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SUMMARY

The nonparametric Bayes estimator of survival function with Dirichlet process prior
under squared error loss for right censored data was considered by Susarla and
Van Ryzin (1976). Recently, Zhou (2004) investigated the nonparametric Bayes
estimator for doubly/interval censored data with the same prior and loss function.
In this paper, we obtain the Bayes estimator for right-censoring and left-truncation
data with Dirichlet process prior under squared error loss. Explicit formula for the
estimator is obtained and a software package for R is also provided.
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1 Introduction

Let Ti, Ui, Yi i = 1, . . . n be mutually independent random variables, representing the

lifetimes, the censoring times and the truncation times respectively. Due to censoring, we

observe Xi = min(Ti, Ui) and δi = I[Ti ≤ Ui] instead of Ti and Ui. Truncation will further

restrict our observations to those data that Xi > Yi. Therefore, the observed data are

(Xi, δi, Yi) with Xi > Yi.

Let F be the distribution function of the lifetimes Ti. In Bayesian analysis, F (·) is

random. Here we assume that F (·) is distributed as a Dirichlet process with the parameter

α, a measure on the real line. The definitions and properties of Dirichlet process prior have

been previously reported by Ferguson (1973), Susarla and Van Ryzin (1976) and Ferguson,

Phadia and Tiwari (1993) among others. To help understand our discussion later, we give

a few basic definitions and properties.

Definition 1 The probability density function of a (n-variate) Dirichlet distribution is

f(x1, x2, ..., xn|α1, α2, ..., αn) =
Γ(α1 + ... + αn)
Γ(α1)...Γ(αn)

n∏
i=1

xαi−1
i

=
∏n

i=1 xαi−1
i

D(α1, α2, ..., αn)

1



where the domain of the density is xi ≥ 0,
∑n

i=1 xi = 1; and αi > 0 are the parameters. It

is an extension of the well known Beta distribution.

Definition 2 (Ferguson) Let α be a non-null finite measure on (R+,B), where R+ =

(0,∞) and B is the Borel σ-field on (0,∞). The random measure P is said to be a Dirichlet

process on (R+,B) with the parameter α if for every k = 1, 2, ..., and for any measurable

partition B1, ..., Bk of R+, the distribution of (P (B1), ..., P (Bk)) is a random vector with

Dirichlet distribution with parameter vector (α(B1), ..., α(Bk)).

Using a squared error loss, Susarla and Van Ryzin (1976) obtained the Bayes estimator

for F (·) under the Dirichlet process prior for right-censored data. They also showed that

when the weight parameter α on the Dirichlet process prior approaches zero, the nonpara-

metric Bayes estimator reduces to the Kaplan-Meier (1958) estimator. Susarla and Van

Ryzin (1978) studied the consistency of the Bayes estimator. Ghosh and Ramaoothi (1995)

studied the posterior distribution. Huffer and Doss (1999) used Monte Carlo methods to

compute the nonparametric Bayes estimator.

Zhou (2004) obtained the non-parametric Bayes estimator of a survival function when

data are right, left, or interval censored. An explicit formula was presented for the Bayes

estimator with the Dirichlet process prior. In contrast, there is no explicit formula known

for the non-parametric maximum likelihood estimator (NPMLE) for this type of data.

In this part we obtain the Bayes estimator of 1 − F (·) when the data are subject to

right-censoring and left-truncation. Several illustrative examples are presented.

The non-parametric maximum likelihood estimator (NPMLE) for right-censoring and

left-truncation data was considered by Tsai, Jewell and Wang (1987).

2 Bayes Estimator of Survival Function for Right-Censoring
and Left-Truncation Data

To enhance readability, we first present the Bayes estimator for right-censoring and left-

truncation data when all observations are right-censored. Let (X1, Y1, δ1), (X2, Y2, δ2), ...,

(Xk, Yk, δk) be independent and identically distributed random vectors. Since we assume

all observations are right-censored, δi = 0 for i = 1, 2, ..., k.

For a given sample, we order the combined sample xi, yi, i = 1, 2, ..., k from the smallest

to the largest denoted by a1 < a2 < ... < a2k. The 2k points a1, a2, ..., a2k partition R+ into

intervals (0, a1), [a1, a2), ..., [a2k,∞). The random vector P (0, a1), P [a1, a2), ..., P [a2k,∞)

has a Dirichlet distribution with parameter vector (α1, α2, ..., α2k, α2k+1) with α1 = α(0, a1),

α2 = α[a1, a2), ..., α2k+1 = α[a2k,∞). The likelihood function can be written as

k∏
i=1

P [xi,∞)
P [yi,∞)

=
2k∏
i=1

(P [ai,∞))pi
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where pi = 1 if ai is an observed lifetime while pi = −1 if ai is a truncation time.

