
Use Software R to do Survival Analysis and
Simulation. A tutorial

Mai Zhou
Department of Statistics, University of Kentucky

c©GPL 2.0 copyrighted

In this short tutorial we suppose you already have R (version 1.5.0 or later) installed, and

know how to start and quit R. If not, please look at my notes Install and Use R on Windows

PC. This notes should work for both Windows version and Linux version of R. Now start R

and continue

1 Load the package Survival

A lot of functions (and data sets) for survival analysis is in the package survival, so we need

to load it first. This is a package in the recommended list, if you downloaded the binary when

installing R, most likely it is included with the base package. If for some reason you do not

have the package survival, you need to install it first. The easiest way is to start R and click

the button Install package from CRAN... and follow instruction from there.

R commands:

library() # see the list of available packages

library(survival) # load it. You can also

click the pull-down manual for packages and load it.

library(help=survival) # see the list of available functions and data sets.

data(aml) # load the data set aml

aml # see the data

One feature of survival analysis is that the data are subject to (right) censoring.

Example: 2.2; 3+; 8.4; 7.5+.

This means the second observation is larger then 3 but we do not know by how much, etc.

These often happen when subjects are still alive when we terminate the study. To handle the

two types of observations, we use two vectors, one for the numbers, another one to indicate if

the number is a right censored one. In R, we represent the data by

stime <- c(2.2, 3, 8.4, 7.5)

status <- c(1,0,1,0)

In R they are later used as in Surv(stime, status) . Right censoring happens for the

case of aml data set, variable time and status. Try

Surv(aml$time, aml$status)

1

To simulate the (randomly right) censored observations, we need to first simulate a lifetime

vector and, independently, a termination time (=censoring time) vector. Then we observe

whichever comes first (ztimes) and related indicator (status).

lifetimes <- rexp(25, rate = 0.2)

censtimes <- 5 + 5*runif(25)

ztimes <- pmin(lifetimes, censtimes)

status <- as.numeric(censtime > lifetimes)

2 The Kaplan-Meier and Nelson-Aalen estimator

To estimate the distribution of lifetimes nonparametrically, based on right censored observa-

tions, we use the Kaplan-Meier estimator. The R function to do that is survfit() (part of

the survival package).

summary(survfit(Surv(aml$time[1:11],aml$status[1:11])))

This will give (print) the Kaplan-Meier estimator and its estimated sd (square root of

Greenwood formula), and the 95% confidence interval using the log transform. If you want to

get a nice plot, then do

fit1 <- survfit(Surv(aml$time[1:11],aml$status[1:11]))

plot(fit1)

The plot show, along with the Kaplan-Meier curve, the (point-wise) 95% confidence interval

and ticks for the censored observations.

To estimate the cumulative hazard function by the Nelson-Aalen estimator we need to

compute a slightly different version (use option type="fh" for Fleming and Harrington) and

save the output then do some computation afterwards.

temp <- summary(survfit(Surv(aml$time[1:11],aml$status[1:11]),type="fh"))

list(temp$time, -log(temp$surv))

Or we may also use coxph() and then basehaz().

So, you say we can easily construct confidence intervals from the estimator and its estimated

sd — Wrong. Since the finite sample distribution are usually quite skewed, we should construct

the Wald confidence interval (θ̂ ± 1.96σ̂) on a transformed scale, (for this, survfit provides

two: log scale, and log-log scale.) (SAS v.9 proc lifetest provide 4 transformations.) But

nobody knows which transformation is the best scale, though log scale is often recommended.

Another consensus is that without transformation the confidence intervals are not very good.

2

Another approach (my favorite) is to use the empirical likelihood ratio to construct confi-

dence interval, which do not need to specify a transformation. It automatically uses the best

transformation! See examples in the section 8 later.

Another often needed function is to return the value of the Kaplan-Meier (Nelson-Aalen)

estimator at a given time t. The function was survsum(), but not in R anymore? If not, it

should be available at some other web site, include mine. Or you may write one yourself, make

use of approxfun.

3 The Log-rank test and relatives

1. One sample log-rank test. Test if the sample follows a specific distribution (for example

exponential with λ = 0.02). See an R function on my web side for the one sample log-rank

test.

2. Two or more sample log-rank test. To test if the two samples are coming from the same

distribution or two different distributions. (power is best for proportional hazard/Lehmann

alternatives.)

The relevant R function is survdiff(). There is also an option for ‘rho’. Rho = 0 (default)

gives the log-rank test, rho=1 gives the Wilcoxon test. A rho between 0 and 1 is possible. (Is

anybody using a rho strickly between 0 and 1 in practice? How are the two compare and is

there other tests?)

survdiff(Surv(time, status)~x, data=aml)

This does a two sample log-rank test, since there are two different values of x in the data

set aml.

Remark: log-rank test can fail completely (i.e. have no power) for two samples that have

cross hazard functions. How to deal with such case is one of the class project.

4 Parametric regression models

1. Exponential regression

This does an exponential regression:

survreg(Surv(aml$time, aml$status)~aml$x, dist="exponential")

Or

survreg(Surv(time, status)~x, data=aml, dist="exponential")

For an iid model, just say Surv(time, status) ∼ 1. The covariate, x, can be a continuous

variable like age.

