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1 Definitions

1.1 Definition Suppose we have observation x1, · · · , xn which has density fθ(x1, · · · , xn).

The Likelihood function is a function of parameter θ: fθ(x1, · · · , xn), for θ ∈ Θ (the Pa-

rameter Space).

It is the probability density function evaluated at the observed sample. Or the infinites-

imal probability of the observed value, if we include the dxi’s in the likelihood function.

The interpretation of “probability of observe the sample” is nice, unite the discrete case

and continuous case and also to the empirical likelihood case. Since dxi are considered

as constants, they are often dropped. But it often clerify things when several possible

candidate of likelihood function are competing with each other.

In the i.i.d. case L(θ) = fθ(x1, · · · , xn) =
n∏
i=1

fθ(xi).

1.2 Definition The MLE (θ̂MLE) is the value of θ where the log likelihood function attains

its maximum. It depends on x1, · · · , xn, i.e. θ̂MLE = θ̂MLE(x1, · · · , xn) and we assume it is

a measurable function.

Sometime, θ̂MLE is also defined as the solution of the equation (score equation)

∂

∂θ
log fθ(x1, · · · , xn) = 0 .

Obviously, these two definitions are not always equivalent, but we shall use them inter-

changeably with comments. Our first goal is to show that θ̂MLE is consistent.

In many other cases, an estimator (not necessarily MLE) can also be defined by min-

imizing of a function, or the solution to an equation. Example include the least squares

estimator, LASSO etc. When this function is convex but may not have continuous deriva-

tive, please see Pollard notes.

2 Consistency of MLE

Lemma For t > 0 we have t− 1 ≥ log(t), and the inequality is strict except when t = 1.

Now replace t in the above Lemma by g(X)
f(X)

, and take expectation Ef . (X ∼ f(x)).

Recall that we showed, for any two densities f(x) and g(x)∫
log

g(x)

f(x)
f(x)dx ≤ 0 .

The equality holds only when f(x) = g(x), a.s. (dF). Another way of writing the above

inequality is that

E log
g(X)

f(X)
≤ 0 where X ∼ f(·)
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or

Ef log g(X) ≤ Ef log f(X) .

Now consider a family of distributions fθ(x), θ ∈ Θ and we require the following condition

(1) Whenever θ0 6= θ′, fθ0(x) 6= fθ′(x) a.s. fθ0 , where θ0 is such that we have observations

X0, X1, · · · , Xn

i.i.d.
∼ fθ0(x).

Thus, we have, for any fixed θ′ 6= θ0,

Eθ0 log
fθ′(X)

fθ0(X)
< 0 .

Note that the above strict inequality is obtained by the condition (1). Let us denote

Eθ0 log
fθ′(X)

fθ0(X)
= c ∈ R−,

(notice c < 0. The existence of the expectation is an assumption) which, in turn, implies

log
∏ fθ′(Xi)

fθ0(Xi)
=

n∑
i=1

log
fθ′(Xi)

fθ0(Xi)

in P or a.s.

−−−−−−−−−→
as n→∞

−∞ (≈ limn · c),

or

Eθ0 log fθ0(X) = Eθ0 log fθ′(X)− c

By SLLN, we have
n∑
i=1

log fθ0(xi)

n

a.s.

−−−−−−−−→
as n→∞

Eθ0 log fθ0(X)

and
n∑
i=1

log fθ′(xi)

n

a.s.

−−−−−−−−→
as n→∞

Eθ0 log fθ′(X),

therefore,

P (
n∑
i=1

log fθ0(xi) >
n∑
i=1

log fθ′(xi) as n→∞) = 1

Now, let us take θ′ = θ0 + δ and θ′′ = θ0 − δ. Then, on a set with probability greater than

1− 2ε, we have, for n > N ,

n∑
i=1

log fθ0(xi) >
n∑
i=1

log fθ0+δ(xi)
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and
n∑
i=1

log fθ0(xi) >
n∑
i=1

log fθ0−δ(xi)

this implies that as a function of θ,
∑n

i=1 log fθ(xi) has a (at least local) maximum inside

(θ0 − δ, θ0 + δ). Or, taking the maximum to be θ̂MLE , we have shown

Pθ0(|θ̂MLE − θ0| < δ) > 1− 2ε for n > N.