The Bayes estimator of 1−F (·) with Dirichlet process prior under squared error loss is

the conditional expectation of 1 − F given all the observations. By a similar argument as

presented in Susarla and Van Ryzin (1976) Corollary 1, the conditional expectation, Eα, of

1− F (u) given all right-censoring and left-truncation observations is

ŜD(u) =
Eα[P [u,∞)

∏2k
i=1(P [ai,∞))pi ]

Eα[
∏2k

i=1(P [ai,∞))pi ]
. (1)

The numerator and denominator of (1) are of the same type and can be calculated

explicitly by the lemmas below.

Lemma 2.1 With the notations above, we have

Eα

[
2k∏
i=1

(P [ai,∞))pi

]

=
2k∏
i=1

α[ai,∞) +
∑

r=i+2, r≤2k+1

pr−1 + piI[pi = −1]

pi

. (2)

Here, α is a measure satisfying α(.) > 0.

Proof: Since the random vector P (0, a1), P [a1, a2), ..., P [a2k,∞) has Dirichlet distri-

bution with parameter vector (α1, α2, ..., α2k, α2k+1) with α1 = α(0, a1), α2 = α[a1, a2), ...,

α2k+1 = α[a2k,∞), according to Lemma 2(a) of Susarla and Van Ryzin (1976) we have

Eα

[
2k∏
i=1

(P [ai,∞))pi

]
=

1
D(α1, ..., α2k+1)

2k∏
i=1

B

(
αi,

2k+1∑
r=i+1

(αr + pr−1)

)
.

We notice that for any i,
∑2k+1

r=i+1 pr−1 ≥ 0 due to features of the left truncation data.

Therefore α(.) should be larger than 0 to make Beta functions well defined. Moreover, we

recall that

D(α1, ..., α2k+1) =
∏2k+1

i=1 Γ(αi)
Γ(α(R+))

B(γ, η) =
Γ(γ)Γ(η)
Γ(γ + η)

,

and notice that

2k+1∑
r=i

αr = α[ai,∞).

After algebraic calculation, we can simplify

1
D(α1, ..., α2k+1)

2k∏
i=1

B

(
αi,

2k+1∑
r=i+1

(αr + pr−1)

)
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into

2k∏
i=1

α[ai,∞) +
∑

r=i+2, r≤2k+1

pr−1 + piI[pi = −1]

pi

.

♦
Further, we can compute the numerator of (1) by adding an additional term P [u,∞) to

the likelihood function.

Lemma 2.2 Similarly to Lemma 2.1, we have

Eα

[
P [u,∞)

2k∏
i=1

(P [ai,∞))pi

]

= Eα

[
2k+1∏
i=1

(P [ai
′,∞))pi

′

]

=
2k+1∏
i=1

α[ai
′,∞) +

∑
r=i+2, r≤2k+2

p′r−1 + p′iI[p′i = −1]

p′
i

1
α[0,∞)

.

(3)

Here, we order xi, yi, u, i = 1, 2, ..., 2k, 2k + 1 from the smallest to the largest denoted by

a′1, a
′
2, ..., a

′
2k, a

′
2k+1. And p′i = 1 if a′i is an observed lifetime or u while p′i = −1 if a′i is a

truncation time. We notice that when ai < u, ai = a′i and pi = p′i.

Proof: The proof is very similar to that of Lemma 2.1, except that when we add

P [u,∞) to the product the sum of p′is is 1 instead of 0. This explains why there is one more

term 1
α[0,∞) on the right hand side of the equation (3).

♦
Next, we derive the Bayes estimator for right-censoring and left-truncation data when

there are k right-censored observations and m uncensored observations. First, we notice

that the likelihood for an uncensored and left-truncated data point is

P ({xj})
P [yj ,∞)

.