3

2. Weibull regression

Similar to the above except dist="weibull".

The interpretations of the parameters in the survreg: the estimated coefficients

(when specify exponential or weibull model) are actually those for the extreme value distri-

bution, i.e. the log of weibull random variable. Therefore the MLE of the usual exponential

distribution, λ̂ and the R output estimator is related by µ̂ = log(1/λ̂) = − log(λ̂).

On the other hand, the log likelihood in the R output is obtained using truly Weibull

density. In SAS proc lifereg, however, the log likelihood is actually obtained with the

extreme value density.

When you use likelihood ratio test, only the difference of two log likelihoods matter. So

stick with one definition.

You may predict the quantiles of patients with same covariates in the data used to fit. [Or

you may supply your new data.frame() with specific covariates.]

fit1 <- survreg(Surv(time, status)~x, data=aml, dist="exponential")

predict(fit1, type="quantile", p=c(0.1, 0.5, 0.9))

4.1 Confidence regions

In general the confidence region for parameters θ (a vector of p-dim) can be obtained as the

set

{θ0| − 2 log
maxL(θ0)

maxL(·)
< C = χ2

p(0.95)} .

To get confidence region/interval via likelihood ratio, we want to fit (=maximize) the

regression model with some parameters fixed at our desired value (= θ0), and obtain the log

likelihood value. This can be done by:

1. in the Weibull regression, you can fix a scale by specify scale=2. When scale=1 this

goes back to exponential.

2. Use offset() command to fix one or more of the regressors, and max over other

regressor(s).

First, we need to convert x to numerical.

amlnew <- data.frame(aml, x1=c(rep(0,11), rep(1,12)))

survreg(Surv(time, status)~offset(0.3*x1), data=amlnew, dist="weibull")

This fix the slope (=0.3) for x1 (no max over it), but try to max over scale and intercept.

3. When you try to fix all the regressors, and there is nothing to fit, survreg() refuses to

do the maximization since there is nothing to fit. In this case, it is easy to write a log likelihood

function yourself, all you need is to compute the log likelihood value (no max needed). For

example, with exponential distribution with lam as parameter, this will compute the log

likelihood value at lam.

4

exploglik <- function(time, status, lam) {

sum(status*log(lam)) - lam*sum(time)

}

exploglik(time=aml$time, status=aml$status, lam= exp(-3.628))

The last line above verify the log likelihood value given by R. To verify SAS proc lifereg’s

calculation of loglik value, see below. It is obtained by using extreme value distribution with

log(obs). No matter which log likelihood definition you use, you always get the same likelihood

ratio (difference of two log likelihoods).

extremeloglik <- function(time, status, mu) {

sum(status*(time-mu)) - sum(exp(time -mu))

}

extremeloglik(time= log(aml$time), status=aml$status, mu= 3.628776)

We can find a 95% confidence interval by collecting all those theta values that - 2*(

exploglik(time, status, lam=theta) - max value from survreg) is less then 3.84. (left

to reader).

Here is another example:

library(survival)

data(cancer)

summary(survreg(Surv(time, status) ~ age+sex, data=cancer, dist="weibull"))

betas <- 1:95/100

llik <- rep(0, 95)

for(i in 1:95) {

llik[i] <- survreg(Surv(time, status) ~ age+offset(betas[i]*sex),

data=cancer, dist="weibull")$loglik[2]

}

plot(betas, llik, type="l")

abline(h = max(llik) - 3.84/2)

the interval of the betas values, with its llik value above the line, is the 95% confidence interval.

(compare this with the Wald confidence interval)

4.2 Interval censored data

The parametric regression function survreg in R and proc lifereg in SAS can handle interval

censored data.

The model specification and the output interpretations are the same. The only thing

different is the input of the data. (the left hand side of the equation)

5

In R the interval censored data is handled by the Surv function. A single interval censored

observation [2, 3] is entered as

Surv(time=2,time2=3, event=3, type = "interval")

When event = 0, then it is a left censored observation at 2. When event = 2, then it is a

right censored observation at 2. When event = 1, then it is an uncensored observation at 2.

4.3 User defined Error for survreg

In addition to the built-in distributions, the R function survreg can take a user defined error

distribution. See the help page for survreg.distributions for details and an example of

Cauchy distribution definition.

Let us look at an example of define a Gamma error distribution. Gamma has two param-

eters: shape and scale. For the purpose of AFT model, scale parameter needs to be fixed,

because after taking the log transformation, scale become the location parameter and this is

to be fitted by the survreg. In other words, we have to fix the error location or an intercept

term in the regression, otherwise, the location parameter of the error and the intercept are the

same parameter, only one of them can be identified.

There are two ways to specify the Gamma distribution: the good old Gamma distribution

(and use built-in log transformation) or the log-Gamma distribution, for the AFT model. We

shall use the latter, and specify a log-Gamma distribution, with scale fixed at 1. When use it

with survreg do not forget to log the survival times.

