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Summary

In this manuscript, we discuss the distinction of two types of data generating scheme
for the accelerated failure time model. We identify two different empirical likelihood
formulations under random right censoring, case-wise and residual-wise, each reflecting
the relevant features of the stochastic model assumed to have generated the data. We
specifically propose the case-wise empirical likelihood as a computationally simple in-
ference method for the accelerated failure time model with heteroscedastic errors. A
nonparametric version of Wilks’ theorem is shown to hold for the resulting likelihood
ratio. The results are also applicable to censored quantile regression.

Some key words: Accelerated failure time model; Empirical likelihood; Wilks’ theorem;
Censored quantile regression

1. Introduction

The semi-parametric accelerated failure time (AFT) model is an extension of linear regression

to the analysis of survival data such that for some survival times Ti,

log(Ti) = Yi = Xiβ + ei , (1)

where the distribution of the error term ei is unspecified. Due to censoring on the responses, we

observe Zi = min(Yi, Ci) and δi = I[Yi≤Ci] for some censoring time variables Ci instead of Yi.

This model has emerged as a useful alternative to the popular Cox proportional hazards

model for analyzing censored data, as it provides a direct interpretation of the results in terms
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of quantification of survival times instead of the more abstract hazard rates. However, it is less

utilized than it should, among other reasons, because inference for the model has been difficult.

In this paper, we consider empirical likelihood as a computationally simple inference method for

the AFT model, particularly for the model that admits heteroscedastic errors.

Before we can formulate and study the empirical likelihood, we need to distinguish two

different types of data generating schemes for the accelerated failure time model under random

right censoring. In the accelerated failure time regression model, X is fixed and the errors

are “homoscedastic”. In the accelerated failure time correlation model, X is random and the

vectors (Xi, Yi) are “homoscedastic”, while the errors are in general “heteroscedastic”. This

differentiation is similar to that made by Freedman (1981) regarding linear models. However,

we find that in the accelerated failure time model, the different data generation models require

not only different estimators unlike the uncensored case of Freedman (1981), but also different

assumptions on the censoring times Ci. We observe a trade-off between assumptions on the error

terms and the censoring time variables: the homoscedastic errors assumption of the regression

model is relaxed for the correlation model, while the conditional independence assumption on

Ci is strengthened such that the Ci need to be independent of the random vector (Xi, Yi).

With regard to the bootstrap, Freedman (1981) noted that the resampling scheme must

reflect the relevant features of the stochastic model assumed to have generated the data. Owen

(1991) recognized this with the empirical likelihood method for linear models. He suggested

that the empirical likelihood be constructed based on the homoscedasticity of (Xi, Yi) for the

correlation model, while the empirical likelihood construction be based on the homoscedasticity

of the errors for the regression model. We extend this distinction to the accelerated failure time

model under random right-censoring and call the first type of empirical likelihood formulation

case-wise and the latter residual-wise. Without censoring, the two different likelihood formu-

lations yield the same likelihood function and hence produce identical p-values and confidence

regions, although interpreted differently, see Owen (1991). With censoring however, the case-

wise empirical likelihood is no longer identical to the residual-wise one, and estimates, p-values

and confidence regions differ.

We show that a non-parametric version of Wilks’ theorem holds for the empirical likelihood

ratio of the case-wise likelihood. We also show that the results are applicable to censored
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quantile regression. It may be emphasized that the computation involved in this likelihood is

simple, not requiring resampling. Hence we do not include other empirical likelihood approaches

in the discussion that do not admit chi-squared limiting distributions and require calibration

via resampling.

2. Correlation and Regression Model

In this section, we summarize the main characteristics of the two data generating models and

corresponding estimators for the accelerated failure time model. Our main focus will be on

the correlation AFT model. For better comparison, we also include a brief discussion of the

empirical likelihood results regarding the AFT regression model in subsection 2.1.