Notice that δ, ε are arbitrary small positive numbers. This is weak consistency of MLE in

i.i.d. case. We actually only proved a weaker result, i.e. there is a solution of (
∂

∂θ
log f = 0)

that is weakly consistent. Notice there may be multiple solutions.

Remark θ̂MLE is also strongly consistent, i.e. θ̂MLE

a.s.

−−−−−−−−→
as n→∞

θ0, but we shall not prove

that conclusion.

Now here is a second consistent proof that can be used for high dimensional θ. And

it can also be used for other estimators that are defined by maximum or minimum of a

random function Sn(θ).

The condition required in this theorem, is stronger: Uniform convergence of Sn(θ) to

S(θ). (How we usually proof such convergence?).

Theorem Suppose S(θ) is such a non-random function that, for any δ > 0, ∃ ηδ > 0 and

for a δ-NBHD of θ0, Nδ(θ0) , {θ : ‖θ − θ0‖ ≤ δ}, we have

inf
θ/∈Nδ(θ0)

S(θ)− S(θ0) ≥ ηδ > 0. (1)

This implies that θ0 is the unique (globle) minimum of S(·). Further, suppose Sn(θ) is a

random function based on a sample of n observations (no i.i.d. assumption) and it attains

its global minimum (not necessary unique) value at θ̂n. If Sn(θ) → S(θ) in probability

uniformly for θ ∈ Θ as n→∞, i.e.

sup
θ∈Θ
|Sn(θ)− S(θ)|

P
→ 0, as n→∞, (2)

then θ̂n
P
→ θ0.

Proof: WLOG, suppose θ̂n is a global minimizer of Sn(θ). Let An , {θ̂n ∈ Θ : Sn(θ̂n)−
Sn(θ0) ≤ 0}. Then P (An) ≡ 1. Now let Bn , {θ̂n ∈ Θ : θ̂n ∈ Nδ(θ0)} for an arbitrary but
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fixed δ > 0. Notice we always have

1 = P (An)

= P (An ∩Bn) + P (An ∩Bc
n)

≤ P (Bn) + P (An ∩Bc
n)

Thus, if we can show P (An ∩ Bc
n) → 0 as n → ∞, it implies that P (Bn) → 1 and that

θ̂n
P
→ θ0. Here comes the proof of the above claim (P (An ∩Bc

n)→ 0).

Because of (2), ∀ε > 0, ∃Nε, for ∀n ≥ Nε, P (sup
θ
|Sn(θ)−S(θ)| > ε) < ε. This allows us

to substitute Sn(·) with S(·), at least with probability > 1− ε. We compute

0 ≤ P (An ∩Bc
n)

≤ ε+ P (An ∩Bc
n ∩ {sup

θ
|Sn(θ)− S(θ)| ≤ ε}) (3)

≤ ε+ P ({|S(θ̂n)− S(θ0)| ≤ 2ε} ∩Bc
n) (4)

where inequality (3) is because of

P (An ∩Bc
n ∩ {sup

θ
|Sn(θ)− S(θ)| > ε}) ≤ P ({sup

θ
|Sn(θ)− S(θ)| > ε}) < ε

and inequality (4) is due to that

An ∩ {sup
θ
|Sn(θ)− S(θ)| ≤ ε} ⊂ {S(θ̂n)− S(θ0) ≤ 2ε}. (5)

When 2ε < ηδ, the last probability in expression (4) is zero since that is an impossible

event. Thus, for ε < ηδ/2, n > Nε, we have 0 ≤ P (An ∩ Bc
n) ≤ ε. Since ε is arbitrary, it

follows that P (An ∩Bc
n)→ 0, as n→∞. QED.

Notes on (5). Since we have uniform closeness, therefore

|Sn(θ̂n)− S(θ̂n)| ≤ ε

and

|S(θ0)− Sn(θ0)| ≤ ε .

