
Doubly Censored Data

In paired comparison experiments, suppose we have n pairs of obser-

vations from two treatments on n subjects.

To estimate the treatment difference, it is customary to focus on the

n pairwise differences. If there is no censoring, a paired t-test or some

rank based test could be used.

However, when right censoring occurs in either treatments, the pairwise

difference can be right censored, or left censored, as the following table

shows.



Trt 1 Trt 2 diff= (trt1− trt2)

14+ 6 8+
12 7 5
9 5+ 4−

· · · · · ·

A reasonable model for the paired experiment is as follows: for the ith
subject (or pair) (i = 1,2, . . . , n) we observe Y1i and Y2i where

Y1i = τd + Si + ε1i ,

Y2i = τp + Si + ε2i ,

where τd(τp) is the main effect for drug (placebo), Si is the subject
effect, εki is the random error. The difference of Y1i and Y2i is:

Di = (τd − τp) + (ε1i − ε2i),



which is free from Si. If we assume ε1i and ε2i are exchangeable, then

the median of Di is τd − τp. Thus a test of H0 : τd − τp = 0 can be

carried out by testing if the median of Di is zero.

In the case where εki are i.i.d. with a distribution of exp(λ)−1/λ (mean

zero exponential), Di has double exponential distribution with location

parameter τd− τp. Since the sample median is the MLE of the location

parameter for a double exponential distribution, we can expect the test

to perform well in this case.

> myfun <- function(t) { as.numeric(t <= 0) }

>

> el.cen.EM( Dvec, delta, fun= myfun, mu=0.5)



Simulation: (based on 5000 runs)

Difference Size No Censored Light Censored Medium Censored Heavy Censored
0.0 n = 100 0.053 0.054 0.058 0.044

n = 25 0.077 0.048 0.053 0.044
0.3 n = 100 0.968 0.907 0.819 0.633

n = 25 0.487 0.374 0.284 0.188
0.2 n = 100 0.767 0.635 0.487 0.373

n = 25 0.276 0.205 0.146 0.120

The Percentage Of Rejecting H0 : τd = τp At α = 0.05

When the null hypothesis is true, the percentages of rejecting H0 are

very close to the nominal level 0.05 for small and large samples. When



there is a difference between the two treatments (drug and placebo),

the rejecting percentages are higher than 0.05 but decreases with the

increase of censoring percentages.

Remark The variance of the MLE is hard to estimate, the Wald con-

fidence interval is hard to construct.



(E-step) The EM algorithm used to find the maximum is similar to

that of Turnbull (1976) but we modified the M-step to incorporate the

constraint on the mean.

(M-step) Find the maximum under mean constraint by using Lagrange

multiplier, see Owen (1988).



Cox Proportional Hazards Regression Model

One of the most widely used regression models in survival analysis is

the Cox proportional hazards model (Cox 1972, 1975).

Let X1, · · · , Xn ; and C1, · · · , Cn be independent random variables. Think

of Ci as the censoring time associated with the survival time Xi. Due

to censoring, we can only observe (T1, δ1), · · · , (Tn, δn) where

Ti = min(Xi, Ci) and δi =

{
1 if Xi ≤ Ci
0 if Xi > Ci

. (1)

Also available are z1, · · · , zn, which are covariates associated with the

responses Xi, · · · , Xn and we assume zi do not change with time here.



According to Cox’s proportional hazards model, the cumulative hazard
function of Xi is related to the covariate zi.

ΛXi
(t) = Λi(t) = Λ(t|zi) = Λ0(t) exp(β0zi) (2)

where β0 is the unknown regression coefficient and Λ0(t) is the so called
baseline cumulative hazard function. Another way to think of Λ0(t) is
that it is the cumulative hazard for an individual with zero covariate,
z = 0.

The semiparametric Cox proportional hazards model assumes that the
baseline cumulative hazard function Λ0 is completely unknown and ar-
bitrary.

We study here the inference in the Cox model where we have some in-
formation on the baseline hazard. But it remains an infinite dimensional
nuisance parameter.



For example, we may know that the baseline hazard has median 45.
Or median is between 44 and 46. For stratified Cox model, we may
know that one baseline hazard is stochastically smaller than the other
baseline, or the two hazards cross at t = 50, etc. When comparing a
placebo against a new treatment in a two sample case, we often have
extra knowledge about the survival experience for the placebo group,
may be from past experiences, other studies, etc.

Empirical Likelihood approach is used to obtain inference about β0
in the presence of this new information. We show that the modified
estimator also has asymptotic normal distribution and the empirical
likelihood ratio also follows a Wilks theorem under null hypothesis.

The modified estimator of β is more accurate and the test have better
power compared to the regular Cox partial likelihood estimator/test.



We made use of extra information on the baseline. It improves estima-

tion of β.

For simplicity we gave detailed formula for the case dim(zi) = 1. For

the case where dim(zi) = k, parallel results to those obtained here can

be obtained similarly.