2·1 Regression Model

The regression model is appropriate if, for example, the measurement error of the response

is the main source of uncertainty (see Freedman, 1981). The true value of the p-dimensional

parameter vector β solves
∫

(y − xβ)x dFe = 0, where Fe denotes the error distribution. The

main assumptions can be summarized as follows.

Condition 1 The covariates, x1, · · · , xn, are row vectors of p−dimensional fixed constants,

forming a matrix of full rank.

Condition 2 The errors, e1, · · · , en, are independent, with common distribution Fe having

mean 0 and finite variance σ2: both Fe and σ2 are unknown.

Condition 3 The censoring time variables C1, · · · , Cn, are independent with common unknown

distribution G and independent of Yi conditionally on xi.

Popular estimators of the parameter vector β in this model include rank based estimators (see

Chapter 7 of Kalbfleisch & Prentice, 2002, and references therein; Jin et. al., 2003) and the

Buckley-James estimator (Buckley & James, 1979; Lai & Ying, 1991).

The following empirical likelihood approach was proposed by Zhou & Li (2008). Let Zi =

min(Yi, Ci) and δi = I[Yi≤Ci]. Let b be a vector, and define the residuals with respect to b
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as ri(b) = zi − xib. Zhou & Li (2008) proposed empirical likelihood be formulated with re-

spect to (ri(b), δi) as follows: given b, the residual-wise empirical likelihood for some univariate

distribution F is defined as

Le(F ) =
∏
δi=1

pi

∏
δi=0

(1−
∑

rj(b)≤ri(b)

pj) , (2)

where pi = dF [ri(b)] is the probability placed by F on the ith residual. The likelihood ratio is

given by

Re(b) =
sup{Le(F )|F ∈ Fb}
sup{Le(F )|F ∈ Fb}

, (3)

where Fb denotes the set of all univariate distributions that place positive probabilities on

each uncensored ri(b), as Le(F ) = 0 for any F that places zero probability on any uncen-

sored ri(b), and Fb denotes a subset of Fb that satisfies the constraints
∑n

i=1 piδiri(b)x̃i for

x̃i = xi +
∑

δj=0, j:j<im[j, i]xj . Here, m[j, i] denotes the weights derived from the Buckley-

James estimating equation. We refer to Zhou & Li (2008) for more details. As the term in the

denominator of (3) is maximized by the Kaplan-Meier estimator (Kaplan and Meier, 1958) whose

calculation is straightforward, maximization is only required for the numerator, analogously to

the uncensored case. When b̂ is the Buckley-James estimator, Re(b̂) = 1 and confidence regions

based on (3) are ‘centered’ at the Buckley-James estimate. By formulating similar constraints

with respect to rank estimators, Zhou (2005) proposed residual-wise likelihood for a log-rank or

Gehan-type of estimators. In each case, the resulting likelihood ratio admits chi-squared limiting

distributions (Zhou & Li, 2008; Zhou, 2005).

2·2 Correlation Model

The correlation model is appropriate if, for example, the goal is to estimate the regres-

sion plane for a certain population on the basis of a simple random sample (Freedman, 1981).

The true value of the parameter β solves
∫∫

(y − xβ)x dFxy = 0, where Fxy denote the joint

distribution of x and y. The main assumptions are as follows.

Condition 4 The vectors (Xi, Yi) are assumed independent, with a common unknown (p + 1)

variate distribution Fxy.

Condition 5 The p × p covariance matrix of the rows of X, EX>X is positive definite and

E ||(X,Y )||3 exist.
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Condition 6 The censoring time variables C1, · · · , Cn, are independent with common unknown

distribution G and independent of (Yi, Xi).

The estimation method we shall consider for this model is defined by the (casewise weighted)

estimating equation below. Weighted least squares and M-estimation methods have been pro-

posed by Koul et. al. (1982), Zhou (1992b), Stute (1993, 1996), and Gross & Lai (1996). The

estimator b can be expressed as the solution of the estimating equation

n∑
i=1

wi(Zi −Xib)Xi = 0 . (4)

In contrast to the ‘synthetic data’ approach of Koul et al. (1981), Leurgans (1987), and various

generalizations, the ‘casewise weighted’ approach never creates any new response values (i.e.

synthetic data). Instead, it tries to recoup the effect of censored responses by properly weighting

the uncensored responses. On the other hand, it does not require iteration in the calculation of

the estimator, as opposed to the Buckley-James estimator.

