Ph.D. Qualifying Exam

Probability

May 29, 2002 9 a.m.-12 p.m.

- 1. Start each question on a clean sheet of paper.
- 2. Put your name (or at least initials) at the top of each page you turn in.
- 3. Point values: #1 is worth 10 points. All others are worth 15 points.

1. Let $X_1, X_2,...$ be a sequence of independent Bernoulli variables such that

$$X_i = 1$$
 with probability p_i
= 0 with probability $1 - p_i = q_i$

for
$$i = 1, 2, ...$$

if $S_n = X_1 + X_2 + ... + X_n$

Find sufficient conditions on the p_i such that

$$\frac{(S_n - \sum_{i=1}^{n} p_i)}{(\sum_{i=1}^{n} p_i q_i)^{1/2}}$$
 is asymptotically standard normal as *n* becomes large.

[Note: Don't just state conditions. Verify your claim that these conditions are sufficient.]

2. (a) Let $X_1, X_2, ..., X_n$ be *iid* random variables having density function f or g defined on the real line where f(x) > 0 and g(x) > 0 for all x. Define the likelihood ratio by

$$L_n = \pi \frac{g(x_k)}{f(x_k)} \quad \text{where } L_o = 1.$$

- (i) If f is the true density function of the X's, show that L_n is a martingale over $(\Omega, \mathcal{F}, P_f)$ where P_f denotes the probability under which the X_k have density f, for each n.
- (ii) If the X_k have the density g under P_g , then show that L_n is a submartingale.
- (b) Let $\left\{X_n\right\}_{n=1}^{\infty}$ be a martingale with respect to $\left\{\mathcal{F}_n\right\}_{n=1}^{\infty}$. Let

 $Y_1 = X_1$ and $Y_n = X_n - X_{n-1}$ for $n \ge 2$. Suppose Z_{n+1} is \mathcal{F}_n - measurable for $n = 1, 2, \ldots$ such that $E(Z_n Y_n)$ is finite for all $n \ge 2$.

Define
$$U_1 = Y_1$$
 and for $n \ge 2$, $U_n = Y_1 + \sum_{i=2}^n Z_i Y_i$.

Prove that $\{U_n\}_{n=1}^{\infty}$ is a martingale.

- 3. Prove or give counterexample: Let $S_n = \sum_{i=1}^n X_i$
 - (a) If X_n converges almost surely to X, then X_n converges in probability to X.

- (b) If X_n converges in probability to 0, then $\frac{S_n}{n}$ converges in probability to 0.
- (c) If $\frac{S_n}{b_n}$ converges in probability to 0, and $\frac{b_{n+1}}{b_n}$ converges to 1, then $\frac{X_n}{b_n}$ converges to 0 in probability.
- 4. Let $\{X_n\}_{n=1}^{\infty}$ and X be random variables. Suppose that $E(f(X_n)) \to E(f(X))$ for all bounded uniformly continuous functions f. Prove that $X_n \xrightarrow{d} X$.
- 5. Let $\{F_n\}_{n=1}^{\infty}$ be a sequence of d.f.'s with ch.f.'s $\{\phi_n\}_{n=1}^{\infty}$. Assume $\{F_n\}_{n=1}^{\infty}$ is a tight family. Suppose F is a d.f. with ch.f. ϕ . Prove that if $\lim \phi_n(t) = \phi(t)$ for all $t \in \mathbb{R}$, then $\lim F_n(x) = F(x)$ for every x which is a continuity point of F.
- 6. Prove the following:
 - (a) Suppose that X is a nonnegative random variable. Then, for any a > 0, $P(X \ge a) \le \frac{E(X)}{a}$
 - (b) If X is a random variable with finite mean μ and variance σ^2 , then for any a > 0 $P(|X \mu|) \ge a) \le \frac{\sigma^2}{a^2}$
 - (c) If X is a random variable with mean 0 and variance σ^2 , then for any a > 0, $P(X \ge a) \le \frac{\sigma^2}{\sigma^2 + a^2}$ [Hint: Observe that for b > 0, $X \ge a$ is equivalent to $X + b \ge a + b$, etc. Find a value of b which minimizes the probability.]
 - (d) If X is a random variable with mean μ and variance σ^2 , then

$$P(X \ge \mu + a) \le \frac{\sigma^2}{\sigma^2 + a^2}$$
 and

$$P(X \le \mu - a) \le \frac{\sigma^2}{\sigma^2 + a^2}$$

- (e) Show that (d) implies that $P(|X \mu| \ge a) \le 2\frac{\sigma^2}{\sigma^2 + a^2}$. How does this bound compare to the bound in (b)?
- (f) Suppose that $\{X_n\}_{n=1}^{\infty}$ have common finite mean μ and finite positive variances $\{\sigma_n^2\}$ which are uniformly bounded (say by B). Assume further that $Cov(X_i,X_j)=0$ if |i-j|>2. Prove that $\frac{1}{n}\sum_{i=1}^n X_i$ converges in probability to μ .
- 7. (a) Suppose that for all $a, b \in \mathbb{R}$ with a < b, we have $P(X_n < a \text{ infinitely often})$, and $X_n > b$ infinitely often) = 0. Prove that $\lim X_n$ exists almost surely, although it may be infinite with positive probability.
 - (b) Suppose $\{X_n\}_{n=1}^{\infty}$ are independent random variables. Prove that $P(\lim X_n = 0)$ is either 0 or 1. [Hint: First, prove that $(\lim X_n = 0) = \bigcap_{m=1}^{\infty} \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} (\left|X_n\right| \leq \frac{1}{m})]$