MA 114 Exam 2 Fall 2013

FExram 2
22 October 2013
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Multiple Choice Questions
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1. Which of the following functions gives the arc length of curve f(x) = In(cos(x)) over the interval
from £ =0 to x = ¢, provided 0 <t < g?

Solution: f'(z) = j—x In(cos(z)) = — tan(x) so

s(t)—/ot \/1+(—tan(x))2d1‘—/Otw/l—i-tanQ(x)dm—/ot\/de—/otsec(w) dx
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2. Which of the following differential equations is not separable?

A

cr(P )+ (e 1)y =0

B. v +3y* =7z
C.
D
E

zy' +/y=0

.y = cos(y)
Yy +3y=1

Solution: Isolating ' we have y/ = 7z — 3y? and this cannot be written as a product

f(x)g(y).

3. Assume
Taylor p

A.

B
C
D.
E

that f(1) = 1, f/(1) = 3, f”(1) = 2 and f"”(1) = 4. Which of the following is the
olynomial T5(z) centered at a = 1 for the function f(z)?

Ty(z) =1+3(x—1)+ (z —1)*+ 2(z —1)?

so the answer is A.

CTa(x) =1+3(x—1)+ (z—1)2 + 3(z — 1)
CTs(z) =3 —1)+ (x—1)*+ 3(z—1)3
T3(z) =3(x — 1) + 2(z — 1)? + 4(x — 1)3
Ts(x) =1+3(x—1)+2(x—1)? +4(z —1)3
. ) . ) (z)
Solution: The nth term in the Taylor polynomial is given by o (z — a)™. Therefore,
Ty(x) = f(a) + F@)@—a) + T3 @ + LD gy
= 1+ r -1+ T @ By
2 4
=143x—-1)+ 2!(36— 1%+ 3!(1'— 1)3
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4. Select the expected form of the partial fraction decomposition of the rational function

22+ 37 —4
(2 —4)(2? 4+ 4) (2% 4 22)

A é—i— B . C +Da:+E Fx+G
r oz—2 z+2 (z+2)? 2244
B. é+ B n C n D +EJZ+F

r -2 z+2 (z+2)?2 2244
o Az+B Czx+D Exz+F

2+ 2r 0 224 2 +4

A B C D Ex+ F
R A T R R R
g4y 5, ¢, D, F

o oz—2 42 (z+2)? 2244

Solution: Note that (22 — 4)(2? + 4)(2% + 22) = (z — 2)(z + 2)(z? + 4)(2)(z + 2) =
z(x —2)(x + 2)%(2? + 4). The form that the partial fractional decomposition will take is

2% + 3z — 4 B 22 + 3z — 4
(22 —4) (22 +4)(22 +22)  2(z—2)(z +2)2(z2 + 4)
A B C D Ex+F
_E+x—2+x+2+(m+2)2+ 2?2 +4

5. Which of the following statements is false?

°° 300
A. / —5 dx converges.
1 X

1
B. / 2% dx converges.
0

< 1
C. / dx diverges.
4 T — \/§ &
-6
D. /3 m dx converges
61‘

S|
[e.e]
E. / dx diverges
2 r—1

Solution: A. converges by the p-series test since 2 > 1. Likewise C diverges by the p-series
test. E diverges since e” grows faster than any power of x. B converges since this integral
[ee)

is equal to / 272 dz +1 and 5/2 > 1. D diverges.
1
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6. Which of the following is a possible solution to the differential equation 3’ = 2(y — 5)?

A y=2+Te
B. y=5+3e%
C. y=2—3e"
D. y=5—2¢e%
E. y=5+7e%

Solution: There are multiple ways to solve this. A student could plug each of the proposed
solutions into the differential equation and see which one holds. A student could also
remember the general form for the solutions of these types of equations. Either way, E is
the correct choice.
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Free Response Questions

You must show all of your work in these problems to receive credit. Answers
without corroborating work will receive no credit.

18
18
Fi —dux.
(a) 1nd/x2_4x_5dx

Solution: Use partial fractions to decompose the integrand into two simpler pieces.

18 18 A B

1‘2—41‘—5:(33—5)(])—1—1) m—5+x+1
18=A(x+1)+ B(x —5)

Substituting x = 5 in the above formula, we find that 18 = 64 or A = 3. Likewise
substituting x = —1 gives us that 18 = —6B or B = —3. Thus,

/18d:1::/< 5 5 )dx:3(1n|:1:—5|—1n]a:+1)+C'

2 —4xr -5 r—5 x+1
:31nx_5‘+0
T+ 1
o 18
b) Find ———dux.
(b) Fin /6 22 —dz -5
Solution:
o) 1 M
/ 8 dr = lim 18 dx
6 w2—4xr—5 M—oo Jg 22 —4x —5
z—5|M
= lim 3In
M—00 r+1 6
M —5 1
= i 1 —3ln|=
linoo(?’“ M+1‘ s 7‘)
1
:0—3ln§:3ln7:ln(73):ln(343)%5.8377
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2
8. (a) Calculate the arc length of the curve y = gaf;?’/?

over the interval [0, 8].