Two different weighting schemes are known in the literature to determine the weights wi.

Stute (1993, 1996) ordered the Zi such that δ(i) is the censoring indicator δ corresponding to the

ith order statistic Z(i), and rewrote the jumps of the Kaplan-Meier estimator of the marginal

distribution of Y as

∆1 = δ(1)/n and ∆i =
δ(1)

n− i+ 1

i−1∏
j=1

(
n− j

n− j + 1

)δ(j)

, i = 2, · · · , n .

He used the ∆i as weights in (4).

On the other hand, inverse censoring probability weights have been used in many different

places, for example in van der Laan & Robins (2003) and Rotnitzky & Robins (2005). The

weights there are given by

w∗
i =

δi

1− Ĝ(Zi)

with Ĝ(·) being the Kaplan-Meier estimator of the censoring distribution G based on (Zi, 1−δi).

We note that these two weighting schemes are in fact identical. Inverse censoring probability

weighting is equivalent to weighting by the jumps of the Kaplan-Meier. Indeed, for all t,

[1− F̂ (t)][1− Ĝ(t)] = 1− Ĥ(t) (5)
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where F̂ (t) and Ĝ(t) are the Kaplan-Meier estimators for Yi based on (Zi, δi) and the censoring

variable Ci based on (Zi, 1 − δi) respectively, and Ĥ(t) is the empirical distribution based on

Zi. From (5), we observe that when t = Zi with δi = 1, then ∆i[1− Ĝ(t)] = 1/n, from which it

follows that

∆i =
δi

n[1− Ĝ(Zi)]
=
w∗

i

n
.

Also, Stute (1996) proposed

F̂xy(A) =
n∑

i=1

∆iI{(Zi,Xi)∈A} for some set A in R(p+1)

as a multivariate extension of the univariate Kaplan-Meier estimator. Based on these two

observations, we call a solution to (4) with wi = ∆i case-wise weighted estimator.

Next we define the case-wise empirical likelihood.

3. Main Results

In the AFT correlation model, the vectors (Xi, Yi) are independent and identically distributed,

although the observations are censored. We propose formulating the empirical likelihood case-

wise.

Consider the following estimating equation.
∫ ∫

(y − xβ)xdFxy = 0. Note that for any inte-

grable function φ(x, y), the integration
∫
φ(x, y)dFxy =

∫ ∫
φ(x, y)dFx|ydFy where Fx|y denotes

the conditional distribution of X given Y .

Based on the data (Xi, Zi, δi) i = 1, · · ·n, a reasonable estimator of Fx|y when y = Zi and

δi = 1 is a point mass at Xi. In fact, using this conditional distribution coupled with the

marginal distribution estimate of Fy, the Kaplan-Meier estimator, one obtains an estimator

that is identical to Stute’s F̂xy mentioned above.

Using this relationship, the casewise empirical likelihood is given by

Lxy(Fy, Fx|y) =
∏

1
∏
δi=1

pi

∏
δi=0

(1−
∑

Zj≤Zi

pj) , (6)

where pi = dFy[Zi] is the probability that Fy places on the ith case. Since the conditional

distribution Fx|y will remain as a point mass throughout (as discussed above) and not change,
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we will from now on drop Fx|y from Lxy and denote Fy simply as F . Similarly we drop the

constant point mass from the likelihood as follows:

Lxy(Fy) =
∏
δi=1

pi

∏
δi=0

(1−
∑

Zj≤Zi

pj) . (7)

The likelihood ratio is given by

Rxy(b) =
sup{Lxy(F )|F ∈ F̃b}
sup{Lxy(F )|F ∈ F}

, (8)

where F denotes the set of univariate distributions that place positive probabilities on each

uncensored case (as Lxy(F ) = 0 for any F that places zero probability on some uncensored

(Zi, δi)), and F̃b denotes a subset of F that satisfies the constraints

n∑
i=1

piδi(Zi −Xib)Xi = 0 .

