
Empirical Likelihood Analysis of the Buckley-James Estimator

Mai Zhou 1 and Gang Li 2

University of Kentucky, Lexington, KY 40506
University of California, Los Angeles, CA 90095

Summary

The censored Accelerated Failure Time (AFT) model and the Buckley-James estimator
(1979) is widely seen as an alternative to the popular Cox model when the assumption of
proportional hazards is questionable. It performs well in many simulations and examples:
Miller and Halpern (1982), Heller and Simonoff (1990, 1992), and Stare, Heinzl and Harrell
(2000). The direct interpretation of the AFT model is more attractive than the Cox model,
as D.R. Cox himself have pointed out. However, the application of the Buckley-James
estimation was limited mainly due to its illusive variance estimation.

We use the empirical likelihood method (Owen (2001)) to derive a test (and thus confidence
interval) based on the Buckley-James estimator of the regression coefficient. Standard chi
square distribution is used to calculate the P-value and the construction of the confidence
interval.

Simulations show that the chi square approximations of the log empirical likelihood ratio
performs well.

AMS 1991 Subject Classification: Primary 62G10; secondary 62G05.
Key Words and Phrases: Wilks theorem.

1. Introduction

The empirical likelihood method was first proposed by Thomas and Grunkmier (1975) to

obtain better confidence intervals in connection with the Kaplan-Meier estimator. Owen (1988,

1990) and many others developed this into a general methodology. It has many desirable statistical

properties, see the book of Owen (2001). Recently, the empirical likelihood ratio method has been

shown to work with censored/truncated data. One of the nice features of the empirical likelihood

method particularly appreciated in censored data analysis is that we can construct confidence

intervals without estimating the variance of the statistic. Those variances can be very difficult to

estimate, as in the situation of the Buckley-James estimator.

Cox proportional hazards regression model is very popular and successful in modeling covariate

effects with censored data. However, there are many cases the proportional hazards model clearly
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do not apply or are awkward to use. Other types of regression models that can handle censored

data and are semi-parametric in nature, are needed. Cox himself said in an interview (Reid, 1994)

“Of course, another issue is the physical or substantive basis for the proportional hazards model.

I think that is one of its weaknesses, that accelerated life models are in many ways more appealing

because of their quite direct physical interpretation, particularly in an engineering context”. See

also Wei (1992).

The Buckley-James estimator (1979) is an iterative estimator for the censored AFT model

(regression model). The available of cheap, fast computer and ever-improving software in the

last 10 to 15 years made the calculation of the Buckley-James estimator a routing business. But

the variance estimator of the Buckley-James estimator remains very difficult. For example, the

program bj( ) within the Design library of Harrell (available for both S-plus and R) uses a

variance estimation formula given by BJ’s original paper which do not have rigorous justification

and as Lai and Ying (1991) have pointed out this formula may not be correct. On the other hand,

the variance given by Lai and Ying (1991) involves the density and the derivative of the density

of the unknown distribution. The estimation of such functions can be highly unstable, unless we

have a huge sample size.

Recent work of Li and Wang (2003) is a first attempt to use EL to tackle this problem. While

their work is important and a step in the right direction, the application is hampered by the fact

that the limiting distribution of their empirical likelihood ratio is not a standard chi square but a

linear combination of several chi squares with coefficients depending on the unknown underlying

distributions.

We propose in this paper a new type of EL testing procedure for the Buckley-James estimator

where the likelihood is truly the censored likelihood and the limiting distribution is a regular chi

square. Thus the P-value of the test and confidence interval can be obtained without estimating

other quantities.
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2. The Regression Model and the Empirical Likelihood

Consider the linear regression model

yi = βtxi + εi

where εi are iid with zero mean and finite variance.

The censored observations we have are

ỹi = min(yi, ci); δi = I[yi≤ci]

where ci are the censoring times, assumed independent of yi given xi. We assume xi, a length q

vector, is always observed.

For any candidate, b, of estimator of β, we define

ei(b) = ỹi − btxi .