The ‘density’ entry of the definition actually needs F , 1 − F , f , f ′/f and f ′′/f . The

calculation of f ′/f and f ′′/f for the Gamma before and after the log transformation is in the

appendix.

myloggamma <-

$name

[1] "Loggamma"

$init

function (x, weights, ...)

{

mean <- sum(x * weights)/sum(weights)

var <- sum(weights * (x - mean)^2)/sum(weights)

c(mean, var)

}

6

$density

function (x, parms)

{

expx <- exp(x)

k <- 2.5

cbind(pgamma(expx, shape = k, scale = 1), 1 - pgamma(expx,

shape = k, scale = 1), expx * dgamma(expx, shape = k,

scale = 1), 1 + (k - 1 - expx), 1 + 3 * (k - 1 - expx) +

(k - 1) * (k - 2 - expx) - expx * (k - 1 - expx))

}

$quantile

function (p, parms)

log(qgamma(p, shape = k, scale = 1))

$deviance

function (...)

stop("deviance residuals not defined")

>

The Gamma density, with scale parameter = 1, is given by

f(x) =
1

Γ(k)
xk−1e−x, for x > 0 .

Since the Gamma distribution with shape parameter k = 1 is the same as the exponential

distribution, we can then compare to the Weibull regression to our Gamma regression, provided

we set shape parameter k = 1.

survreg(Surv()~1, dist="weibull")

survreg(Surv(log())~1, dist=myloggamma)

It is a class project to define a piecewise exponential distribution. (for people good with

R).

5 Cox regression models.

5.1 Simple Cox regression model. I

The assumption of the Cox model are: the hazard function of Yi is given as h0(t) exp(βzi) for

i = 1, · · · , n. The baseline hazard, h0(t), is common to all i but otherwise is arbitrary and

7

unknown.

Cox proportional hazards regression model can be thought of as an exponential regression

model under a “crazy” (common but unknown) clock. So, there is no intercept for the regres-

sion, it becomes part of this crazy clock. See Zhou 2000. The (partial likelihood) estimators

are rank based, therefore do not depend on the clock.

Due to censoring, we observe Ti = min(Yi, Ci), δi = I[Yi ≤ Ci].
Let <i = {j : Tj ≥ Ti}, the risk set at time Ti. Define

`(β) =
n∑
i=1

δi

zi −
∑
j∈<i

zjexp(βzj)∑
j∈<i

exp(βzj)

 . (1)

If β̂c is the solution of (1), i.e. `(β̂c) = 0, then β̂c is called the Cox partial likelihood estimator

for β.

Cox said we may treat `(β) like the first derivative of a log likelihood function – the score

function.

The R command to compute β̂c etc. is

coxfit1 <- coxph(Surv(time, status)~x, data=aml)

summary(coxfit1)

To obtain the (cumulative) baseline hazard estimator:

basehaz(coxph(Surv(time, status)~x, data=aml))

Notice this is the cumulative hazard for a hypothetical subject with the covariate value equal

to the mean values. Here the x values are converted to be 0 (Maintained) or 1 (Nonmaitained).

To obtain the survival function of a particular subject with specific covariate values (x = 1):

coxfit1 <- coxph(Surv(time, status)~x, data=aml)

survfit(coxfit1, newdata=data.frame(x=1))

5.2 Cox regression model with time change covariates. II

More flexible Cox model have time-change covariates. The time-change covariates can be

thought of as the piecewise exponential under a crazy clock. For interpretation of the time-

changing covariates see Zhou (2000).

In R, we handle observations with time-change covariate as multiple observations.

For an observation T , assume T > t1, δ = 1, with covariate value A1 in time interval [0, t1]

and changed to covariate value A2 in time interval (t1,∞) is treated like two observations: one

observation entering at time zero and censored at t1 with covariate A1, the second observation

entering/starting at time t1 and die at time T with covariate A2.

The R coxph() Cox model command is changed to

8

Surv(start, stop, status)~x

Otherwise it is the same as before.

5.3 Cox regression model III; Partially known baseline.

Regular Cox model has an arbitrary baseline hazard function. Here the Cox model have

additional information on the baseline. For example, the baseline hazard may have median

equal to a known constant, but otherwise arbitrary. We take advantage of this additional

information in the inference. The (regression) estimator should be more accurate.

This is a new procedure, the computation function is available from the package: coxEL

(on my web site only), and the function coxphEL().

How to use the function? Compared to coxph() there are two more inputs: gfun and lam

.

These are used to impose a constraint on the baseline hazard. This can be thought of as

extra information on the baseline hazard.∫
g(t)dΛ0(t) = C

where Λ0 is the baseline cumulative hazard, we need to specify the function g(t) as gfun.

The output of the function coxphEL contains the value C corresponding to the (Lagrange

multiplier) lam. To get the integral to equal to a given C we must (manually) adjust the lam

value. In other words, if you use lam = 0.5 then the actual constraint you imposed on the

baseline hazard is the above equation but with C =constr.value in your output of coxphEL.