We comment that the constraint above can also be interpreted as

∑
Zi

∑
Xj

piδi(Zi −Xjb)Xjdij = 0 or
∫ ∫

(y − xb)xdF̂xy = 0

where dij = 1 if and only if i = j and zero otherwise, and F̂xy is similar to the Stute estimate

except we identify pi = ∆i.

The denominator of (8) is provided when F is the Kaplan-Meier estimator and the maxi-

mization is required for the numerator only, which can be obtained using (Zhou 2005a) among

others. When b is the case-wise weighted estimator (the solution to estimating equation (4)),

then Rxy(b) = 1 and confidence regions based on (8) are ‘centered’ at this estimator.

We are now ready to state our main result. Consider the AFT correlation model equation

(1). We are interested in testing the null hypothesis H0 : β = β0 vs. H1 : β 6= β0. Then,

we have the following theorem for the proposed case-wise empirical likelihood ratio statistic for

least squares regression. Proof will be given in the appendix.

Theorem 1 Consider the AFT correlation model as specified in Section 2.2. Under H0 : β = β0

and assuming regularity conditions (A1)-(A3) from the appendix as well as the assumptions for

Theorem 3.1 in Zhou (1992a), we have −2 logRxy(β0) → χ2
p in distribution as n→∞.
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The proof is given in the appendix. Similar results hold for censored quantile models when

the τth conditional quantile of Yi is modeled by

Qτ (log Ti|Xi) = Qτ (Yi|Xi) = Xiβτ ,

and, instead of Yi, we observe Zi = min(Yi, Ci) and δi = I[Yi≤Ci] for some censoring time variables

Ci. This model may also be written as Yi = Xiβτ + ei, but the error ei are just independent

random variables with zero τth quantiles. When τ = 0.5, this is the censored median regression

and Huang et al (2005) proposed a case-wise weighted estimator, which is a special case of

our case-wise weighted estimator. Here, we propose the following case-wise empirical likelihood

inference for the general censored quantile regression using

Rxy(b) =
sup{Lxy(F )|F ∈ F̃b}
sup{Lxy(F )|F ∈ F}

,

where F̃b denotes a subset of F that satisfies the constraints

n∑
i=1

piδiψτ (Zi − b>Xi)Xi = 0 ,

and ψτ (u) is the derivative of the so called check function ρτ (u) = u(τ − I[u<0]) of Koenker &

Basset (1978). Similarly to the censored accelerated failure time model, the denominator is max-

imized by the Kaplan-Meier estimator and the maximization is only needed for the numerator.

Theorem 2 Under H0 : β = β0 and assuming regularity conditions A1, A3-A6 listed in the

appendix, for given τ , −2 log Rxy(βτ ) → χ2
p in distribution as n→∞.

4. Simulation Studies

4·1 Simulation Study 1

We compared case-wise and residual-wise empirical likelihoods using the following three models,

homoscedastic errors with independent censoring (M1), heteroscedastic errors with independent
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Figure 1: Histogram plots of slope estimates by the Buckley-James estimator and case-wise weighted estimator
based on 5000 simulations with n = 400 with 28.5% censoring in each case. Vertical lines indicate the true value
of the slope parameter. First row is Buckley-James estimator.
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censoring (M2), and homoscedastic errors with censoring dependent on x (M3).