When b = β, we get the censored ε:

ei(β) = ỹi − βtxi := ε̃i

i.e. when δi = 1 then ei(β) = εi and when δi = 0, ei(β) < εi.

Let us order the ei(b):

e(1)(b) < · · · < e(n)(b)

and order the δi, xi along with the ei’s. Notice this ordering is dependent on b. For simplicity,

we assume the ei(b) is already ordered and save the notation: ei = e(i).

Let F̂KM (t, b) be the Kaplan-Meier estimator of Fε based on the ei(b), δi. With the distribution

F̂KM (t, b), we can form a (n× n) weight matrix, M , as follows: if ei is censored, i.e. δi = 0 then

let

m[i, j] = 0, j ≤ i and m[i, k] =
∆F̂KM (ek)

1− F̂KM (ei)
for k > i ;

if δi = 1 then m[i, i] = 1, and m[i, j] = 0; j 6= i.

This matrix has the property:
∑

j m[i, j] = 1 for all i. Also M is an upper triangle matrix.

Let
∑

im[i, j] = n×wj , then wj , j = 1, 2, · · · , n is a probability with support on the uncensored

ei’s. Since the Kaplan-Meier estimator is a self-consistent estimator, we have wj = ∆F̂KM (ej).
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Actually the summation need only for those i : i ≤ j. (triangle matrix).

The Buckley-James estimating equation is

0 =
n∑

i=1

δixiei(b) + (1− δi)xi

∑
j:j>i

ej(b)m[i, j]

 (1)

All n terms in the above summation are non-zero.

We can rewrite the Buckley-James estimating equation according to ei

0 =
∑

i

δiei(b)

xi +
∑
k<i

m[k, i]xk

 (2)

=
∑

i

δiei(b)

xi +
∑

k<i,δk=0

xk
∆F (ei)

1− F (ek)

 (3)

=
∑

i

δiei(b)(m[, i] · x) . (4)

The non zero term in the above summation now is the same as the number of uncensored ei.

The equation to use with the censored data EL (to be defined in (6)) is:

0 =
∑

i

ei(b)
m[, i] · x
nwi

δipi (5)

where the · means inner product and pi = ∆F (ei), the jump of any distribution that has support

on the uncensored ei’s.

The inner product, m[, i] · x, above is

xi +
∑

k:k<i,δk=0

m[k, i]xk

since m[i, i] = 1 when δi = 1.

The empirical likelihood (EL) for the ei(b) is defined as:

EL =
n∏

i=1

pδi
i (1−

∑
ej≤ei

pj)1−δi . (6)

We are to find a distribution F or pi’s such that (a) it has support only on the un-censored

ei’s; (b) it satisfy the estimating equation (5); and (c) among those F we shall find one that

maximize the censored EL, (6).

Remark: When maximizing the censored EL with the equation (5), we only changing the pi.

The weight matrix M and wi, are to remain unchanged for a fixed b.
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Remark: Clearly, if b = β̂BJ then pi = ∆F̂KM (t, β̂BJ) will satisfy the estimating equation

(5), and maximizes the EL (6) among all CDF’s. Where β̂BJ is the Buckley-James estimator.

Therefore, the confidence regions based on our Empirical Likelihood ratio will be “centered” at

β̂BJ .

The computational problem of the constrained maximization, (5) and (6), with respect to

pi of the censored EL is the same as the one faced by the censored EL with mean constraint:∑
f(ti)pi = µ. Here f(ti) = ti(m[, i] · x)/(nwi) and µ = 0. Zhou (2002) showed that this

computation can be solved reliably by a modified EM algorithm, for sample sizes upward of

10,000 with ease. Basically the E-step is same as in Turnbull (1976) and the M-step is a weighted

version of constrained maximization for uncensored data EL similar to the one used by Owen

(1988). Zhou (2002) also proved that the modified EM algorithm is equivalent to the solution of

the original constrained maximization of the censored EL. For details, please see Zhou (2002).

