Ph.D. Qualifying Examination

STATISTICAL INFERENCE

Tuesday, July 6, 1993 9:00 a.m. – 11:00 a.m.

Answer any four questions:

- 1. Let X_1, \ldots, X_n be i.i.d. with common density $f_{\lambda}(x) = \lambda e^{-\lambda x}, x > 0$. Consider estimating $\theta = P_{\lambda}(X_1 \leq 4) = 1 e^{-4\lambda}$.
 - (a) [15 points]

Show that the estimator

$$\delta(X_1, \dots, X_n) = \begin{cases} 1 - \left(1 - \frac{4}{\sum_{i=1}^n X_i}\right)^{n-1} & \text{if } \sum_{i=1}^n X_i \ge 4\\ 1 & \text{otherwise} \end{cases}$$

is uniformly minimum variance unbiased for estimating θ .

(b) [10 points]

Obtain the maximum likelihood estimator of θ . Prove that it is not an unbiased estimator of θ .

$$\sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{j=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j$$

- 2. Let X_1, X_2, \ldots, X_n be i.i.d. $N(\mu, \sigma^2)$, with both μ and σ^2 unknown.
 - (a) [13 points] Derive the level α likelihood ratio (LR) test for testing H_0 : $\mu = 5$ vs. H_A : $\mu \neq 5$.
 - (b) [12 points] Show that the LR test derived in (a) is UMP unbiased level α test.
- 3. Let X_1, \ldots, X_n be i.i.d. $U[0, \theta]$. Let $X_{(n)}, X_{(n-1)}$ be the largest and second largest order statistics of $\{X_1, \ldots, X_n\}$.
 - (a) [10 points]

 Find the asymptotic distribution of $n(X_{(n)} \theta)$ and obtain a 95% asymptotic confidence interval for θ .
 - (b) [9 points]

 Show that, under mean squared error criterion, $\hat{\theta} = X_{(n)} + [X_{(n)} X_{(n-1)}]$ is a better estimator than $X_{(n)}$ for θ . need to compute $E \times_{(n)} \times_{(n-1)} X_{(n-1)}$
 - (c) [6 points] How does the estimator $\frac{n+1}{n}X_{(n)}$ compare with $\hat{\theta}$ and $X_{(n)}$ under the mean squared error for estimating θ ?

the dist. of
$$x_{(m)}$$
 is $P(x_{(m)} < t) = \left(\frac{t}{\theta}\right)^n$, $0 \le t \le 0$
the dist. of $n(x_{(m)} - \theta)$ is $(for t < 0)$

$$P(n(x_{(m)} - \theta) < t) = P(x_{(m)} - \theta < \frac{t}{n})$$

$$= P(x_{(m)} < \theta + \frac{t}{n})$$

$$= \left(\frac{\theta + \frac{t}{n}}{\theta}\right)^n = \left(1 + \frac{t}{n}\theta\right)^n$$

$$= \left(1 + \frac{t}{n}\theta\right)^n$$

as n > 20 this -> 2

4. Let X_1, X_2, \ldots, X_n be i.i.d. with common unknown distribution function F. Consider estimating $\theta = F(2) = P(X_1 \leq 2)$ with squared error loss. Let \hat{F}_n be the empirical distribution of X_1, \ldots, X_n .

(a) [6 points] based on $I(X) \le 2I$ Derive the Bayes estimator of θ with respect to the prior $\pi(\theta) = \frac{\Gamma_{(\alpha+\beta)}}{\Gamma_{(\alpha)}\Gamma_{(\beta)}}\theta^{\alpha-1}(1-\theta)^{\beta-1} \text{ where } \alpha \text{ and } \beta \text{ are known positive constants.}$

EX

(b) [13 points] Show that

is minimax for θ .

(c) [6 points]
Is the minimax estimator [given in (b)] admissible? Justify your answer.

Hint: What is the distribution of $\hat{F}_n(2)$?

- 5. Suppose X_1, X_2, \ldots, X_n are i.i.d. with unknown continuous distribution function F.
 - (a) [8 points]

Derive a consistent estimator of the function $\Lambda(t_0) = -\log(1 - F(t_0))$ where t_0 is a fixed number. Prove your claim of consistency.

- is a consistent est.

 (b) [12 points]

 Determine the asymptotic distribution of the estimator derived in at 0, and 1

 (a).

 Me delta method.
 - (c) [5 points] Hence or otherwise obtain a 99% asymptotic confidence interval for $\Lambda(t_0)$.