M1 : Yi = Xiβ + ei , Ci = εi ,

M2 : Yi = Xiβ + ei exp(Xiγ) , Ci = εi ,

M3 : Yi = Xiβ + ei , Ci = Xiη + εi ,

where Xi = (1, X1i) with X1i ∼ U(0, 1), ei ∼ N(0, 1) and εi is from a mixture of N(3, 32) and

U(−2, 18). β, γ and η were chosen such that the censoring in each model amounts to 28.5%

and the error heteroscedasticity in M2 and the conditional dependency of Ci on Xi in M3 is

non-negligible. Due to the heteroscedastic errors, the R2 of the least squares regression analysis

of M2 (without censoring) was on average reduced to 0.25 from 0.5 of an equivalent analysis of

M1, and an average R2 of 0.28 was yielded for the least squares regression analysis of Ci on Xi

for M3.

We first examined the slope estimate by the case-wise weighted and the Buckley-James

estimator. Figure 1 shows that the Buckley-James estimator is biased for the heteroscedastic
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Figure 2: Q-Q plots of quantiles of χ2
2 versus −2 log Re(β) (residual-wise) and −2 log Rxy(β) (case-wise) respec-

tively based on 5000 simulations with n = 400 with 28.5% censoring in each case
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errors model (M2), while the case-wise weighted estimator is not. When the censoring variables

are dependent on Xi (M3), however, the case-wise weighted estimator is biased.

We confirmed that the differences in the data generating models require the empirical likeli-

hood to be formulated differently. Q-Q plots in Figure 2 show that only the case-wise empirical

likelihood is valid for the heteroscedastic errors model (M2) and only the residual-wise likelihood

is valid for Xi dependent censoring (M3). Deviation from the limiting chi-squared distribution in

the likelihood ratio statistic corresponds to bias in the estimates. Both empirical likelihoods were

appropriate for M1, as they are equivalent to the first order with the same limiting chi-squared

distribution.
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Figure 3: Q-Q plots of the quantiles χ2
2 versus −2 log Rxy(β0) (casewise) based on 1000 simulations with sample

size n = 200 and about 30% censoring in each case.

4·2 Simulation Study 2

We examine the performance of the casewise empirical likelihood for censored quantile regression

using the following three models that are similar to those used in Simulation Study 1.

M1 : Yi = Xiβ + ei , Ci = εi ,

M2 : Yi = Xiβ + ei(Xi + 1) , Ci = εi ,

M3 : Yi = Xiβ + ei , Ci = X1i + εi ,

where Xi = (1, X1i) with X1i ∼ U(0, 1). The error ei ∼ N(0, 0.752) in M1 and M3, ei ∼

N(0, 0.52) in M2. The parameter β = (0.5, 1.5), and for the censoring εi ∼ 0.5 + exp(0.5) in M1

and M2, and εi ∼ exp(0.5) in M3. The censoring percentage is about 30%. We fit Qτ (Yi|Xi) at

τ = 0.25. The quantile regression Q-Q plots in Figure 3 exhibit similar properties as the mean

regression in Simulation Study 1.

5. Small-Cell Lung Cancer Data

We consider a lung cancer data set (Maksymiuk et al., 1994) that has been analyzed by

Ying et al. (1995) using median regression, and by Huang et al. (2005) using a least absolute
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deviations method in the accelerated failure time (AFT) model. In this study, 121 patients with

limited-stage small-cell lung cancer were randomly assigned to one of two different treatment

sequences A and B, with 62 patients assigned to A and 59 patients to B. Each death time was

either observed or administratively censored, and the censoring variable did not depend on the

covariates treatment and age. Denote X1i the treatment indicator variable, and X2i the entry

age for the ith patient, where X1i = 1 if the patient is in group B. Let Yi be the base 10

logarithm of the ith patient’s failure time. We assume the AFT model

Yi = β0 + β1X1i + β2X2i + σ(X1i, X2i)εi .

Note that the estimated parameter values obtained using the approach described in this paper

need to be equal to the ones from Huang et al. (2005), provided weighting has been done in the

same way. The major difference is in inference about the parameters, where empirical likelihood

has the advantage that it is not necessary to estimate the asymptotic variance of the estimator

in order to perform hypothesis tests and to construct confidence regions. An empirical likelihood

confidence region for this data set is displayed in Figure 4.