Add them together, we have

|Sn(θ̂n)− Sn(θ0) + S(θ0)− S(θ̂n)| ≤ 2ε

Notice Sn(θ̂n)− Sn(θ0) ≤ 0 (globle min). This imply

S(θ0)− S(θ̂n) ≥ −2ε
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which is

S(θ̂n)− S(θ0) ≤ 2ε

Since θ0 is the globle min of S(·), the above is also ≥ 0.

3 The efficiency of MLE

In the discussion that follows, the MLE is always thought of as the solution of the likelihood

equation.
∂

∂θ
log fθ(x1, · · · , xn) = 0 .

In i.i.d. case, the equation can be written as

1

n

n∑
i=1

∂

∂θ
log fθ(xi) = 0 .

Notice Eθ0
∂

∂θ
log fθ(x1, · · · , xn) = 0 when θ = θ0.

In general, when a function of both θ and x, g(θ, x) satisfy

Eθ0g(θ,X) = 0 when θ = θ0

then g(·) is called an unbiased estimating function. An estimate of θ based on a sample

({Xi}ni=1) could be obtain by solving, for θ

1

n

n∑
i=1

g(θ, xi) = 0

For example, an unbiased estimate of θ, T (X), could be thought of as the solution of the

following unbiased estimating equation

g(x, θ) = T (x)− θ = 0

This function satisfies Eθ0(T (X) − θ0) = 0. However, the solution of unbiased estimating

equation may be biased, though asymptotically the bias goes to zero.

Definition The efficiency (or information) of an estimator obtained by solving the unbiased

estimating equation g(x, θ) = 0 is

Ig(θ) =
[Eθ(

∂

∂θ
g(X, θ))]2

Eθg2(X, θ)
.
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Remark If g(x, θ) =
∂

∂θ
log fθ(x), the above information becomes the usual Fisher infor-

mation.

Theorem For any unbiased estimating function g(x, θ) that satisfies the regularity con-

ditions ( (i) the information Igis well defined, (ii)
∂

∂θ

∫
g =

∫
∂

∂θ
g ), we have

Ig(θ) ≤ Eθ[
∂

∂θ
log fθ(X)]2 = Fisher Information

Proof: Under the integral sign, differentiating the equation Eθg(X, θ) = 0, we have

∂

∂θ
[

∫
g(x, θ)fθ(x)dx] =

∂

∂θ
[0],

that is

Eg′ + Ef ′/fg = 0

move the term and then square the equation we have,

(Eg′)2 = (Ef ′/fg)2

Now use Cauchy-Schwartz inequality for the right hand side term.

(Eg′)2 ≤ E(f ′/f)2 × Eg2

Move the term involve g to the left and notice E(f ′/f)2 = Ifisher. QED.

Remark This theorem includes the usual Cramer-Rao inequality as a special case.

Remark The equality sign of the theorem holds iff

g(x, θ) = λ(θ) · ∂
∂θ

log fθ(x).

Now let us study the estimator “θ̂MLE” defined by equation
n∑
i=1

g(θ̂MLE, xi) = 0.

By Taylor expansion,

n∑
i=1

[g(xi, θ0) + (θ̂MLE − θ0)g′(xi, θ0) +
(θ̂MLE − θ0)2

2
g′′(xi, θ̄)] = 0 (6)

where θ̄ is between θ̂MLE and θ0 and the derivatives are w.r.t. θ (assume exist).

Rearranging equation (6) yields

√
n(θ̂MLE − θ0) = −

n∑
i=1

g(xi, θ0)

√
n

× 1

1

n
{

n∑
i=1

g′(xi, θ0) +
(θ̂MLE − θ0)

2

n∑
i=1

g′′(xi, θ̄)}
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Now we want to show two things. First, Since g(xi, θ0) are i.i.d. r.v.s with Eg(X, θ0) = 0

and Eg2(X, θ0) <∞ (assumption), by the CLT, we have

−

n∑
i=1

g(xi, θ0)

√
n

D
→ N(0, Eg2(X1, θ0) = k)

Second, By the WLLN, [
1

n

n∑
i=1

g′(xi, θ0) +
θ̂MLE − θ0

2

1

n

n∑
i=1

g′′(xi, θ̄)]
−1

P
→ 1

c
.