When b = β, the true parameter, then yi − βtxi are iid. The EL we use are the same as the

censored EL based on iid right censored observations, used by Thomas and Grunkemeier (1976),

Li (1995), Murphy and van der Varrt (1997) and Pan and Zhou (2001), among others.

The constraint equation we use, however, is slightly different to the mean constraint used by

other people: the function f(·) we use depended on the data, and thus should be denoted by fn(·):

∫
f(t)dF (t) v.s.

∫
fn(t)dF (t) .

We need the following generalization of the EL Wilks theorem for right censored data:

Theorem 1 Suppose (Ti, δi); i = 1, 2, · · ·n are iid right censored data where Ti = min(Xi, Ci); δi =

I[Xi≤Ci]. Let P (Xi ≤ t) = F0(t). Define the censored empirical likelihood

EL(F ) =
n∏

i=1

pδi
i (1−

∑
Tj≤Ti

pj)1−δi .

In addition, suppose for every n, fn(t) is a random function but is predictable wrt Ft, the

usual counting process filtration (see for example Fleming and Harrington (1991)). Denote by

Mn(t) =
√
n[F̂KM (t) − F0(t)]/[1 − F0(t)] the Ft-martingale associated with the Kaplan-Meier

estimator F̂KM (t). If the predictable function fn(·) satisfy certain regularity conditions (so that

5



the CLT for
∫
fn(t)dMn(t) holds), and finally assume∫ ∞

−∞
fn(t)dF0(t) ≡ 0

then we have

−2 log
supF EL(F )
EL(F̂KM )

D−→ χ2
(1)

where the numerator EL is maximized under the constraint

∑
δipifn(Ti) =

∫ ∞
−∞

fn(t)dF (t) = 0 .

With the help of the following lemma, this theorem can be proved similarly to Pan and Zhou

(2001), Pan (1997). We defer the proof of the theorem to appendix.

Lemma 1 Let gn(t) be predictable functions such that
∫∞
−∞ gn(t)dF0(t) = 0 and gn(t) P−→ g(t)

as n→∞ with g(t) satisfy σ2
KM (g) <∞ (defined below), then we have

√
n

∫ ∞
−∞

gn(t)dF̂KM (t) =
√
n
∑

gn(Ti)∆F̂KM (Ti)
D−→ N(0, σ2

KM (g)) .

The asymptotic variance is given by

σ2
KM (g) =

∫ ∞
0

{
g(x)[1− F0(x)]−

∫ x

−∞
g(s)dF0(s)

}2 dF0(x)
[1− F0(x)]2[1−G0(x)]

. (7)

Furthermore, the asymptotic variance can be consistently estimated by∫ ∞
−∞

{
gn(x)[1− F̂KM (x)]−

∫ x

−∞
gn(s)dF̂KM (s)

}2

d〈Mn(x)〉 .

Proof: By the assumption
∫
gn(t)dF0(t) = 0 we have

√
n

∫ ∞
−∞

gn(t)dF̂KM (t) =
√
n

∫ ∞
−∞

gn(t)d[F̂KM (t)− F0(t)]

=
∫
gn(t)d{Mn(t)[1− F0(t)]} =

∫
Mn(t)gn(t)d[1− F0(t)] +

∫
gn(t)[1− F0(t)]dMn(t) .

Integration by parts in the first integral above will give

=
∫ ∞
−∞

{
gn(t)[1− F0(t)]−

∫ ∞
t

gn(s)dF0(s)
}
dMn(t) .
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Use the fact that
∫
gn(t)dF0(t) = 0 again, we have

=
∫ ∞
−∞

{
gn(t)[1− F0(t)] +

∫ t

−∞
gn(s)dF0(s)

}
dMn(t) .

The integrand inside { } is clearly a predictable function in the above and thus the integration is

also a martingale. By the CLT for martingales, it converges to a normal distribution with zero

mean and a variance that can be consistently estimated by

∫ ∞
−∞

{
gn(t)[1− F0(t)]−

∫ t

−∞
gn(s)dF0(s)

}2

d 〈Mn(t)〉 .