This constr.value will change with lam. When lam = 0 then it is equivalent to no constraint,

and the output constr.value correspond to the integral of the baseline hazard in a regular

Cox model.

fit <- coxphEL(Surv(time, status)~x, data=testdata, lam=0.5, gfun=g)

fit$constr.value

Due to the different definition of the baseline hazard in softwares and books, we need to

be careful about what is the baseline. The constraint is imposed on (softwares’ definition

of) baseline hazard — in R (and Splus and SAS) this is the hazard for the subject with the

average covariates (instead of zero covariates). :-(If you need to impose the constraint on

(books’ definition of) baseline hazard — those with zero covariate, you need to do this:

z0 <- fit$means # get the mean of the covariates

bz0 <- sum(z0 * coef(fit)) # compute inner product beta*z0

fit$constr.value <- fit$constr.value * exp(-bz0) # minus bz0 in exponent

9

You can see all the component names of a coxphEL() fit by names().

Now suppose you need to set the C value in the constraint to a specific value, you may use

uniroot().

6 Simulation: Model comparison.

You can do simulations in R much easier than in SAS.

6.1 Comparing regression models

We look at one example: Exponential/Weibull regression model versus the Cox regression

model.

Some facts:

1. Cox model is applicable to a wider class of distributions. (semi-parametric)

2. If exponential/Weibull model is applicable then Cox model is also applicable. (but not

the other way around)

3. When both models are applicable, the Cox model estimate is less accurate, tests are less

powerful.

We use simulation to assess how much power/accuracy is lost by using the Cox model

instead of Weibull model when both model are correct. Also, the comparison (3) above is only

a statement of “on average”. It is not clear whether Weibull will beat Cox on every single

occasion or not.

We first generate the observations that follow an exponential regression model, then we fit

two models.

x <- (1:30)/2 - 3 # create the covariates, 30 of them

myrates <- exp(3*x+1) # the risk exp(beta*x), parameters for exp r.v.

y <- rexp(30, rate = myrates) # generates the r.v.

survreg(Surv(y,rep(1,30))~x,dist="weibull")$coef[2]

#slope estimate by weibull regression

#we do not have any censoring in the data

coxph(Surv(y,rep(1,30))~x)$coef # estimate from Cox regression

If that is successful, we are ready to replicate. To repeat this many times we perhaps want

to put it into a function (no need to repeat myrates since we use a fixed design.)

Simu2reg <- function(x , inputrates){

y <- rexp(length(inputrates), rate=inputrates)

temp1 <- survreg(Surv(y, rep(1, length(y)))~x,dist="weibull")

10

temp2 <- coxph(Surv(y, rep(1, length(y)))~x)

return(c(temp1$coef[2], temp2$coef))

}

After that you can try to do many simulations in a loop. I recommend you try small

number of runs in a loop to start with. You do not want to do a loop that will take days or

even month to finish on the first try. I feel a loop that took a few minutes to half of an hour

to complete works best for me (before patience ran out).

result <- matrix(NA, nrow=2, ncol=5000) #creat a matrix to hold outcome

for(i in 1:100) result[,i]<-Simu2reg(x,myrates) #run the simulation 100 times

If that took only a few seconds on your computer, then you can try more

for(i in 101:500) result[i,]<-Simu2reg(x,myrates) #run the simulation 400 times

or even more, etc. Because of the memory problem, it is often better to do (say) 5 loops each

of 1000 runs than to do one loop of 5000 runs. R will save the random seed automatically

so that the two computations will have same result, provided you set the same seed in the

beginning (but do not reset it in the middle).

After all 5000 simulations are done, we can look at their sampling distributions:

mean(result[1,])

mean(result[2,])

sd(result[1,])

sd(result[2,])

hist(result[1,], xlim=c(0,6))

hist(result[2,], xlim=c(0,6))

We should see the means are about the same, but the sd from weibull is a bit smaller than

the Cox’s.

Since exponential is a special case of weibull, we may repeat the above with dist="exponential"

in the survreg(). Another variation is to use right censored data.

6.2 Censored data simulation

To do the simulation with censored data, we need to generate censored observations that follow

the weibull regression model.

x <- (1:30)/2 - 3 # create the covariates, 30 of them

myrates <- exp(3*x+1) # the risk exp(beta*x), parameters for exp r.v.

y <- rexp(30, rate = myrates) # generates the r.v.

11

cen <- rexp(30, rate = 0.5)

ycen <- pmin(y, cen)

di <- as.numeric(y <= cen)

The inference has to be based on x, ycen, di

survreg(Surv(ycen, di)~x, dist="weibull")$coef[2]

coxph(Surv(ycen, di)~x)$coef

Or putting this into a function as before:

Simu2regC <- function(x , inputrates){

y <- rexp(length(inputrates), rate=inputrates)

cen <- rexp(length(inputrates), rate= mean(inputrates)/2)

obs <- pmin(y, cen)

di <- as.numeric(y <= cen)

temp1 <- survreg(Surv(obs, di)~x, dist="weibull")

temp2 <- coxph(Surv(obs, di)~x)

return(c(temp1$coef[2], temp2$coef))

}

I wanted to repeat the point: the Cox model is more general than Weibull model:

If g(t) is an arbitrary increasing function (power, exponential, log), then g(obs), di, x still

follows the Cox model, the estimation/testing results will be identical. (since it only uses the

ranks of obs). But the Weibull model is going to be completely nonsense (unless g(t) is a power

function).