The contribution of Ti, δi to the empirical likelihood function is

(∆Λi(Ti))
δi exp{−Λi(Ti)}.

Under Cox’s proportional hazards model,

∆Λi(Ti) = ∆Λ0(Ti) exp(βzi), and Λi(Ti) = Λ0(Ti) exp(βzi) .

If we use ALc(β,Λ0) to denote the (asymptotic) empirical likelihood

function under the Cox’s model for all observations, then we have

ALc(β,Λ0) =
n∏

i=1

(∆Λ0(Ti)e
βzi)δiexp{−eβzi

∑
j:Tj≤Ti

∆Λ0(Tj)}, (3)

where we shall require Λ0 � Λ̂NA, the Nelson-Aalen estimator. This

restriction is similar to the restriction for CDFs to have same support

as the empirical distribution in Owen (1988).



2 Empirical Likelihood Ratio Statistic for β0 with Additional In-

formation on Baseline

The simplest form of the extra information on the baseline is given in

terms of the following equation:∫
g(s)dΛ0(s) =

∑
g(Ti)∆Λ0(Ti) = θ (4)

where θ is a given constant, and g(·) is a given function. The second

expression above assumes a discrete hazard that only have possible

jumps at the observed survival times, Ti’s (like the Nelson-Aalen esti-

mator). This type of constraint include many situations. For example,

if g(s) = I[s≤45] and θ = − log 0.5, then the extra information can be

interpreted as “median equal to 45”.



The modified estimator of β is defined via the empirical likelihood. It

is the maximizer of the empirical likelihood subject to the constraint:

max
β,Λ�Λ̂NA,satisfy(4)

ALc(β,Λ)



Theorem 3 As n → ∞ the regression estimator with additional infor-

mation (4), β̂, has the following limiting distribution

√
n(β̂ − β0)

D−→ N(0, (Σ∗)−1)

where Σ∗ = Σ + B2A−1 and thus the variance is smaller then that of

the regular Cox estimator.

It is interesting to note that the variance of β̂ above is smaller than

that of a regular Cox estimator.

Theorem 4 Assume all the conditions of Theorem 1. In addition

we assume g(·) is square integrable wrt Λ0. Finally assume the true

baseline hazard satisfy (4). Then we have, as n →∞,



−2 logALRc(β0)
D−→ χ2

(1) .

Remark If the regression coefficient β is a vector, then the same proof

still holds with the limiting distribution becomes a χ2
p where the integer

p = dim(β).

Remark We also get an improved estimator of the baseline hazard

function, Λ0(t), which satisfy (4).



3 Computation of the Improved Estimator

We have modified the programs for the regular Cox model in R lan-

guage (Gentleman and Ihaka 1996) survival package (Therneau) to

do the computation for the new estimator here (it is open source).

The package is called coxEL. The relevant function is coxphEL(). This

function is similar to the function coxph() in the survival package for

regular Cox model.

But you need to supply two additional inputs: a value lam and a function

g(·) when calling coxphEL().

If lam= 0 then you get the regular Cox estimator, and the NPMLE of∫
g(t)dΛ(t).



For non-zero lam values, you will get an β̂ estimator, and the value of

the summation on the left of (4).

In Splus/R, the baseline hazard is actually the hazard for a subject with

z = z̄ instead of z = 0. If you would rather recover the constraint value

for the hazard at z = 0, we need to multiply the value obtained in (16)

by exp(−β̂z̄).

3.1 Some Preliminary Simulation Results

We use a two sample situation and both samples are exponentially

distributed, and have same sample size. Sample 1 ∼ exp(0.2). Sample

2 ∼ exp(0.3). We use a binary covariate, z, to indicate the samples: if

zi = 0 then yi is from sample 1; if zi = 1 then yi is from sample 2.



The risk ratio or hazard ratio is 0.3/0.2. In Cox model, this imply
the true coefficient, β0, should be log(0.3/0.2) = 0.4054651, since
exp(coef) ∗ 0.2 = 0.3.

We did not impose censoring in this simulation.

The extra information we suppose we have is that the integration∫
exp(−t)dΛ0(t) = θ = rate1 .

When both sample have 200 observations, i.e. (yi, zi) i = 1, · · · ,400,
we obtained the following results:

We generated 400 such samples (each of size 400) and for each sample
we computed the two Cox estimators of the regression coefficient, β.



Therefore the sample means and sample variances below are based on

400 simulation runs.

sample mean sample variance
Regular Cox estimator 0.4160447 0.009736113
Adjusted Cox estimator 0.4129862 0.008310867

Table 1

But for smaller sample sizes, the iteration computation sometimes has

problem to converge for larger λ values. One reason is that the sample

is too far away from the true value of the extra info required. Similar to

“the true mean is zero, but the observations in the sample happens to

be all positive” then the empirical likelihood computation is impossible.