The following median regression estimates were obtained by Ying et al. (1995) and Huang

et al. (2005).

β̂0 = 3.028, β̂1 = −0.163, and β̂2 = −0.004 (Ying et al., 1995)

β̂0 = 2.693, β̂1 = −0.146, and β̂2 = 0.001 (Huang et al., 2005)

Huang et al. (2005) did not always treat the largest Y observation as uncensored. This

resulted in weights that sum to less than one. We recommend to always treat the largest

Y observation as uncensored so that the weights always sum to one. The median regression

estimates then become

β̂0 = 2.603, β̂1 = −0.263, and β̂2 = 0.004 (with last weight).

6. Concluding Remarks

We note some differences and similarities of the case-wise and residual-wise empirical likelihood.

The computation of (8) does not involve Xi with δi = 0. Therefore, the case-wise empirical

12



likelihood allows missingness in Xi with δi = 0, while the residual-wise empirical likelihood does

not. As shown in the simulation study, the case-wise empirical likelihood is biased when Ci are

only conditionally independent of Yi, while the residual-wise one is biased in the presence of

heteroscedastic errors. Hence, the case-wise empirical likelihood is more appropriate when error

heteroscedasticity is more a concern than independent censoring.

Nevertheless both methods provide a computationally simple inference method. The com-

putations involved in either empirical likelihood are simple, and software is readily available in

R. Under random right censoring, inference methods that require a direct estimation of the

covariance matrices of the estimators are difficult to implement because the covariance matrices

involve nonparametric estimation of the underlying distribution. This is the case for both, cor-

relation and regression model. The resampling method proposed by Jin et. al. (2003) is one of

few viable options but its computation is much more involved.

When censored quantile regression is concerned, Portnoy (2003) investigated the censored

quantile regression process considering all τ that are estimable with the given data. He proposed

estimators and a resampling based inference method under a very liberal condition only requiring

Figure 4: Confidence Region for (β1, β2) in the small-cell lung cancer data. The original parameter space
is 3-dimensional, therefore only two two-dimensional cuts at β0 = 2.5 and β0 = 2.603 are displayed. The
contour lines correspond to different critical values.
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linearity of the quantile regression process, accommodating both heteroscedastic errors and

conditionally independent censoring. His method may not be computationally simple, though.

Even in a situation when we are interested in a single quantile regression, we need to compute all

the quantiles up to the one of our interest for the estimation and repeat the successive estimation

in all bootstrapped resamples for the inference. In such occasions, the proposed method provides

a simple alternative with slightly more restrictive conditions.

A. Assumptions

Some of these assumptions have been formulated in related work by Zhou (1992a), Stute (1993,

1996), and Huang et al (2005).

(A1) The (transformed) survival times Yi and the censoring times Ci are independent. Fur-

thermore, P (Yi ≤ Ci|Xi, Yi) = P (Ti ≤ Ci|Yi).

(A2) The survival functions P (Yi ≥ t) and P (Ci ≥ t) are continuous and ∀t < ∞ : P (Zi ≥

t) > 0.

(A3) The Xi are independent random variables, identically distributed according to some

distribution with finite, nonzero variance, and they are independent of Yi and of Ci.

(A4) Let Fe(·|x) be the conditional distribution of the residuals ei given X = x, and fe(·|x)

the corresponding conditional density function. For a given τ , Fe(0|x) = τ , and fe(u|x) is

continuous in u in a neighborhood of F−1
e (τ |x).

(A5) For given τ and x, let ξ(τ, x) = F−1
e (τ |x). Then, E(XX ′fe(ξ(τ,X)|X)) is finite and

nonsingular.

(A6) The covariateX is bounded and the right end point of the support ofX ′β0 is strictly less

than τZ . The expected value of ||X||2γ2
0(Y )δ is finite, and for j = 0, 1, . . . , d,

∫
|xj |D1/2(w)F̃ 0(dx, dw) <

∞, where D(y) =
y−∫
0

[(1−H(w))(1−G(w))]−1G(dw), and H and G are the distribution functions

of the observations after censoring, Zi, and the censoring times Ci, respectively.

