COMPREHENSIVE EXAMINATION

STATISTICAL INFERENCE

Wednesday, August 15, 1990 9:00 a.m. – 11:00 a.m.

This is a closed-book, closed-notes exam. Please start all problems on a new sheet of paper.

- 1. Students seeking a Master's Level Pass may attempt any five problems from problems 1–6.
- 2. Students seeking a Ph.D. Level Pass must attempt any five problems from problems 6–12.

1. Let X_1, \ldots, X_n be independent and identically distributed random variables with probability density function

$$f(x;\theta) = \begin{cases} \frac{2\theta^2}{x^3}, & x > \theta, \\ 0, & \text{otherwise,} \end{cases}$$

for some $\theta > 0$.

- (a) Show that $\min(X_1, \ldots, X_n)$ is the maximum likelihood estimator of θ .
- (b) Construct a $\gamma \times 100\%$ confidence interval for θ , $0 < \gamma < 1$.
- 2. Let X_1, \ldots, X_n be independent and identically distributed with probability mass function

$$f(x|\theta) = \frac{e^{-\theta}\theta^x}{x!}, \quad x = 0, 1, 2, \dots,$$

- (a) Show that $\sum_{i=1}^{n} X_i$ is a sufficient statistic for θ . Is it minimal sufficient? Why?
- (b) Find a UMVUE for θ^2 . Justify.
- (c) Argue that the test

$$\phi(X) = \begin{cases} 1, & \text{if } \sum_{i=1}^{n} X_i > k, \\ 0, & \text{otherwise,} \end{cases}$$

where k is a constant, is UMP of its size for testing H_0 : $\theta \leq 1$ vs. H_1 : $\theta > 1$.

3. Let

$$g(\theta) = \begin{cases} \frac{\beta^{\alpha}}{\Gamma(\alpha)} \theta^{-(\alpha+1)} e^{-\beta/\theta}, & \theta > 0\\ 0, & \text{otherwise}, \end{cases}$$

where α and β are known, positive constants.

- (a) Verify $g(\theta)$ is a probability density function.
- (b) Let X be a normal random variable with mean zero and variance θ . Consider the estimation problem with $\Theta = \mathcal{A} = (0, \infty)$ and loss function $l(\theta, a) = (\theta a)^2$. Compute the Bayes rule for the prior distribution $g(\theta)$ with $\alpha > 1$ and $\beta > 0$.

Statistical Inference

4. X_1 , X_2 and X_3 are i.i.d. normal variables with mean 0 and variance σ_1^2 . State the distributions of the following variables.

2

- (a) $2X_1 + 3X_2 5X_3$
- (b) $(X_1 X_2)^2 / 2\sigma_1^2$
- (c) $2X_3^2/(X_1^2+X_2^2)$
- (d) $X_3^2/(X_1^2 + X_2^2 + X_3^2)$
- (e) $\sqrt{3}\,\bar{X}/S_1$ where $\bar{X} = (X_1 + X_2 + X_3)/3$ and $S_1^2 = \Sigma(X_i \bar{X})^2/2$.

Furthermore, Y_1 and Y_2 are i.i.d. normal variables with mean 0 and variance σ_2^2 , independent of X_i 's. State also the distributions of the following variables:

- (f) $\bar{X} \bar{Y}$, where $\bar{Y} = (Y_1 + Y_2)/2$
- (g) $V = \frac{2S_1^2}{\sigma_1^2} + S_2^2 \sigma_2^2$, where $S_2^2 = \Sigma (Y_j \bar{Y})^2$.
- (h) $T = k(\bar{X} \bar{Y})/\sqrt{V}$, where $k = \sqrt{(18/5)}/\sigma$ when $\sigma_1 = \sigma_2 = \sigma$.
- (i) Determine k as a function of σ_1 and σ_2 , if $\sigma_1 \neq \sigma_2$, so that T would have the same distribution as in (h).

5. (a) Suppose the random variable X has the pdf $p(x, \theta)$ where θ is an unknown, real-valued parameter. If T = T(X) is an unbiased estimator of $g(\theta)$, establish the inequality

$$\operatorname{var}_{\theta}(T) \ge \frac{[g'(\theta)]^2}{I(\theta)},$$

where $I(\theta)$ is the Fisher information, stating the regularity conditions.

(b) If X has binomial (n, θ) distribution, obtain the Cramer-Rao lower bound for unbiased estimation of $\theta(1-\theta)$.

6. Y_1, Y_2, \ldots, Y_n are independent normal variables with means

$$E(Y_i) = \alpha + \beta x_i \,, \quad i = 1, \dots, n \,,$$

and variance σ^2 , where x_i 's are known constants such that $\Sigma x_i = 0$ and $\Sigma x_i^2 > 0$, and α, β, σ are unknown parameters.