Following our earlier discussion on the case without uncensored observations, the Bayes

estimator of 1−F (.) with Dirichlet Process prior under squared error loss for right-censoring

and left-truncation data is the ratio of two expectations, i.e.,

ŜD(u) =
Eα

[
P [u,∞)

∏k
i=1

P [xi,∞)
P [yi,∞)

∏m
j=1

P ({xj})
P [yj ,∞)

]
Eα

[∏k
i=1

P [xi,∞)
P [yi,∞)

∏m
j=1

P ({xj})
P [yj ,∞)

] . (4)

The following lemma gives the explicit formula for the denominator.
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Lemma 2.3 With notations introduced before, we have

Eα

 k∏
i=1

P [xi,∞)
P [yi,∞)

m∏
j=1

P ({xj})
P [yj ,∞)


=

2(k+m)∏
l=1, l∈L1

α[al,∞) +
2(k+m)+1∑

r=l+2, r≤2(k+m)+1

pr−1 + plI[pl = −1]

pl

·

2(k+m)∏
l=1, l∈L2

α({al}), (5)

where L1 denotes the set of all ordered time points excluding uncensored lifetime points while

L2 denotes the uncensored lifetime points.

Proof: Part of the calculations in the proof are omitted for simplification.

If m = 0, i.e., no uncensored observations, it is the case in Lemma 2.1.

If m = 1, we notice that

P ({xj}) = P [xj ,∞)− lim
ε−→0

P [xj + ε,∞).

As a result, we have

Eα

[
k∏

i=1

P [xi,∞)
P [yi,∞)

· P ({xj})
P [yj ,∞)

]

= Eα

[
k∏

i=1

P [xi,∞)
P [yi,∞)

· P [xj ,∞)− limε−→0 P [xj + ε,∞)
P [yj ,∞)

]

= Eα

[
k∏

i=1

P [xi,∞)
P [yi,∞)

· P [xj ,∞)
P [yj ,∞)

]
︸ ︷︷ ︸−Eα

[
k∏

i=1

P [xi,∞)
P [yi,∞)

· limε−→0 P [xj + ε,∞)
P [yj ,∞)

]
︸ ︷︷ ︸ .

(a) (b)

For (a), xi, yi (i = 1, 2, ..., k) and xj , yj partition R+ into (0, a1), [a1, a2), ..., [aj , aj+1),

..., [a2k+2,∞). For (b), the partition of R+ is the same as (a) except [aj , aj+1) is replaced

by [aj + ε, aj+1). Also, we observe that the p′is remain same for (a) and (b). Then, by

applying Lemma 2.1 we can calculate that (a)− (b) =right hand side of equation (5).

Suppose equation (5) is true for m = m′, then for m = m′ + 1, we can express the

added uncensored observation as the difference of two censored observations. Consequently,

similar to the way we have proved for the case of m = 1, we can easily show that this is

true for m = m′ + 1.

♦.
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Lemma 2.4 In the similar way, we can calculate the numerator of the Bayes estimator:

Eα

P [u,∞)
k∏

i=1

P [xi,∞)
P [yi,∞)

m∏
j=1

P ({xj})
P [yj ,∞)


=

2(k+m)+1∏
l=1, l∈L′

1

α[a′l,∞) +
2(k+m)+2∑

r=l+2, r≤2(k+m)+2

p′r−1 + p′lI[p′l = −1]

p′
l

·

2(k+m)+1∏
l=1, l∈L′

2

α({a′l}) ·
1

α[0,∞)
.

where L
′
1 denotes the set of all ordered time points and u excluding uncensored lifetime

points while L
′
2 denotes the uncensored lifetime points.

Finally, we are ready to state the following theorem.

Theorem 2.1 With the notations defined above, the non-parametric Bayes estimator of

survival function S(u) = 1 − F (u) with Dirichlet prior under squared error loss for right-

censoring and left-truncation data is

ŜD(u)

=

∏2n+1
l=1, l∈L′

1,a′
l≤u

[
α[a′l,∞) +

∑2n+2
r=l+2, r≤2n+2 p′r−1 + p′lI[p′l = −1]

]p′
l

∏2n
l=1, l∈L1,al≤u

[
α[al,∞) +

∑2n+1
r=l+2, r≤2n+1 pr−1 + plI[pl = −1]

]pl

α[0,∞)
,

(6)

Here, n is the total number of observations in the sample and α is a measure satisfying

α(.) > 0 as explained in the proof of Lemma 2.1.

Proof: According to the lemmas we have developed in this chapter, the Bayes estimator

can be written as

ŜD(u) =
(A)
(B)

where

(A) =
2n+1∏

l=1, l∈L′
1

α[a′l,∞) +
2n+2∑

r=l+2, r≤2n+2

p′r−1 + p′lI[p′l = −1]

p′
l

·

2n+1∏
l=1, l∈L′

2

α({a′l}) ·
1

α[0,∞)
;

(B) =
2n∏

l=1, l∈L1

α[al,∞) +
2n+1∑

r=l+2, r≤2n+1

pr−1 + plI[pl = −1]

pl

·

2n∏
l=1, l∈L2

α({al}).
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Note that there are some common terms in the numerator and denominator. After cancel-

lation, (6) can be obtained.