Replace F0(·) by its consistent estimate F̂KM (·) gives the desired result. ♦

Lemma 2 The weight function used in (5), fn(ti) = ti(m[, i] · x)/(nwi), is Ft predictable.

Proof: Notice if the Kaplan-Meier estimator jumps or not at t is not predictable but we

are only concerned here with the size of the jump, if there is one. The size of the next jump

of the Kaplan-Meier estimator can be computed from the history and thus is predictable. More

specifically, the next jump size of the Kaplan-Meier estimator, at time t, if there is one, is equal

to 1/n× 1/(1− Ĝ(t−)), where Ĝ is the Kaplan-Meier estimator of the censoring distribution.

Similarly we can infer from the history the portion of the jump, if there is one, that came from

tj ; tj < t. This proportion is precisely m[j, i]/(nwi). ♦

Armed with the generalized version of the ELT for right censored data, and also the Lemma

2, we have the Wilks theorem for the Buckley-James estimator:

Theorem 2 When β = β0, the residuals e = ỹ − β0x = ε̃ are iid censored observations and

the estimating equation (5) can be written as

E(eE∗(x|e = t)) ≡ 0

where E∗ denotes the average over the m[j, i]/(nwi), j = 1, 2, · · ·n. Thus, we have

−2 logELR(β0)
D−→ χ2

(1) .

Proof: Since x is independent of ε, E(eE∗(x|e = t)) = E(x)E(e) ≡ 0. ♦
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3. Simulation for one dimensional β

We take the regression model

yi = 2xi + εi

where xi is uniform(0.5, 1.5); εi is uniform(-0.5, 0.5). We further take ci to be 1 + 3.2 exp(1),

where exp(1) represent a r.v. with standard exponential distribution. The test we carry out are

based on the censored response observations: min(yi, ci), δi. Sample size is always 100.

The −2 log empirical likelihood ratio are computed for each simulation run for the hypothesis

H0 : β = 2, which is true. The resulting Q-Q plot shows a good fit to the chi-square distribution

with 1 degree of freedom.

Figure 1: Q-Q plot of −2 logELR, 5000 simulation run, sample size = 100.

In other simulations we used the regression model yi = xi + εi where εi are iid N(0, sd = 0.5),

xi are iid N(1, 0.5) and the censoring variables Ci are simulated from N(µ, sd = 4), with µ =

−1.8, 1, 3.1 and 6.1 respectively. This produces samples with censoring percentages equal to 75%,

50%, 30% and 10% approximately.

We used sample sizes of n = 50, 100 and 200. The coverage probabilities are based on 5000

simulation runs. The computation is done with the software R. These entry are in bold face. The
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relavant program bjtest( ) can be obtained as part of the contributed package emplik from

CRAN site:

http://cran.us.r-project.org/. The entry for ELEE and ELSD are from Li and Wang (2003).

Nominal level = 90% Nominal level = 95%

Coverage Coverage
Sample Censoring probability probability

size rate ELEE ELSD BJ ELEE ELSD BJ

50 0.75 0.94 0.79 0.8420 0.98 0.85 0.9042
100 0.75 0.94 0.83 0.8818 0.97 0.90 0.9344
200 0.75 0.92 0.87 0.8928 0.96 0.92 0.9438

50 0.50 0.94 0.84 0.8838 0.98 0.91 0.9324
100 0.50 0.94 0.88 0.8926 0.97 0.95 0.9414
200 0.50 0.92 0.91 0.8952 0.97 0.95 0.9482

50 0.30 0.94 0.87 0.8866 0.97 0.92 0.9374
100 0.30 0.93 0.89 0.8936 0.97 0.93 0.9472
200 0.30 0.92 0.91 0.8922 0.97 0.95 0.9468

50 0.10 0.95 0.85 0.8924 0.98 0.93 0.9406
100 0.10 0.93 0.91 0.8888 0.97 0.94 0.9404
200 0.10 0.93 0.90 0.8810 0.97 0.94 0.9458

Table 1. Comparison of empirical likelihood confidence intervals for β: ELEE is the Li and

Wang (2003) empirical likelihood method based on estimating equations and ELSD refers to the

empirical likelihood method of Jing and Qin (2002) and Li and Wang (2003) based on synthetic

data. BJ is the method proposed in this paper.