Stratified Cox model: all observations split into several groups, each group uses its own

g(t) function.

Time-change covariates: Before the g(obs) transformation, obs are from a piecewise expo-

nential distribution.

7 Using the internal data sets

We already saw and used the data set aml. Here is a longer example. The package survival

contains US population hazard rates from census. It is called ratetables. We can build a life

table, a survival curve, etc. from it, or compare your study population against this population.

We illustrate the use of it by plotting the hazard curve and survival curve for the US female

population, in year 2000.

library(survival) # attach the package, if not already did.

12

data(ratetables) # load the data

ls() # see what has been loaded

temp <- survexp.us[,"female","2000"] # extract a vector

Now the vector temp is the daily hazard rates for different age groups of US females in the

year 2000. There are 113 rates, most of them are applicable for the interval of one year (for

example, the daily hazard rate for a US female between 25 and 26 years of age is 1.697337e-06,

but the first 4 rates only apply to shorter intervals (since the rates changes faster there).

To plot the hazard against age, we need to create an age vector of length 113, the first 4

ages needs some extra care. (were the ages are equally spaced, we need not to do that).

tempage <- c(0.5/365.25, 4/365.25, 17.5/365.25, 196.6/365.25, 1:109+0.5)

plot(tempage, temp, type="l")

To plot the survival curve, we need to convert the hazard rates to survival probability.

First, we get the cumulative hazard.

tempsurv <- 365.25*temp[5:113] # yearly cumulative hazard

tempsurv <- c(temp[1], 6*temp[2], 21*temp[3], 337.25*temp[4], tempsurv)

tempsurv <- cumsum(tempsurv)

tempage <- c(1/365.25, 7/365.25, 28/365.25, 1:110)

plot(tempage, exp(-tempsurv), xlab="age", ylab="Survival, Female") # plot

8 More accurate P-values and better confidence intervals by
Empirical Likelihood.

Since censoring makes the exact distribution of the statistic too complicated to get (in most

cases), people almost always use approximations. (Approximate P-value, approximate 95%

confidence interval, etc.)

There are basically 3 types of approximate test: Wald test, (Rao’s) Score test, and (Wilks)

likelihood ratio test. It is widely accepted that the likelihood ratio tests have better approxima-

tion than the other two. (more accurate P-value, confidence interval has coverage probability

closer to the nominal value).

We describe here some likelihood ratio tests related to the Kaplan-Meier and Nelson-Aalen

estimators. For this purpose we need the package emplik. This is a recent package I wrote for

R. If you do not have it then download and install it first.

The basic functions in the package emplik let you test hypothesis about two types of

parameters: ∫
g(t, θ)dF (t) = µ or

∫
g(t, θ)dΛ(t) = K ,

13

with g(t) defined by you. Confidence interval/region (of 95%) can be obtained as the collection

of parameter values that the corresponding test results a P-value larger than 0.05. We illustrate

the construction of a confidence interval now.

> library(emplik) # load the package

1. Confidence interval for the survival probabilities and quantiles.

Probability/Quantile can be expressed as a (explicit/implicit) functional of the CDF or a

functional of the cumulative hazard. So, we can do it in two different ways.

For a given T0, the probability P (X ≤ T0) = F (T0), and it can be written as F (T0) =∫
I[s ≤ T0]dF (s).

In the example below I took T0 = 700. The data myel can be found in SAS book Survival

Analysis Using SAS. The Kaplam-Meier estimator 1− F̂ (T0) = 0.352, so the MLE of F̂ (T0) is

1− 0.352. In the code findUL below, the input MLE only needs to be approximate. So if you

enter MLE=0.6 shall also work.

myfun <- function(x, t0=700) {as.numeric(x <= t0)}

myfunUL <- function(theta, x, d) {

el.cen.EM2(x=x, d=d, fun=myfun, mu=theta)

}

findUL(step=0.1, fun=myfunUL, MLE=1-0.352, x=myel$dur, d=myel$status)

$Low

[1] 0.4506864

##

$Up

[1] 0.8169268

##

$FstepL

[1] 1e-10

##

$FstepU

[1] 1e-10

##

$Lvalue

[1] 3.84

##

$Uvalue

[1] 3.84

14

You see that the 95% confidence interval for F (700) is [0.4506864, 0.8169268], i.e. the

confidence interval for 1−F (T0) is [0.1830732, 0.5493136]. This agrees with the result obtained

by km.ci.

If we want the confidence interval for the median, F−1(0.5) (or 40 percentile, F−1(0.4)),

then we should keep mu=0.5 (or mu=0.4) and change the definition of the myfun as myfun7 in

the follows.

As is well known, the empirical quantile function is not continuous, so we use a type of

smoothing in define the indicator function.

myfun7 <- function(x,theta,epi) {

u <- (x-theta)/epi

return(0.5*pmax(0, pmin(1-u, 2)))

}

myfunUL7 <- function(theta, x, d) {

el.cen.EM2(x=x, d=d, fun=myfun7, mu=0.5, theta=theta, epi=0.02)

}

findUL(step=60, fun=myfunUL7, MLE=600, x=myel$dur, d=myel$status)

$Low

[1] 63.03845

$Up

[1] 2239.95

$FstepL

[1] 3e-07

$FstepU

[1] 3e-07

$Lvalue

[1] 3.839867

$Uvalue

[1] 3.839826

So the 95% confidence interval for the median of myel data is [63.03845, 2239.95].