(i) We know
1

n

n∑
i=1

g′(xi, θ0)
P
→ Eg′(xi, θ0) again, by i.i.d. of the r.v.s g′(Xi, θ0)

(ii) Need to show | 1
n

n∑
i=1

g′′(xi, θ̄)| <
1

n

n∑
i=1

M(xi)
P
→ Eθ0M(X1) <∞ for θ0, i.e. |g′′(xi, θ)| <

M(xi).

(iii) We know
θ̂MLE − θ0

2

P
−→ 0. (by section 2)

Finally, by Slutsky Theorem,
√
n(θ̂MLE − θ0) = Xn · an

D
→ X · a

We have proved a theorem for the asymptotic distribution of MLE above. Please for-

mulate the theorem yourself.

Remark the whole proof also works for other estimating functions.

Identification of the limiting distribution: The constant c = Eg′(x1, θ0).

In the case of MLE, g(xi, θ0) =
∂

∂θ
log fθ(x1), and thus

c = E
∂2

∂θ2
log fθ(x1)|θ0

=

∫
∂2

∂θ2
log fθ(x)|θ0 · fθ0(x)dx

= −IFisher(θ0).

On the other hand, the variance of g(x1, θ0) is

E[g(X1, θ0)]2 = E[
∂

∂θ
log fθ(X1)]2

= IFisher(θ0).
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Therefore, the limiting distribution is N(0,
1

IFisher(θ)
).

Remark In the case of a general g(x, θ) function, the limiting distribution is N(0,
1

Ig
).

Remark For (purely) discrete random variables, the above proof still works, with den-

sity replaced by PMF.

Even for mixed distributions, the proof is OK. The Key is to have a fixed, σ-finite

dominated measure, so that the density can be defined.

Remark Generalization for multidimesional θ.

Remark Generalization for independent but not identically distributed observations.

Example (Neyman-Scott). Two observations each from N(θi, σ
2) population. Both θi

and σ2 are unknown. Let the number of populations go to infinite. The MLE of σ2 is not

even consistent.

Therefore for infinite dimensinal parameters we need to be careful. But also see the

empirical likelihood ratio result.

Remark Expected information and observed information.

4 Nuisance Parameters and parameter of interest

How does the Fisher information for the parameter of interest change when there are

nuisance parameter(s)?

Suppose we have parameters θ and η.

Example Fisher information matrix for θ, η. Cremer-Rao inequality in the matrix

form. Specialize to parameter θ alone.

The information for θ alone is defined as follows:

the second derivative wrt θ can be decomposed as the orthoganal sum of a component

in the direction of ∂η and a component perpendicular to ∂η.

The length of the perpendicular part is the information for θ.

For infinite dimensional nuisance parameter, ‘derivative’ needs careful work.

Stein (1956) “a nonparametric problem is at least as difficult as any of the parametric

problems obtained by assume we have enough knowledge of the unknown state of nature

to restric it to a finite dimensional set”

Therefore he define the information for the parameter as the infemum of all those finite

dimentional parametric sub-models.
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5 Likelihood Ratio Statistic

Theorem (Wilks theorem in R1) Suppose X1, X2, · · · are i.i.d with density f(x, θ), θ ∈ Θ,

where Θ is an open set in R1. Let θ̂n = θ̂ denote the MLE of θ based on n observations. If

the null hypothesis H0 : θ = θ0 is true, then

W = −2 log

sup
θ∈Θ0

n∏
i=1

f(xi, θ)

sup
θ∈Θ

n∏
i=1

f(xi, θ)

= −2 log

∏n
i=1 f(xi, θ0)∏n
i=1 f(xi, θ̂)

has an asymptotic χ2 distribution with df = 1.

Proof:

W = −2
[∑

log f(xi, θ0)−
∑

log f(xi, θ̂)
]
.

Use Taylor expansion on the first summation above, around θ̂, (since θ0 and θ̂n are close

to each other.)∑
log f(xi, θ0) =

∑
log f(xi, θ̂n) + (θ0 − θ̂n)

∑ ∂

∂θ
+ 1/2(θ0 − θ̂n)2

∑ ∂2

∂θ2

Notice the first derivative in the Taylor expansion is zero, (derivative at θ̂) since θ̂ is

MLE.

