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• Accelerated Failure Time (AFT) models:

Y = log(T ) = Xβ + ε .

• The responses T , log(T ) or Y are subject to right cen-

soring.

• We study the use of empirical likelihood method (Owen

2001) for inference about β.



Owen (1991) studied the use of empirical likelihood with

linear models. (no censoring) He defines the Empirical

Likelihood as:

EL =
n∏
i=1

pi ; where
∑
pi = 1; pi ≥ 0 .

Is this a likelihood of the Y ’s or is this the likelihood for

the ε’s? Either interpretation is plausible here.



Owen (1991) identified two different linear models from

the viewpoint of Empirical Likelihood (EL):

regression models and

correlation models,

which came from Freedman (1981) bootstrap study of

linear models.



Correlation Model:

We observe iid random vectors (Yi, Xi); i = 1, . . . , n where

Yi are one dimensional responses, Xi are k-dimensional

covariates. Unknown parameter β is the minimizer of

g(b) = E ‖ Y −XT b ‖2.



Regression Model:

The covariates xi; i = 1, . . . , n are fixed constants, observ-

able k-dimensional vectors. Yi are independent random

variables with distributions having location parameters

xtiβ.



The EL for the two types of models appears identical

in Owen (1991) as given above, but have different inter-

pretations and require different proofs for the generalized

Wilks theorem under different assumptions.

Owen (1991) showed the EL Wilks Theorem holds for

both models:

−2 log
maxEL∏

1/n
−→ χ2

where the max of EL is taken over pi such that

0 =
∑
Xiψ(Yi −Xiβ0)pi .



Notice for a given (non-censored) data set, under either

regression or correlation model the two EL ratios have

the same value and the least squares estimator β̂ is also

the same under either model.

So the two different models only pertain to two different

sets of assumptions, under which the EL Wilks theorem

hold.



With censored responses, not all Yi are available. Estima-

tion equations, as well as the empirical likelihood needs

to be changed.

Censored data: randomly right censoring:

Qi = min(Yi, Ci) ; δi = I[Yi ≤ Ci]

where Ci are the censoring times.



We see two different ways of defining the empirical like-

lihood for censored data, corresponding to the two types

of linear model:

• Define the empirical likelihood based on the censored

‘residuals’: ei(b) = Qi −Xib; δi:

EL(res) =
n∏
i=1

(pi)
δi

1−
∑
ej≤ei

pj


1−δi

.

Notice the order in the summation is based on the resid-



uals. This empirical likelihood is more suitable for re-

gression models.



• The second approach is to consider the empirical like-

lihood for (censored) vectors: (Qi, δi, Xi): which we shall

call it case-wise EL.

EL(case) =
n∏
i=1

(pi)
δi

1−
∑

Qj≤Qi
pj


1−δi

.

Notice the order in the summation of the EL is based

on Q’s. This empirical likelihood is more suitable for

correlation models.



The two definitions of the EL is parallel to the two ways

of bootstrapping in linear models:

(1) re-sample the residuals ei, for the regression models.

(2) re-sample the vectors or cases (Yi, Xi), for the corre-

lation models.

See for example Freedman (1981).



We consider two types of estimates β̂ suitable for the

two types of EL and AFT models:

(1) Buckley-James (1979) estimate. Rely on the fact

that the errors (residuals) are iid. More suitable for the

regression models.

(2) Case weighted estimators (Koul, Susarla, Van Ryzin

(1982) [not 1981 !], Zhou (1992), Stute (1993, 1994,

1999); Huang, Ma, Xie (2005) etc.) Idea is based on the



(iid) cases (Yi, Xi) or (Qi, δi, Xi). More suitable for the

correlation models.



Let us first consider the Buckley-James estimator and

EL(res).

Let ei(b) = Qi −Xib, be the (censored) residuals.

The Buckley-James estimator of β is the solution to the

estimation equation

0 =
n∑
i=1

Xi

δiei(b) + (1− δi)
∑

j:ej>ei

ej(b)∆F̂ (ej)

1− F̂ (ei)

 ,



where F̂ (·) is the Kaplan-Meier estimator computed from

(ei(b), δi).

The expression in blue is an estimation of the conditional

expectation, Ê(Yi −Xib|Qi, β = b, δi = 0).

There are two summation signs in the above equation.

(one for index i one for index j). Exchange the order of

the summations we have

0 =
n∑

j=1
δjej(b)

Xj +
∑

i:ei<ej,δi=0

Xi∆F̂ (ej)

1− F̂ (ei)

 .



This form of Buckley-James estimation equation will lead

to the constraint equations we use with the censored

empirical likelihood ELres.



The above defined EL(res) is to be maximized with and

without the following added constraint equations (with

b = β0):

0 =
n∑

j=1
pjδjej(b)

Xj +
∑

i:ei<ej,δi=0

Xi∆F̂ (ej)

1− F̂ (ei)


1

∆F̂ (ej)
.

Notice the same pi appears in this constraint equations

and in the definition of EL(res).



Without this constraint, the ELres is maximized at the

Kaplan-Meier estimator, computed from ei(β0), δi.