2. confidence interval for the weighted hazards.

For continuous distributions, we have log[1− F (T)] = −Λ(T) = −
∫
I[s≤T]dΛ(s).

15

So testing H0 : F (4) = 0.5 is equivalent to testing H0 :
∫
I[s≤4]dΛ(s) = − log(1 − 0.5) for

continuous distributions. So the above two examples can also be done in terms of hazard.

This is a special case of the next example.

There is a function in the package emplik that can test

H0 :

∫
g(t, θ)dΛ(t) = K

If θ is known then the integral value K is a parameter. If K is known then θ is an implicit

parameter.

If the (right censored) data are

()

then to test the above hypothesis with K =

For more examples, Look at the help pages of emplik.H1.test or emplikdisc.test

The function emplikH.disc() tests the hypothesis

H0 :

∫
g(t, θ) log(1− dΛ(t)) = K

If g(t, θ) = I[t≤θ], then
∫
g(t, θ) log(1 − dΛ(t)) =

∑
t≤θ log[1 − dΛ(t)]. This is log

∏
t≤θ[1 −

dΛ(t)] = log[1− F (θ)] by the product limit formula.

Therefore a test of H0 : F (θ) = 0.5 (median is θ) can be obtained with the above using

function g(t, θ) = I[t≤θ] and K = log 0.5.

For more examples, see the next session with left truncated data.

3. Confidence interval for the weighted mean.

There are also functions in the package to test the hypothesis of the type

H0 :

∫
g(t, θ)dF (t) = µ

We first use g(t, θ) = t (the default), imply µ is the usual mean of the (unknown) F (·).

library(emplik)

x <- c(1, 1.5, 2, 3, 4, 5, 6, 5, 4, 1, 2, 4.5)

d <- c(1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1)

el.cen.EM(x,d,mu=3.5) # use the default g(t)=t.

We get (-2LLR = 1.246634). The quantity (-2LLR) should be distributed as chi-square

with one degree of freedom, when H0 is true. So the P-value here is 0.2641963

1-pchisq(1.246634, df=1)

[1] 0.2641963

16

We can repeat the same test except change mu=3.5 to some other value. After some trial

and error we found when mu=4.93 we get (-2LLR = 3.841911), with P-value approximately

0.05. Also when mu=3.0497 we get (-2LLR = 3.841662), with P-value again approximately

0.05.

Guideline to find the two cut-off points: the P-value when mu=NPMLE will be 1. When the

value assigned to mu gets further away from the NPMLE, the P-value will be smaller.

Thus the approximate 95% confidence interval for mean is [3.0497, 4.93] since the mu value

inside this interval result a P-value larger then 0.05.

Now for other ‘means’. We try the parameter F (4) and the hypothesis H0 : F (4) = 0.5.

For this we need to define a function.

(Notice
∫
I[t≤4]dF (t) = F (4).) Either define it on the fly

> el.cen.EM(x,d,fun=function(x){as.numeric(x <= 4)}, mu=0.5)

or do it in two lines:

myfun <- function(x) { as.numeric(x <= 4) }

el.cen.EM(x,d,fun=myfun, mu=0.5)

We get (-2LLR = 0.2920808). We can get a 95% confidence interval for F (4) by change the

value mu=0.5 above to some other values, until we get -2LLR = 3.841.... (two occasions, as

lower and upper confidence limit).

We can also get a confidence interval for median (if M is median, then F (M) = 0.5) if we

keep mu=0.5 fixed in the above but let F (4) change to F (3) (by redefine myfun), etc. to get

an interval of T values such that the test for F (T) = 0.5 have P-value larger then 0.05.

Look at the help pages of el.cen.EM or el.cen.test for further information.

Again, you can start testing from the NPMLE value (where the P-value is large) and push

the null hypothesis value away from it until you get a P-value of 0.05.

Finally, an example of testing for the equality of two medians.

We take the AML data from the survival package. We can use either el.cen.EM or

emplikH.disc. The only difference: emplikH.disc can handle left truncated data.

Here is the outline: We first test the median of both samples are equal to 10 = θ (say).

Take the -2LLR from output of both test and calculate the sum. Last step is to minimize the

sum over the value θ.

Notice the minimization over θ need only be over those values that are in between the two

sample medians. Furthermore, -2LLR is constant between two data points. So the search of

minimization is only over finitely many points.

The minimized sum of two -2LLR should have chi square with one degree of freedom under

null hypothesis.

17

9 Left-truncated and right censored data

Left truncation happens when patients do not enter the study from the very beginning of the

disease (late entry). The first time doctor sees them, the disease is already several weeks. The

idea is that if they die within one week (say) then they will never enter the study. So the

observation we have is conditional on the fact that they at least survive beyond the first week

(or whatever the entering time). When the truncation/entering time is 0, then there is no

truncation.

Left truncation can happen together with right censoring.