Solution: f/(z) = ; (§x1/2> =22, 50 \/1+ [f'(2)]> = VIt =

8

8
2
L:/ VIt xde = §(1+x)3/2
0

= 2 ~ 17.333
0 3

(b) Now, take the curve y = ga:?’ and rotate it about the z-axis. Calculate the surface area of

1
the solid of rotation defined by this curve, y = gsc?’ over the interval [0, 3].

Solution: f;(:z:) = é (32%) = 2%, s0 /1 + [f/(x)]? = /1 + (22)2.
. PNE
S = / QW%JL"S\/I + (22)2dz = g(wA‘ + 1)3/2‘ = %(82\/82 —1) ~ 258.847
0 0

9. In the following we use Simpson’s rule for integral approximation, Sy on N subintervals.
(a) Compute Sy for the integral fol e 2 dy.

Solution:

% (e*2<0) + 4e7225) 4 9672(5) 4 472 T0) 4 e*2<1>) ~ 43248

(b) The error bound for using S, for x € [a,b] is given by

K4(b—a)®

EI‘I‘OI‘(SN) < W7

where Kj is the maximum value of |f¥)(x)| for all € [a,b]. Find K4 and calculate the
error bound for Sy.

Solution: |f™(2)| = 16e~2* which is decreasing so, K, should be made 16.
16(1-0° 1 00035
T 180(4)F T 2880
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10. Determine the y-coordinate of the center of mass for the region bounded by y = 2 and y = /.

1
0.8
0.6l Y=Vx
0.4
0.2 y=x
02 04 06 08 1
M,
Solution yCM—ﬁ,so
yony = Me _ ploy(V—vA) dy  fy (v —y°) dy
- - 1
M i (y—v?) dy  Jy (03— y?) dy
7/3 1y4 5)
7Y 47|, 38 3
028 _°
<3 i Lpl 20T
It 37,

11. Use separation of variables to find the general solution to 5y’ + 622y% = 0.

Solution:

5y + 62%y* =0
51/ —622
/
6
Y )
1 2
—— = —5173 +C
1
y(r) = D)
51’3 +C
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12. Let T,(z) be the nth Taylor polynomial for f(x) = e centered at a = 0.
(a) Find Ty(z).

Solution: We need f(0), f/(0), f”(0), f”(0), and f*)(0).

" 1" (4)
Ty(w) = 10)+ /O + 1102 ¢ L0 g T 0

TR A
= — X —_——— _—
2 314!

(b) The error bound for using T, (x) centered at x = a to approximate f(z) is given by

|z — a|"H!

|f(z) — Th(x)] < KW, where K = max {|f("+1)(u)| : u is between a and x} :

Use this formula to find the error bound of |f(1) — Ty(1)|.

Solution: The fifth derivative of f(z) is f©®)(z) = —e~*. On the interval [0,1] the
largest absolute value of this derivative will be e so let K = 1. Then

[z —1> _ Jo-1P 1
f(1) =Ty(D)| < K G Sl =g
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13. Newton’s Law of Cooling predicts that the temperature y(¢) of a cooling object satisfies the
differential equation

y' = —k(y —To),
where k > 0 is a constant and 7Tp is the temperature of the environment around the object.

A bowl of soup is served at 70°C. Assuming a cooling constant of ¥ = 1 min~! and an ambient
temperature of Ty = 20°C

(a) Use the information given above to set up the precise differential equation needed to solve
this problem.

Solution: y' = —1(y — 20)

(b) What is the initial condition?

Solution: yy = 70.

(¢) Find a formula for y(t)

Solution:

Yy =—1(y —20) =20 —y

/

y =
y — 20
Inly — 20| = -t + C,
When t =0,y =70, In|70—-20|=C
C =1n50

In|y — 20| = In(50) — ¢
y(t) —20 = G0 —t — 5pet

y(t) = 20 + 50e~"

(d) Use this to predict how long it will take for the soup to cool to 50°C.

Solution: Find ¢ so that y(t) = 50.

y(t) = 20 + 50e "
50 = 20 + 50e !

e_t:§
5
t= —ln§
5
= 0.51 min
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