Let (x1, y1), · · · (xn, yn) be a random sample of vectors from a joint distribution F (x, y), where

the yi are subject to right censoring. Suppose ti are the censored values of yi: (ti = min(yi, ci),

along with the censoring indicator δi. The independent censoring variables ci are assumed to

have distribution G(t).

A reasonable estimate for the marginal distribution of y is the Kaplan-Meier estimate F̂
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based on ti and δi. A reasonable estimate of the conditional distribution F (x|y) is

F̂ (x|y = ti) = point mass at xi, if δi = 1; (9)

otherwise F̂ (x|y) is undefined. This gives rise to an estimator of the joint distribution, identical

to the one proposed by Stute (1993).

The expectation

Eφ(x, y) =
∫
φ(x, y)dF (x, y) =

∫ ∫
φ(x, y)dF (x|y)dF (y)

can be estimated using the above joint distribution estimator, that is, the Kaplan-Meier estima-

tor for the marginal distribution, and the conditional distribution as in (9):

∑
i

[
∑

j

φ(xj , ti)I[j=i]]∆F̂ (ti) =
∑

i

φ(xi, ti)∆F̂ (ti).

Notice that this also defines an estimator of the joint distribution F (x, y) if we take the

function φ to be the indicator function. See Stute (1993) for the law of large numbers and

central limit theorem for this estimator. The φ function for the correlation AFT model is

φ(x, y) = (y − xβ)x.

We now outline the proof of Theorem 1. To compute the supremum of the numerator in the

likelihood ratio (7), we first fix a direction/path that F changes along and search the supremum

on this path. The directional derivative of the path will be h. Later we shall take the supremum

over h.

We define a class of functions h(x, y);

HF0
φ =

{
h | h is left continuous,

∫
h2(x, y)dF (x, y) <∞, φ(x, y)h(x, y) ≥ 0

}
.

Given a function h from the above class, we define a one-parameter family of distribution

functions

AF0
h =

Fλ(t) | Fλ(t) =
∑

i:Ti≤t

∆Fλ(Ti)

 ,

where

∆Fλ(ti) = ∆F̂KM (ti)×
1

1 + λh(xi, ti)
× 1
C(λ)

, i = 1, 2, ..., n, (10)

15



and C(λ) is just a normalizing constant

C(λ) =
n∑

i=1

∆F̂KM (ti)
1 + λh(xi, ti)

.

This family of distributions has the same support as the Kaplan-Meier estimator and is well

defined when λ is in a neighborhood of zero. For λ = 0, we obtain the Kaplan-Meier estimator:

Fλ=0 = F̂KM .

Coupled with the conditional distribution Fx|y defined in Section 3 above, this family of

distributions can also give rise to a family of joint distributions Fλ(x, y). Within this family of

joint distributions (parameterized by λ), we seek for one that satisfies the constraint equation∫
φ(x, t)dFλ(x, t) =

1
C(λ)

n∑
i=1

∆F̂KM (ti)
φ(xi, ti)

1 + λh(xi, ti)
= 0. (11)

There is only one distribution within the family satisfying the constraint equation (see Lemma

A). We denote the parameter value for this unique distribution as λ0. With this λ0, the distri-

bution Fλ0 satisfies the conditions Fλ0 � F̂KM and
∫ ∫

φ(x, t)dFλ0(x, t) = 0.

When restricted to this family of distributions, we define a (profile) empirical likelihood ratio

functions as follows:

Rh =

{
Lxy(Fλ0)
Lxy(F̂KM )

| F ∈ AF0
h

}
,

where Lxy is defined in Section 3.