We get

W = n(θ0 − θ̂)2 1

n

∑
− d2

dθ2
log f(xi, θ̄).

By the CLT for MLE we have
√
n(θ0 − θ̂)→ N(0, I−1)

which imply

I × n(θ0 − θ̂)2 → χ2
df=1 .

In view of Slutsky theorem, we only need to show

− 1

n

∑ d2

dθ2
log f(xi, θ̄)→ I

in probability. This can be shown easily, assuming for example

d2

dθ2
log f(x, θ)

is continuous at θ0 uniformly for x.

QED.
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6 Three types of tests related to the likelihood func-

tions

6.1 Likelihood ratio tests (Wilks)

To test H0 : θ = θ0 use

−2 log

sup
θ∈Θ0

Πf(xi, θ)

sup
θ∈Θ

Πf(xi, θ)
.

Under H0 this has an approximate χ2 distribution.

6.2 Score test (Rao)

Let g = g(θ, x) be the score functions

g1(θ, x) = ∂ logLik∂θ

To test H0 : θ = θ0 use ∑
g(θ0, xi)

√
varg(θ0, x) .

UnderH0 this has an approximateN(0, 1) distribution. The proof can be easily obtained

from results of previous sections. The advantage of this method is that we do not need to

find the MLE θ̂.

6.3 Wald type tests

To test H0 : θ = θ0 use

θ̂MLE − θ0√
V ar(θ̂MLE)

.

Under H0 this has an approximate N(0, 1) distribution, equivalently the square of it

has chi square distribution.

Confidence intervals can be obtained by inverting the tests.
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7 Transformation of parameter(s)

Consider a 1 to 1, differentiable transformation of the parameter:

θnew = T (θold) .

After a 1 to 1 trandformation of the parameter, we can do the three tests same as

before the trandformation. However, the Wald test/confidence interval will change after

the transformation. In other words, the P-value of the test can be different, the confidence

interval is different.

This is why we see arc-sin, log, log-log, square, logit, square-root, Z-transformations in

the statistical literature. They all aim at improving the inference after applying the said

transformation. (when coupled with Wald method.)

However, the likelihood ratio test/confidence interval is invariant under transformation.

Example Suppose we have a sample from binomial population and we would like to

estimate p the success probability. The “plain” Wald confidence interval is

p̂± 1.645

√
p̂(1− p̂)

n

If we use a logit transformation on the parameter, θ = log p/(1− p) then we get

log
p̂

1− p̂
± 1.645

√
1

np̂(1− p̂)

A good reference is May 2001 Statistical Science.

Nuisance parameters. When there are more than one parameter in the likelihood

and we are only testing/estimating for one of the parameter (parameter of interest) then

the rest of the parameters are called nuisance parameter.

How are the three testing method handle the nuisance parameter?

For the Wilks likelihood ratio method, we simply “profileing them out”. i.e. we form

the ratio where the numerator only fix the parameter of interest at the null value.

The resulting chi square statistics will have degree of freedom equal to the difference of

the number of free parameters (i.e. parameters that are not fixed) in the numerator and

the denominator. For example the likelihood have 5 parameters and we are interested to

test if two of them are zero. Then the numerator likelihood will fix the two parameters of

interest at zero, and maximize over the other three nuisance parameters. The denominator

will be maximized over 5 parameters; and the degree of freedom of the likelihood ratio

statistics is 5-3=2.
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8 Large Sample Property of Bayes Estimation

Two types of results:

(1) The posterior distribution is asymptotically normal with mean θ̂mle and variance

equal to the inverse of the observed information matrix. Ref: Walker, JRSSB 1969, p.

80-88.