Under null hypothesis, i.e. when b = β0, the −2logELres

ratio has asymptotically a chi squared distribution:

−2 log
maxELres
maxELres

−→ χ2

Proof — See Zhou and Li (2004).



Simulation confirmation of the chi squared limit:

Q-Q plot of −2 logELR



Q-Q plot of −2 logELR



Q-Q plot of −2 logELR



Q-Q plot of −2 logELR



Now let us consider the correlation model and the case

weighted estimator.



Many authors have proposed and studied the case-weighted

estimator, including large sample property of the estima-

tor under various assumptions. The earliest reference I

can find is Koul, Susarla and Van Ryzin (1982), the lat-

est reference is Huang, Ma and Xie (2005). In between

there are: Zhou (1992), Stute (1993, 1994, 1999), Gross

and Lai (1996), and van der Laan and Robins (2003):

in their book they call this “inverse censoring probability

weight”: since

∆F̂ (Qi) =
δi

1− Ĝ(Qi)
= wi



The case weighted estimator is defined by the estimating

equations (cf. Zhou 1992)

0 =
n∑
i=1

wiδiXiψ(Qi −Xib)

where wi is the jump of the Kaplan-Meier estimator at

Qi computed from (Qi, δi).

ψ() is monotone, usually the derivative of ρ().

The estimator β̂ is easy to obtain, no iteration needed.



The constraint equations to work with the ELcase are

0 =
n∑
i=1

piδiXiψ(Qi −Xib) .

The EL(case) is to be maximized with and with out the

above constraint equations.

We have a chi square limit theorem (Wilks):

Under null hypothesis, we have

−2 log
maxELcase
maxELcase

−→ χ2



in distribution.

In the denominator, the max of ELcase occurs when pi =

jumps of the Kaplan-Meier estimator based on Qi, δi.



If we interprets the constraint equations as constraints

on the marginal DF of Y , then (since the EL is also on

the Y marginal), existing results apply.



The constraint equation can be thought of as a con-

straint on the marginal CDF of the Y

∫
g(y, x)dFY (y) = 0



R Censored Data AFT Models 

Regression Model      Correlation Model 
Buckley-James Est.    Weighted Est.     
EL(residual)          EL(case)          
Wilks Theorem         Wilks Theorem     



Notice with censored data, the two estimators are dif-

ferent and the two EL are also different. Yet they both

have EL ratio converge to chi-square distribution under

certain conditions.



Simulation results for correlation AFT models:

Q-Q plot of −2 logELR



Q-Q plot of −2 logELR



Q-Q plot of −2 logELR



Q-Q plot of −2 logELR



Less censoring:

Q-Q plot of −2 logELR



Q-Q plot of −2 logELR



Quantile regression is an important model in economet-

rics (Koenker 2005)

Quantile of Yi = βXi

Estimate β by

argmin
n∑
i=1

ρ(Yi − βXi)

where ρ is the so called ‘check function’.



Estimating equation for β

0 =
n∑
i=1

Xiψ(Yi − βXi)

where ψ needs to be defined carefully.



Median regression: ψ(t) = 1,0 or −1 depend on t > 0, t =

0 or t < 0.

Variance of the β̂ is hard to estimate. Using EL, we do

not need to estimate the variance of β̂.



Q-Q plot of −2 logELR
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Q-Q plot of −2 logELR
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Q-Q plot of −2 logELR



25% Quantile regression: ψ(t) = 0.5,−0.5 or −1.5 de-

pend on t > 0, t = 0 or t < 0.

75% Quantile regression: ψ(t) = 1.5,0.5 or −0.5 depend

on t > 0, t = 0 or t < 0.

These functions equal to 2 times the derivative of the so

called “check functions” defined in Koenker �Quantile

Regression�. We take this definition so that the median

regression ψ is the more commonly used -1/+1 function.



The (heteroscedastic) model we are simulating next is

generated by

Y = 0.5 + 1.5X + 0.5(1 +X)ε

where ε is iid Normal(0,1). X is uniform (0,1) and Y are

right censored by 0.5 + 2exp(1).

For 25% quantile regression, the true regression line is

Y = 0.162755 + 1.162755X



For 75% quantile regression, the true regression line is

Y = 0.837245 + 1.837245X

From the plot we see that the 25% quantile regression is

less sensitive to the right censoring, compared to median

regression and 75% quantile regression.



Q-Q plot of −2 logELR
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Q-Q plot of −2 logELR



Q-Q plot of −2 logELR



Example: Smallcell Lung Cancer Data (Ying, Jung &

Wei 1995)

log(T ) = β0 +X1β1 +X2β2 + σ(X1, X2)ε

X1 = indicator of treatment; X2 = age at entry.



Contour plot of −2 logELR for β1β2; β0 fixed.



Comments about heteroscedasticity. The correlation model

can accommodate some heteroscedasticity.

When Y is censored, X can be missing.

Censoring: C independent of Y . (stronger than condi-

tional independence usually assumed by regression model

and Buckley-James estimator). But Buckley-James as-

sumes iis error.
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