and (1) holds.

Now assume that (1) holds. If W = V , then let W ′ = 0. We may now
suppose that W ( V . Let S denote the set of subspaces Y of V satisfying
the following three conditions.
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1. Y is a T -invariant subspace of V .

2. W ∩ Y = (0).

3. W + Y is a T -admissible subspace of V .

Then S is a nonempty set because (0) ∈ S. The set S is partially ordered
by inclusion. Let W ′ be a maximal element of S. If dimV is finite, then it
is clear that W ′ exists. Otherwise the existence of W ′ follows from Zorn’s
Lemma.

We have W + W ′ = W ⊕W ′ by (2). We now show that V = W ⊕W ′.
Suppose that W ⊕ W ′ ( V . Then Lemma 7.28 implies that there exists
v ∈ V , v /∈ W ⊕W ′, such that (W ⊕W ′)∩k[T ]v = (0) and (W ⊕W ′)+k[T ]v
is a T -admissible subspace of V . Then (W ⊕W ′) +k[T ]v = W ⊕W ′⊕k[T ]v.
We now check that W ′⊕ k[T ]v ∈ S. We have that W ′⊕ k[T ]v is T -invariant
because W ′ and k[T ]v are each T -invariant. We have W ∩ (W ′ ⊕ k[T ]v) = 0
because of the direct sum decomposition. Finally, W + (W ′ ⊕ k[T ]v) is T -
admissible. This is a contradiction because W ′ ( W ′ ⊕ k[T ]v. Therefore,
V = W ⊕W ′ and (2) holds.

Theorem 7.31. Let V be a finite dimensional vector space over k. Then
V is a direct sum of T -cyclic subspaces of V . One summand k[T ]v can be
chosen such that k[T ]v is a maximal T -cyclic subspace of V .

Proof. Let W be a maximal subspace of V with the property that W is a
T -admissible subspace of V and is also a direct sum of T -cyclic subspaces of
V . (The set of such subspaces is nonempty because (0) is a T -cyclic subspace
of V that is also T -admissible.) If W ( V , then Lemma 7.28 and Proposition
7.1 imply that there exists v ∈ V , v /∈ W , such that W ∩ k[T ]v = (0) and
W + k[T ]v is a T -admissible subspace of V . Then W + k[T ]v = W ⊕ k[T ]v
and W ( W ⊕ k[T ]v. This is a contradiction, and thus W = V .

Now we show that one summand k[T ]v can be chosen such that k[T ]v is a
maximal T -cyclic subspace of V . Suppose that v ∈ V is such that k[T ]v is a
maximal T -cyclic subspace of V . Let W = k[T ]v. The proof of Lemma 7.28
shows that W is a T -admissible subspace of V . (In the proof of Lemma 7.28,
let W = (0), y = v, and y′ = 0 so that v = y − y′.) Theorem 7.30 implies
that V = W ⊕W ′, where W ′ is a T -invariant subspace of V . The first part
of this Theorem implies that W ′ is a direct sum of T -cyclic subspaces of V .
Then V = k[T ]v ⊕W ′ is also a direct sum of T -cyclic subspaces of V .
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Exercises

1. Assume that dimV is finite and let T : V → V be a linear transforma-
tion. Then T is invertible if and only if det(T ) 6= 0.

2. If β is an arbitrary basis of V , then T is diagonalizable if and only if
[T ]ββ is diagonalizable.

3. Suppose [T ]ββ =

(
a 0
0 b

)
, where a 6= b. Then PT (x) = (x− a)(x− b).

4. Fill in the details to the proof of Proposition 7.19.

5. Let V be the vector space over R consisting of all infinitely differen-
tiable functions f : R→ R. Let T : V → V be the linear transforma-
tion given by differentiation. That is, T (f) = f ′. Show that there is
no nonzero polynomial g ∈ R[x] such that g(T ) = 0.
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