Note: Each entry is based on 2000 Monte Carol samples. Except the bold entry is based on

5000 simulations.

We remind readers that besides the performance differences of the empirical likelihood con-

fidence intervals, the estimator β̂ itself of Buckley-James and those based on synthetic data are

also different.

4. Some Extensions

In this section we briefly discuss some extension of the Buckley-James estimator and the EL

analysis with them.
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4.1 M-estimator

For complete data the regression M-estimator is defined as the minimizer of
∑
ρ(yi−βtxi) or the

solution to the equation ∑
xiψ(yi − βtxi) = 0

where ψ(t) = dρ(t)
dt . Usually we assume ψ is monotone. Let ei = yi − βtxi.

With right censored data, the Buckley-James estimating equation is

0 =
n∑

i=1

δixiψ(yi − βtxi) + (1− δi)xi

∑
j: ej>ei

ψ(yj − βtxj)m[i, j]

 .

A rewriting of the estimating equation according to ei gives

0 =
∑

i

δiψ(yi − βtxi)

xi +
∑

k: ek<ei

m[k, i]xk

 .

In the EL analysis of the censored Buckley-James regression M-estimator, the definition of

the censored empirical likelihood remains unchanged as in (6). The constraint (or estimating

equation) to be used with the empirical likelihood is

0 =
n∑

i=1

ψ(yi − βtxi)

xi +
∑

k: ek<ei

m[k, i]xk

nwi
δipi .

Similar results as in the least squares estimator can be obtained for the regression M-estimator.

We omit the details here.

5. Examples

In this section we illustrate the EL analysis of the Buckley-James estimator with the Stanford

Heart Transplant data. Following Miller and Halpern (1982), we use only 152 cases.
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Figure 2: Contour plot for the -2logELR, Stanford Heart Transplant Data, 152 cases.

The Buckley-James estimator of the (β̂0, β̂1) was marked by an X on the plot. From the plot

we see that the contours are fairly symmetrical and elliptically shaped, indicating that the normal

approximation is pretty good for the Buckley-James estimator here.

From the plot we see that the estimator β̂0 is strongly negatively correlated with β̂1. The

95% confidence interval for the β1 alone is approximately [−0.0357,−0.0028], the 95% confidence

interval for β0 alone is approximately [2.755, 4.255]. These are obtained as the left(right, upper or

lower) most point of the contour with level 3.84. They are approximate values because we used

a coarse grid points to produce the contour plot, and thus interpolation was used in the plot.

From the bj( ) function from the Design library of F. Harrell, the following results are

obtained:

> bj(Surv(log10(time), status)~age, data=stanford5, link="identity")
Buckley-James Censored Data Regression

bj(formula = Surv(log10(time), status) ~ age, data = stanford5, link = "identity")

Obs Events d.f. error d.f. sigma
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152 97 1 95 0.6796

Value Std. Error Z Pr(>|Z|)
Intercept 3.52696 0.299123 11.79 4.344e-32
age -0.01990 0.006632 -3.00 2.700e-03

Our confidence intervals are slightly wider than the ones obtained by the Wald confidence
interval using the standard error estimator given by the function bj( ). We remind readers that
the standard error estimator produced by bj( ) has no theoretical justifications.
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Appendix

We briefly outline the proof of Theorem 1 here. First of all we define a class of functions

HF0
g =

{
h | h is left continuous,

∫
h2dF0 <∞, gn(t)h(t) ≥ 0 a.s.

}
.