To make it precise: as n → ∞, the posterior probability that θ̂ + bσn < θ < θ̂ + aσn,

namely ∫ θ̂+aσn

θ̂+bσn

posterior dθ −→
∫ a

b

φ(θ)dθ = Φ(a)− Φ(b)

(converge in probability) where Φ(·) is the CDF of standard normal distribution. In

the above θ̂ is the MLE; σ2
n is the inverse of the observed Fisher information number:

{− logLik
′′
(θ̂)}−1; and a and b are any two finite constants. There are many regularity

conditions, but one of them is that the Fisher information must grow to infinity as n grows.

One of the insight from the proof is that the likelihood function,
∏n

i=1 f(xi, θ), as a

function of θ is similar to a normal density function with mean θ̂, variance σ2
n.

(2) The difference of θ̂mle and a Bayes estimator is asymptotically smaller than 1√
n
.

(sample size n). Ref: Zhao, Ann. Statist. 1970, p. 601-608.

9 Re-sampling Estimation Equation

Sometimes the estimation equation is easily defined but the variance of the estimator (?)

is difficult. For example, the estimation equation for the median. (the variance for the

sample median is difficult).

Suppose X1, . . . , Xn is iid from a distribution with median θ0. Consider

0 =
∑

φ(Xi − θ)

where φ(t) = 2I[t>0] − 1. Let us denote the solution by θ̂ (the sample median).

Consider the estimation equation

Z =
∑

φ(Xi − θ)

where Z is a random variable generated from the distribution 2 × bin(n, 0.5) − n (and

independent of everything).

Denote the solution of the above estimation equation by θ̂∗. Theory show that

√
n(θ̂ − θ0) ≈

√
n(θ̂∗ − θ̂) in distribution.
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Significance: the distribution of
√
n(θ̂∗ − θ̂) can be obtained by Monte Carlo method.

We can repeatedly generate Z from 2 × bin(n, 0.5) − n distribution while keep Xi fixed,

solving the estimation equation for many Z give us many θ̂∗. And the sample distribution

of
√
n(θ̂∗ − θ̂) can be obtained. With fast and cheap computing power, this is easy.

Q: does this approximation correct to the second order?

For general estimating function g(), we may generate Z from the distribution N(0, σ2)

with σ2 = 1/n
∑
g2(Xi, θ̂).

13



Some problems:

0. Sketch the picture for the function S(θ) = E log fθ(X) where the densities come from

(i) a normal location family with θ = mean (ii) exponential family of distributions (θ = λ).

1. Let f(x, θ) be a family of densities, with θ ∈ Θ where Θ is an open subset of the

plain R2.

Suppose X1, X2, · · · , Xn are iid random variables from the density f(x, θ0) for a fixed

θ0 in the interior of Θ.

Show that (under regularity conditions) for any given θ ∈ Θ and θ 6= θ0, we have

P (Ln(θ) < Ln(θ0))→ 1 as n→∞

where Ln(θ) is the likelihood function
∏n

i=1 f(Xi, θ).

Regularity conditions:

2. Suppose we have two binomial populations with success probabilities p1 and p2 and

number of trials n1 and n2.

Also assume we observed n11 successes and n12 failures from the first population (n11 +

n12 = n1). We observed n21 successes and n22 failures from the second population (n21 +

n22 = n2.

Assume p1 = p2 = p and 0 < p < 1. Show that as n1 →∞ and n2 →∞ we have∑
jk

(njk − Ejk)2

Ejk

converge in distribution to a chi-square distribution (what is the df of the limiting chi-square

distribution?)

where the summation is over the four terms as follows

E11 =
n1

n1 + n2

(n11 + n21);E12 =;E21 =;E22 = .

3. Suppose X1, X2, · · ·Xn are iid r.v.s from exponential distribution with parameter

λ > 0. (i.e.

f(x, λ) = λ exp(−λt) for t > 0.

Show that

2 logLn(λ̂)− 2 logLn(λ)

converge in distribution to chi-square distribution. where θ̂ is the MLE of λ.

4. Suppose X1, · · · , Xn are iid uniform [µ − 1, µ + 1] r.v.s. Define a function g(t) as

follows:

g(t) =


0 for |t| ≤ 0.1
(t− 0.1)2 for t > 0.1
(t+ 0.1)2 for t < −0.1

14



Now define an estimator, θ̂ of µ as the (any) minimizer of the following function

min
θ

n∑
i=1

g(Xi − θ) .