Example: (yi, xi) = (6, 17), (3, 13), (2, 9+), (0, 16).

This means the first subject enters the study at 6 month after infection and die at 17 month

after infection. etc. The third subject enters the study at 2 month and is right censored at 9

month. Notice the observations must have xi > yi.

In the package survival, the Cox regression function, coxph() can handle those data. You

enter the data as start, stop format. And you can get the Nelson-Aalen or Product-limit

estimator as the baseline function for a null Cox model. See help page there for detail. Other

functions in package survival do not seem to have this ability yet.

Several functions in package emplik can also handle left truncated, and right censored

data. The function el.ltrc.EM() in the package can handle left truncated, right censored

observations and test a mean parameter. The function emplikdisc.test() can handle left

truncated, right censored observations and test a weighted hazard parameter. See example

below.

Suppose we have the data as below.

xpsy <- c(52, 59, 57, 50, 57, 59, 61, 61, 62, 67, 68, 69, 69, 65, 76)

ypsy <- c(51, 58, 55, 28, 25, 48, 47, 25, 31, 30, 33, 43, 45, 35, 36)

dpsy <- c(1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1)

fun4 <- function(x, theta) { as.numeric(x <= theta) }

We want to test if log[1−F (T)] at T = 60 is equal to −0.7, i.e. H0 : 1−F (60) = exp(−0.7),

we do

emplikdisc.test(x=xpsy, d=dpsy, y=ypsy, K=-0.7, fun=fun4, theta=60)

we should get -2 log lik ratio = 0.3362712. Under H0 this should be distributed as χ2
1.

Now suppose we want to test if the mean of the survival times is 64 (H0 : µ = 64). The

function to use is el.ltrc.EM().

18

el.ltrc.EM(y=ypsy,x=xpsy,d=dpsy,mu=64)

To get a confidence interval, we test different values as H0, we find that whenever the

value of µ is within [58.78936, 67.81304], we get a P-value > 0.05. This imply that the 95%

confidence interval for the mean is the interval [58.78936, 67.81304].

10 Accelerated Failure Time models

In the exponential regression model, take the formulation with log transformation.

log Yi = βZi + εi.

If we do not assume the (standard) extreme-value distribution for the error term, and instead,

let it be iid but arbitrary and unspecified, we get the (nonparametric) AFT model. This is

similar to the usual linear model except the responses are censored and error distribution is

arbitrary.

Remark: The Cox model was a generalization of exponential regression model in the

hazard formulation, without using the log transform.

We want to estimation the parameter β with censored observations of Ti: Ti = min(Yi, Ci), δi =

I[Yi≤Ci].

In both estimation method below, we need the definition of residuals:

ei(b) = log Ti − bZi

Notice the order of the residuals depend on the b.

10.1 Buckley-James estimator

The Buckley-James estimator of the parameter β can thought of as the nonparametric version

of the EM algorithm: where the censored residual is replaced by expected values (E-step).

Then followed by the usual regression M-estimation procedure.

The non-parametric nature of this procedure appears in both the E-step (where you do not

have a parametric distribution for the residuals); and M-step (where you do not maximize a

parametric likelihood, but use least squares etc.).

The calculation of least squares Buckley-James estimator can be found in the R function

bj(), inside the Design library. The trustworthiness of the variance estimation from bj()

is in doubt. Instead we recommend use empirical likelihood. The calculation of quantile

Buckley-James estimator is available from the author.

The statistical inference can be obtained via empirical likelihood. I wrote some R functions

for this purpose. See bjtest() etc. inside the emplik package.

19

10.2 Rank based estimator for AFT models

A nice summary of the rank based estimation can be found in Chapter 7 of Kalbfleisch &

Prentice (2002); without the computing software and the empirical likelihood (which we shall

discuss in the following).

The rank based estimator β̂ is the solution of the following estimating equation: (see Jin,

Lin, Wei and Ying (2003))

0 =
n∑
i=1

δiφ(ei(b))[Zi − Z̄(ei(b))]

where Z̄(ei(b)) is the average of the covariates, Zj , that the corresponding ej(b) is still at risk

at time ei(b), i.e. ej(b) ≥ ei(b). We assume the function φ(·) be either a constant (resulting a

log-rank type estimator) or equal to the number of subjects at risk (Gehan type estimator) or

other predictable functions.

Remark: For two sample case, rank estimation equation is same as the logrank test.

Recall for Buckley-James estimator, it is equivalent to comparing the two means from two

Kaplan-Meier estimators (t-test).

The numeric solution of this equation can be difficult, except with Gehan type estimator.

In the Gehan case, the estimating functions are monotone in b, so the solution is easy.

I wrote an R function, based on the Splus code of Z. Jin, to compute the Gehan estimator.

Download the package

rankreg_0.2-2

from CRAN.

Use the function rankaft() inside the package to obtain the solution/estimator. Caution:

this function is memory hungry. For sample size around 600, you need 1G RAM.

For statistical inference after the estimator is computed, we can use empirical likelihood:

This is very similar to the exponential regression case when we used the offset() command to

get the confidence interval or P-value; except here the likelihood been replaced by the empirical

likelihood.