Furthermore we define a one-parameter family of distribution functions

AF0
h =

Fλ(t) | Fλ(t) =
∑

i:Ti≤t

∆Fλ(Ti)

 ,

where
∆Fλ(Ti) = ∆F̂KM (Ti)×

1
1 + λh(Ti)

× 1
C(λ)

, i = 1, 2, ..., n, (8)

and C(λ) is just a normalizing constant

C(λ) =
n∑

i=1

∆F̂KM (Ti)
1 + λh(Ti)

.

The parameter λ is well defined in a neighborhood of zero and for λ = 0, we get back the the Kaplan-Meier:
Fλ=0 = F̂KM . Within this family of distributions, there is only one that satisfy the constraint equation∫

gn(t)dFλ(t) = 1/C(λ)
n∑

i=1

∆F̂KM (Ti)
gn(Ti)

1 + λh(Ti)
= 0. (9)

We denote the parameter for this unique distribution as λ0.
Finally we define a class of profile empirical likelihood ratio functions as follows:

RF0
h (θ) =

{
L(Fλ0)
L(F̂KM )

| F ∈ AF0
h

}
.

Lemma A Assume all the conditions in Lemma 1. Then, as n→∞, (1) λ0 = Op(n−1/2),

(2) nλ2
0
D−→ χ2

(1) ×
σ2

KM (g)

(
∫
ghdF0)2

.

proof: (outline for proof of (2)). Expanding (9), we have

0 =
n∑

i=1

∆F̂KM (Ti)
gn(Ti)

1 + λ0h(Ti)

=
n∑

i=1

gn(Ti)∆F̂KM (Ti)− λ0

n∑
i=1

gn(Ti)h(Ti)∆F̂KM (Ti)

+ λ2
0

n∑
i=1

gn(Ti)h2(Ti)
1 + λ0h(Ti)

∆F̂KM (Ti),

from there we have

λ0 =

n∑
i=1

gn(Ti)∆F̂KM (Ti)

n∑
i=1

gn(Ti)h(Ti)∆F̂KM (Ti)

+ op(n−1/2).
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By Lemma 1, as n→∞,
√
n(

n∑
i=1

gn(Ti)∆F̂KM (Ti))
D−→ N(0, σ2

KM (g)),

and
n∑

i=1

gn(Ti)h(Ti)∆F̂KM (Ti)
P−→
∫ ∞

0

g(x)h(x)dF0(x).

By Slutsky’s theorem nλ2
0 → χ2

(1) × ah in distribution as n→∞, where

ah = σ2
KM (g)/(

∫ ∞
0

g(x)h(x)dF0(x))2. (10)

♦
Theorem A If the conditions in Lemma A hold, then, as n→∞

−2 logRF0
h0

(θ0)
D−→ χ2

(1) × rh,

where

rh =
σ2

KM (g)× ch

(
∫
ghdF0)2

,

and

ch =
∫ ∞

0

h2(x)(1−G0(x))dF0(x) +
∫ ∞

0

(
∫ ∞

x

h(s)dF0(s))2

1− F0(x)
dG0(x)−

(∫ ∞
0

h(x)dF0(x)
)2

.

Furthermore, infh rh = 1.
proof: Define

f(λ) = log
n∏

i=1

(∆Fλ(Ti))δi(1− Fλ(Ti))1−δi , (11)

where |λ| ≤ |λ0| and F ∈ AF0
h . From the definition we can see that

C(0) = 1 and f(0) = log
n∏

i=1

(∆F̂KM (Ti))δ(1− F̂KM (Ti))1−δi = L(F̂KM ).

By Lemma A, λ0 = Op(n−1/2) where λ0 is the root of (9). Hence we can apply Taylor’s expansion for
f(λ0):

f(λ0) = f(0) + λ0f
′
(0) +

λ2
0

2
f

′′
(0) +

λ3
0

3!
f

′′′
(ξ), |ξ| ≤ |λ0|.