Those needs to be redefined as having infinite likelihood ratio.



Remark: The above example actually demonstrated a better log-rank

test in the two sample case. The estimator we compared can be think

of as the Hodges-Lehmann estimator derived from tests.



In the next two simulations, we only adjust the regular Cox estimator

when the value of the integration
∫

g(t)dΛ0(t) is outside the interval

[θ − ε, θ + ε] where θ is the true value of the integration.

For sample size n = 400, ε = 0.05 we obtained the following results:

sample mean sample variance
Regular Cox estimator 0.4160447 0.009736113
Adjusted Cox estimator 0.4085578 0.009332247

Table 2

If the integral is inside the interval, no adjustment. If the integration

is outside, adjust to the boundary.



For sample size n = 180 (equal sample size of 90 each), ε = 0.1, the

results are as follows:

sample mean sample variance
Regular Cox estimator 0.4194698 0.02715997
Adjusted Cox estimator 0.4187548 0.02708653

Table 3

The sample mean and sample variance reported above are based on

500 simulation runs.



More information on baseline.

For extra information in the form of many equations like (4), with many
g() functions, we have

√
n(β̂−β0) =

`(β0)√
n

(I/n+BA−1B)−1+
√

nm(β0,0)[A+B(I/n)−1B]−1B(I/n)−1+op(1)

with the obvious definition of matrix A and vector B. This leads to
an estimator β̂ that is asymptotically normal with asymptotic variance
given by

[Σ∗]−1 = [Σ + BTA−1B]−1 .

Let us call the Fisher information of β in the restricted baseline Cox
model as

Σ∗ = [Σ + BTA−1B] .



The quantity BTA−1B is the increment of the Fisher information due
to the restriction on baseline. It is a special matrix, by a Lemma of Kim
and Zhou (2002) this can be written as a summation that approximates
an integration.

When gi(t) are indicator functions: gi(t) = I[t≤ui]
for several constants

ui, the increment in the Fisher information, BTA−1B takes a particular
simple form:

BTA−1B =
∑ [h(ui)− h(ui−1)]

2

V (ui)− V (ui−1)
,

where h(ui) = Bi and Aij = V (min(ui, uj)).

h(t) =
∑
Ti≤t

δi
∑

j∈<i
zje

β0zj[∑
j∈<i

eβ0zj
]2 ;



V (t) =
∑
Ti≤t

δin[∑
j∈<i

eβ0zj
]2 .

It will approach from below the integral (when ui become dense)∫ [h′(t)]2

V ′(t)
dt

In the limit, this integration is also equal to

lim
∫ [

∑
zje

βzj/
∑

eβzj]2

n/
∑

eβzj
dΛ0(t) = lim

n∑
i=1

∑
zje

βzj∑
eβzj

2
δi

n
.

In view of the expression of I(β0) in (4), we see that the Fisher infor-
mation of the restricted baseline hazard Cox model can approach but



never exceed the upper bound

Σ∗ = [Σ + BTA−1B] ≤ Σ∗∗

with

Σ∗∗ = lim
1

n

n∑
i=1

δi

∑
j∈<i

z2
j exp(β0zj)∑

j∈<i

exp(β0zj)
= lim

I∗∗(β0)

n

The relation between I(β) and I∗∗(β) is like that of a variance and a

second moment.

We have the following equality in expected information.



Theorem The fully parametric proportional hazards model (where the
baseline is completely specified) has the expected information for β

easily calculated (when no censoring) as

Ipara(β) =
n∑

i=1

z2
i ,

where we used the fact that EHi(Yi) = 1 since Hi(Yi) ∼ exp(1). With
censoring, the information is

E
∑

z2
i Hi(min(Yi, Ci)) =

∑
z2
i EHi(min(Yi, Ci)).

We have the following

Theorem At least without censoring, the expected information

EI∗∗ = Ipara



where the expectation is over all the possible ordering of the observa-

tions (when no censoring). This can be proved by induction.

Summarizing the results above paints the following picture: more

information on the baseline hazard increases the Fisher information of

β. They form a continuous spectrum from the completely unspecified

baseline model (i.e. Cox model with information I) to completely spec-

ified baseline model (parametric model) with information Ipara = EI∗∗.

The maximum empirical likelihood estimator (MELE) have variances

given by the inverse of those informations in the spectrum.



This also show that empirical likelihood is a continuous extension of

parametric likelihood when nuisance parameter is of infinite dimen-

sional, in the sense that, in terms of information, it reduces to para-

metric likelihood with added restrictions on the infinite dimensional

nuisance parameter.



This “Information Spectrum” phenomena also showing up in the En-

velope Empirical Likelihood as described by Zhou (2000) where on one

end is the Fisher information of a location estimator (like median) with

arbitrary distribution, on the other end is the Fisher information of

location parameter with a symmetric (but unknown) distribution.

Both ends are semiparametric models.
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