I also wrote an R function for this purpose too. Use function RankRegTest() inside the

package emplik; you need version 0.9-2 or later.

There is also the possibility of using re-sampling method to obtain inference, but is relatively

slower compared to the likelihood based method.

Score test: The “score” test for the β̂ in the rank based estimation is also simple:

The idea is that if b = β0 then the residuals are iid. Then the covariate values carried by

the residuals should have no relation to how large a residual is.

Condition on the residual values that are > t, suppose there are k such residuals. They

carry k covariates. The covariate that corresponding to the smallest residual out of the k

20

remaining residuals should be equally likely to be any one of the k corresponding covariates.

By the above argument, the null distribution of the Zi is uniform among Zj such that

ej ≥ ei. The second moment of the term Zi − Z̄i is then

σ2i = 1/k
∑
j

(Zj − Z̄i)2

This is the variance of (one term of) the “score”. Successive term may be view as (conditionally)

uncorrelated.

This variance of the score is computed, also a related chi square (score test) statistic is

returned by the function RankRegV inside the rankreg package.

Remark: A similar arguement also works for Cox ‘score’. We only need to treat the

observations there as exponential random variables.

10.3 Case-weighted regression estimation

If we assume a random design, we may view the (q+1) dimension vector (Yi, Xi) as iid. In

this case we can use the weighted estimation method for the slope of the linear model. Some-

times the name IPCW (inverse-probability-of-censor-weight) is used to describe this weighting

scheme.

See the help file for the functions WRegEst and WRegTest inside emplik package, you need

version ≥ 0.9-3.

11 Residual mean and residual median

For long term survival patients, the residual mean and/or residual median are of interest.

Inside emplik version 0.9-4 or later there is a function MMres() that does the estimation.

(based on the Kaplan-Meier. To get the confidence interval for the residual mean or median,

we again use empirical likelihood.

First the packages emplik and survival need to be loaded into R [package survival is

only needed here to supply the data set cancer].

> data(cancer)

> time <- cancer$time

> status <- cancer$status-1

> MMRtime(x=time, d=status, age=365.25)

$MeanResidual

[1] 275.9997

$MedianResidual

[1] 258.75

The following is the result from testing the mean residual times through the confidence

interval approach. First we need to define the g function for the mean residual life.

21

> mygfun <- function(s, age, muage) {as.numeric(s >= age)*(s-(age+muage))}

> el.cen.EM2(x=time, d=status, fun=mygfun, mu=0, age=365.25, muage=234.49389)$Pval

[1] 0.1000000

> el.cen.EM2(x=time, d=status, fun=mygfun, mu=0, age=365.25, muage=323.1998)$Pval

[1] 0.1

Therefore the 90% confidence interval for mean residual time at 365.25 days is [234.49389,

323.1998].

For testing of the median residual time, we first need to code the gθ function (defined in

the paper by Kim and Zhou) and then use el.cen.EM2 to test.

> mygfun2 <- function(s, age, Mdage) {as.numeric(s<=(age+Mdage))-0.5*as.numeric(s<=age) -0.5}

> el.cen.EM2(x=time, d=status, fun=mygfun2, mu=0, age=365.25, Mdage=184.75)$Pval

[1] 0.1135797

> el.cen.EM2(x=time, d=status, fun=mygfun2, mu=0, age=365.25, Mdage=321.7499)$Pval

[1] 0.1192006

This implies a 90% confidence interval for the median residual time is [184.75, 321.7499].

Note we do not get an exact p-value of 0.1 here. To overcome this we, suggest smoothing. For

the smoothed quantile, first define a (linearly) smoothed g function, then find the confidence

limits.

> mygfun22 <- function(s, age, Mdage) {

myfun7(s, theta=(age+Mdage), epi=1/20)-0.5*myfun7(s, theta=age, epi=1/20) -0.5 }

> myfun7 <- function(x, theta=0, epi) {

if(epi <= 0) stop("epi must > 0")

u <- (x-theta)/epi

return(pmax(0, pmin(1-u, 1))) }

> el.cen.EM2(x=time, d=status, fun=mygfun22, mu=0, age=365.25, Mdage=184.7416765)$Pval

[1] 0.1000000

> el.cen.EM2(x=time, d=status, fun=mygfun22, mu=0, age=365.25, Mdage=321.71153607)$Pval

[1] 0.1000000

The result is very similar.

Problems

1: If I use the following code to generate right censored data, (as one student used in earlier

course) what is the Kaplan-Meier estimator computed from the data suppose to estimate?

xcen <- rexp(100)

dcen <- sample(c(0,1), replace=TRUE)

2: Write some R code that can generate piecewise exponential r.v. (the number of pieces,

the cut-off points and value of the hazards of each piece as input).

22

References

Theaune, T. and Grambach. (2001) Modeling Survival Data - Extending the Cox model

Springer.

When using the Cox model to predicting a specific person’s survival, see P. 265 of Theanue

and Grambach.

Zhou, Mai (2000) Understanding the Cox model with time-change covariates. The Ameri-

can Statistician,

Kalbfleisch & Prentice, The Statistical analysis of failure time data. Wiley. second edition

(2002)

23