Substituting (8) in (11),

f(λ) =
n∑

i=1

δi log ∆F̂KM (Ti)−
n∑

i=1

δi log(1 + λh(Ti))− n log

(
n∑

i=1

∆F̂KM (Ti)
1 + λh(Ti)

)

+
n∑

i=1

(1− δi) log

 ∑
j:Tj>Ti

∆F̂KM (Tj)
1 + λh(Tj)

 .
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Some tedious but straight forward calculation of the derivatives show that the first derivative

f
′
(0) = −

n∑
i=1

δih(Ti) + n
n∑

i=1

h(Ti)∆F̂KM (Ti)−
n∑

i=1

(1− δi)

∑
j:Tj>Ti

h(Ti)∆F̂KM (Tj)

1− F̂KM (Tj)
= 0 ;

and the second derivative of f with respect to λ, evaluated at λ = 0 is

f
′′
(0)

= n(
n∑

i=1

h(Ti)∆F̂KM (Ti))2 − n
n∑

i=1

h2(Ti)∆F̂KM (Ti)

+
n∑

i=1

(1− δi)

∑
j:Tj>Ti

h2(Ti)∆F̂KM (Ti)

1− F̂KM (Ti)
−

n∑
i=1

(1− δi)

(
∑

j:Tj>Ti

h(Ti)∆F̂KM (Ti))2

(1− F̂KM (Ti))2
,

where, by Theorem 2.2 of Zhou (1986, p.6), as n→∞,

n∑
i=1

h(Ti)∆F̂KM (Ti)
P−→
∫ ∞

0

h(x)dF0(x),

n∑
i=1

h2(Ti)∆F̂KM (Ti)
P−→
∫ ∞

0

h2(x)dF0(x),

1
n

n∑
i=1

(1− δi)

(
∑

j:Tj>Ti

h(Ti)∆F̂KM (Ti))2

(1− F̂KM (Ti))2
P−→
∫ ∞

0

(∫ ∞
x

h(s)dF0(s)
)2

1− F0(x)
dG0(x).

Hence
− 1
n
f

′′
(0) P−→ ch, (12)

where

ch =
∫ ∞

0

h2(x)(1−G0(x))dF0(x) +
∫ ∞

0

(∫ ∞
x

h(s)dF0(s)
)2

1− F0(x)
dG0(x)−

(∫ ∞
0

h(x)dF0(x)
)2

. (13)

Finally by similar calculations we can show that the third derivative of f evaluated at ξ is

f
′′′

(ξ) = op(n2/3). (14)

Now observe

−2 logRF0
h (θ0) = 2

(
f(0)− f(0)− λ0f

′
(0)− λ2

0

2
f

′′
(0)− λ3

0

3!
f

′′′
(ξ)
)

= −λ2
0f

′′
(0)− λ3

0

3
f

′′′
(ξ).

By Lemma A , (12), (14), and Slutsky theorem, we obtain

−2 logRF0
h (θ0)

D−→ χ2
(1) × rh,
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where rh = σ2
KM (g)× ch

(
∫
ghdF0)2

, and ch is defined by (13).

We now proof the infimum of the constant rh over h is one. First we notice that(∫
h2(1−G)dF +

∫
[
∫∞

t
h(s)dF (s)]2

1− F (t)
dG(t)− [

∫
hdF ]2

)
(∫

ghdF

)2

is precisely the information defined by van der Vaart (1991), as iα in his (4.1).
The infimum of iα over all one-dimensional submodels is called “efficient Fisher information”. And in

this case (right censored observations), the reciprocal of it is given by the last equation on p. 193 of van
der Vaart (1991), (as the lower bound for the asymptotic variance of estimating

∫
gdF ):

inf iα =
1

||β||2F
=
(∫

(Rχ̃F
)2

1−G
dF

)−1

.

Lastly, we notice that
∫
gndF̂KM is an efficient estimate and therefore we can easily check

Asy Var
(∫

gdF̂KM

)
=
∫

(Rχ̃F
)2

1−G
dF .

Therefore, infh rh = 1. ♦
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