(a) show that the estimator θ̂ is (weakly) consistant. (i.e. θ̂ →P µ as n→∞.)

(b) show that the estimator θ̂ is asymptotically normally distributed.

(c) Give the expression of the asymptotic variance in (b).

(5) Given two sequences of r.v.s Xn and Yn. Suppose Xn = Op(1/
√
n) and Yn =

Op(1/
√
n). Further suppose cor(Xn, Yn) = 1−Op(1/

√
n). Show that Xn−Yn = op(1/

√
n).

(6) Suppose we get 3 successes in 20 flip of a coin, please obtain 90% confidence interval

for the unknown p. By “plain” Wald, Wald with logistic transform, and by likelihood ratio.
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10 Infinite dimensional nuisance parameter

Proof of ELT:

First use Lagrange multiplier calculation to the empirical likelihood to get an expression

of −2 logLR:

−2 logLR = −2 log
n∏
i=1

nwi = 2
n∑
i=1

log[1− λ/n(Xi − µ)],

with λ being the solution of the equation

0 =
1

n

∑ Xi − µ
1− λ/n(Xi − µ)

. (7)

Notice the identity

1

1 + ε
= 1− ε

1 + ε
= 1− ε+

ε2

1 + ε
= 1− ε+ ε2 − ε3

1 + ε
= · · · .

For ε→ 0 the last term on the right hand side has same order as its numerator.

Apply this identity to
1

1− λ/n(Xi − µ)

(ASSUME we showed λ = OP (1/
√
n)) we get

n∑
i=1

Xi − µ
1− λ/n(Xi − µ)

=
∑

(Xi − µ) + λ/n
∑

(Xi − µ)2 + λ2/n2
∑ (Xi − µ)3

1− λ/n(Xi − µ)
.

From here we can get the approximate solution to the equation (?)

λ∗/n =
−
∑

(Xi − µ)∑
(Xi − µ)2

+ oP (1/
√
n) .

Next consider the empirical likelihood ratio

−2 logLR = 2
∑

log[1− λ∗/n(Xi − µ)] .

Use Taylor expansion to the function log(1 + ε), we have

−2 logLR = 2[−λ∗/n
∑

(Xi − µ) + 1/2(λ∗)2/n2
∑

(Xi − µ)2 −OP ((λ∗)3)
∑

(Xi − µ)3] .

Finally plug in the λ∗ and carefully re-arrange the terms to get

−2 logLR =
[
∑

(Xi − µ)]2∑
(Xi − µ)2

+ oP (1) .
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By CLT we know
1√
n

∑
(Xi − µ) −→ N(0, σ2)

in distribution and by WLLN we know

1

n

∑
(Xi − µ)2 −→ σ2 = V ar(X)

in probability.

Combine the above two convergence results and use Slutsky theorem, we see that

−2 logLR→ χ2 in distribution.

Remark : If the observations Xi were only independent but not identically distributed

with CDF’s Fi(t), we can still prove the following.

Suppose for each i : 1 ≤ i ≤ n

µ =

∫
gi(t)dFi(t) = Egi(Xi) σ2

i = V ar(gi(Xi)) .

(Same µ but different σ2
i .)

Suppose the Lindeberg or the Liapounoff condition hold for the sequence of the r.v.

gi(Xi):
n∑
i=1

E

[
gi(Xi)− µ∑

σ2
i

]3

→ 0

as n→∞.

This guarentees we have ∑
(gi(Xi)− µ)√∑

σ2
i

−→ N(0, 1)

in distribution.

Assume also 1/M < σ2
i < M for some M > 0. We still need to show also

max(gi(Xi)− µ) = op(
√
n)

and show ∑
[gi(Xi)− µ]2∑

σ2
i

→ 1

But they can be done.

Remark: The mean of a distribution
∫
g(t)dF (t) do not seems to be that hard to do

by other inference method. Why use EL then? Try the case where the data has a few

censored observations.
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For censored observations, we assume the lifetimes are independent, non-identically

distributed; whereas the censoring times are iid.
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