♦.

Remark 1: In case of ties, the pi would be any integer number. We can still use a

similar technique to develop Bayes estimator.

Remark 2: Following the similar technique, we can also obtain the Bayes estimator

for left-truncation and interval censored data.

3 Example

We have wrote computational codes for the computing the Bayes estimator. These codes

are packaged as an R software package. Available for downloading at

http://ms.uky.edu/

You need first to install R on your computer:

The examples below are performed with these codes.

Example 1 The following example contains one uncensored observation and two right

censored observations. Suppose the three observations with the format (Xi, Yi, δi) are

(9, 0.2, 1), (13, 4, 0), (15, 10, 0). Then we order all time points (lifetimes and truncation

times).

Table 1: Ordered Data Points for Example 1
Time Points y1 y2 x1 y3 x2 x3

Time 0.2 4 9 10 13 15
pi -1 -1 1 -1 1 1

For u = 14, after simplification based on equation (6), we obtain

ŜD(u) =
(α[14,∞)+1)(α[13,∞)+2)

(α[10,∞)+2)(α[4,∞)+2)(α[0.2,∞)+1)

(α[13,∞)+1)α[0,∞)
(α[10,∞)+1)(α[4,∞)+1)(α[0.2,∞)+0)

.

Let

α[ω,∞) = B exp (−θω). (7)

The following table illustrates the values of ŜD(14) for θ = 0.12 and different values of B.

Moreover, the product limit estimator is

ŜPL(u) =
∏

xi≤u

(
1− Di

Ri

)
= (1− 1

2
) = 0.5
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Table 2: Nonparametric Bayes Estimator of ŜD(14) for Example 1
B θ ŜD(14)
8 0.12 0.2509
1 0.12 0.3741

0.1 0.12 0.4687
0.001 0.12 0.4879

We can observe that when α(.) approaches 0, the Bayes estimator is very close to the

product limit estimator developed in Part I.

The figure below presents the nonparametric Bayes estimator of survival function for

B = 8 and θ = 0.12.
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Figure 1: Nonparametric Bayes Estimator of Survival Function for Example 1

Example 2 Presented below is an example with two uncensored observations and four

right censored observations. Suppose the six observations with the format of (Xi, Yi, δi)

are (0.6, 0.1, 1), (1.5, 0.3, 1), (2.9, 0.5, 0), (3.1, 0.9, 0), (3.7, 3.2, 0) and (4.3, 4.2, 0). Then we

order all time points (lifetimes and truncation times).

Table 3: Ordered Data Points for Example 2
Time Points y1 y2 y3 x1 y4 x2 x3 y5 x4 x5 y6 x6

Time 0.1 0.3 0.5 0.6 0.9 1.5 2.9 3.1 3.2 3.7 4.2 4.3
pi -1 -1 -1 1 -1 1 1 -1 1 1 -1 1

For u = 3.9, after simplification based on equation (6), we have

ŜD(u) =
(α[3.9,∞)+1)(α[3.7,∞)+2)(α[3.2,∞)+3)(α[2.9,∞)+3)

(α[3.1,∞)+2)(α[0.9,∞)+3)(α[0.5,∞)+3)(α[0.3,∞)+2)(α[0.1,∞)+1)

(α[3.7,∞)+1)(α[3.2,∞)+2)(α[2.9,∞)+2)(α[0,∞))
(α[3.1,∞)+1)(α[0.9,∞)+2)(α[0.5,∞)+2)(α[0.3,∞)+1)(α[0.1,∞)+0)

.

Again, let

α[ω,∞) = B exp (−θω). (8)

The ŜD(3.9) for θ = 0.12 and different values of B are presented in the table below.
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Table 4: Nonparametric Bayes Estimator of ŜD(3.9) for Example 2
B θ ŜD(3.9)
8 0.12 0.5585
1 0.12 0.4612

0.1 0.12 0.4277

Moreover, the product limit estimator is

ŜPL(u) =
∏

xi≤u

(
1− Di

Ri

)
= (1− 1

3
)(1− 1

3
) = 0.44.

We can see that when α(.) approaches 0, the Bayes estimator is very close to product limit

estimator developed in Part I.

The nonparametric Bayes estimator of survival function is plotted below for B = 8 and

θ = 0.12.
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Figure 2: Nonparametric Bayes Estimator of Survival Function for Example 2
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