- (a) Show that $T = (\Sigma Y_i, \Sigma Y_i^2, \Sigma Y_i x_i)$ is minimal sufficient.
- (b) Verify that $\hat{\alpha} = \bar{Y}$, $\hat{\beta} = \sum Y_i x_i / \sum x_i^2$ and $\hat{\sigma}^2 = S^2 = \sum (Y_i \hat{\alpha} \hat{\beta} x_i)^2 / n$ are the maximum likelihood estimators.
- (c) Show that the likelihood-ratio test of H_0 : $\beta = 0$ against H: $\beta \neq 0$ is based on $\hat{\beta}^2/S^2$.
- 7. Let X_1, X_2, \ldots, X_n be a random sample from the uniform distribution on the interval $(\theta, \theta + 1)$, θ unknown. To test

$$H_0$$
: $\theta = 0$ vs. H_A : $\theta > 0$,

the following procedure is used: Reject H_0 if and only if

either
$$\max\{x_1,\ldots,x_n\} > 1$$

or $\max\{x_1,\ldots,x_n\} \le 1$ and $\min\{x_1,\ldots,x_n\} \ge C$.

- (a) Determine the constant C so that the test will have size $\alpha = 0.05$.
- (b) Prove or disprove: If C is chosen so that the test has size α , then it is U.M.P. among all tests of size α .

- 8. Let X_1, X_2, \ldots, X_n be independent Bernoulli random variables with parameter p, i.e., $P(X_i = 1) = p = 1 P(X_i = 0), 0 .$
 - (a) Show that no unbiased estimator of $\frac{1}{p}$ exists.
 - (b) Propose an admissible estimator of the form $\frac{1}{aY+b}$ with $a \neq 0$ for $\frac{1}{p}$ under squared error loss.
- 9. Suppose F is Cauchy distribution with median θ , $-\infty < \theta < \infty$ unknown, i.e., $f(x,\theta) = \frac{1}{\pi[1+(x-\theta)^2]}$, $-\infty < x < \infty$. X_1, X_2, \ldots, X_n are i.i.d. from F. Suppose we use the confidence interval

$$\left[X_{[r]},X_{[s]}\right]$$

to estimate θ , where $X_{[i]}$ is the i^{th} order statistic of the sample with $0 < r < \frac{n}{2} < s < n$ and r and s are integers. Find the coverage probability of this confidence interval, i.e., find

$$P(X_{[r]} \le \theta \le X_{[s]}).$$

10. X_1, X_2, \ldots, X_n are i.i.d. Bernoulli random variables:

$$P(X_i = 1) = p = 1 - P(X_i = 0), 0$$

The parameter p is to be estimated with squared error loss.

(a) Find the Bayes estimator of p if the prior distribution for p is beta, i.e.,

$$g(p) = \frac{p^{r-1}(1-p)^{s-1}}{B(r,s)}, \quad 0$$

(b) Show that the estimator $\hat{p} = \frac{\sum X_i + \frac{\sqrt{n}}{2}}{n + \sqrt{n}}$ is minimax.

- 11. Let $X \sim N(\theta, \sigma^2)$ with $-\infty < \theta < \infty$ and σ known. Consider estimating θ under the squared error loss. Show that the estimator $\delta_{a,b}(x) = ax + b$ is admissible if and only if one of the following holds:
 - (a) $0 \le a < 1$;
 - (b) a = 1 and b = 0.
- 12. (a) Let \mathcal{F} be a class of distributions and $\mathcal{F}_0 \subset \mathcal{F}$ be a subclass. Let $g(F), F \in \mathcal{F}$ be a functional to be estimated under the loss L(g(F), t). Suppose the estimator $\delta_0(X), X \sim F$ is minimax for g(F) when F is restricted to \mathcal{F}_0 . Prove that a sufficient condition for $\delta_0(X)$ to be minimax for $F \in \mathcal{F}$ is

$$\sup_{F \in \mathcal{F}_0} R(F, \delta_0) = \sup_{F \in \mathcal{F}} R(F, \delta_0),$$

where

$$R(F,\delta) = \int L(g(F),\delta(x)) dF(x).$$

(b) Suppose X_1, \ldots, X_n are i.i.d. $N(\theta, \sigma^2), -\infty < \theta < \infty$ and $0 < \sigma^2 \le C$. Consider estimating θ under the loss $L(\theta, t) = (\theta - t)^2$. Prove that $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ is minimax.

Hint: Use (a).

(c) Suppose X_1, \ldots, X_n are i.i.d. $F \in \mathcal{F}$ where $\mathcal{F} = \{F: 0 < \sigma_F^2 \leq C\}$. Consider estimating the functional $\theta_F = \text{mean of } F$. Under the squared error loss, prove that \bar{X} is minimax.