Lemma A Assume all the conditions in Lemma 1. Then, as n→∞, (1) λ0 = Op(n−1/2),

(2) λ0 has the representation given in (11) below.

proof: (outline) Expanding (11), we have

0 =
n∑

i=1

∆F̂KM (ti)
φ(xi, ti)

1 + λ0h(xi, ti)

=
n∑

i=1

φ(xi, ti)∆F̂KM (Ti)− λ0

n∑
i=1

φ(xi, ti)h(xi, ti)∆F̂KM (ti)

+λ2
0

n∑
i=1

φ(xi, ti)h2(xi, ti)
1 + λ0h(xi, ti)

∆F̂KM (ti),

from there we have

λ0 =

n∑
i=1

φ(xi, ti)∆F̂KM (ti)

n∑
i=1

φ(xi, ti)h(xi, ti)∆F̂KM (ti)

+ op(n−1/2). (12)
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♦

Notice that by the LLN and CLT of Stute, we have ([assume
∫
φ(x, t)dF (x, t) = 0] see Stute

1996), as n→∞,
√
n

(
n∑

i=1

φ(xi, ti)∆F̂KM (ti)

)
→ N(0, σ2

KM (φ))

in distribution, and

n∑
i=1

φ(xi, ti)h(xi, ti)∆F̂KM (ti) →
∫
φ(x, y)h(x, y)dF (x, y)

in probability.

Theorem A If the conditions in Lemma A hold, then, as n→∞

−2 logRh = −nλ2
0f

′′
(0) + op(1) .

Furthermore,

−2 logRxy = −2 log sup
h
Rh = χ2

p + op(1) .

proof: Assume p = 1. Define a function of λ (the marginal empirical likelihood as a function

of λ)

f(λ) = log
n∏

i=1

(∆Fλ(Ti))δi(1− Fλ(Ti))1−δi , (13)

where |λ| ≤ |λ0| and F ∈ AF0
h . From the definition we can see that

f(0) = log
n∏

i=1

(∆F̂KM (Ti))δi(1− F̂KM (Ti))1−δi = Lxy(F̂KM ).

By Lemma A, λ0 = Op(n−1/2). Hence we can apply Taylor’s expansion for f(λ0):

f(λ0) = f(0) + λ0f
′
(0) +

λ2
0

2
f

′′
(0) +

λ3
0

3!
f

′′′
(ξ), |ξ| ≤ |λ0|.

Substituting (10) in (13),

f(λ) =
n∑

i=1

δi log ∆F̂KM (Ti)−
n∑

i=1

δi log(1 + λh(xi, Ti))− n log

(
n∑

i=1

∆F̂KM (Ti)
1 + λh(xi, Ti)

)

+
n∑

i=1

(1− δi) log

 ∑
j:Tj>Ti

∆F̂KM (Tj)
1 + λh(xj , Tj)

 .
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Some tedious but straightforward calculation shows that f
′
(0) = 0 and that the second

derivative of f with respect to λ, evaluated at λ = 0 is

f
′′
(0) = n(

n∑
i=1

h(xi, Ti)∆F̂KM (Ti))2 − n
n∑

i=1

h2(xi, Ti)∆F̂KM (Ti)

+
n∑

i=1

(1− δi)

∑
j:Tj>Ti

h2(xj , Tj)∆F̂KM (Tj)

1− F̂KM (Ti)
−

n∑
i=1

(1− δi)

(
∑

j:Tj>Ti

h(xj , Tj)∆F̂KM (Tj))2

(1− F̂KM (Ti))2
.

Similar calculations show that the third derivative of f evaluated at ξ is

f
′′′

(ξ) = op(n2/3). (14)

Now

−2 logRh = 2
(
f(0)− f(0)− λ0f

′
(0)− λ2

0

2
f

′′
(0)− λ3

0

3!
f

′′′
(ξ)
)

= −λ2
0f

′′
(0)− λ3

0

3
f

′′′
(ξ)

= nλ2
0

−f ′′
(0)
n

+ op(1).

Rewriting the above, we obtain

−2 logRh =
[
√
n
∑
φ(xi, ti)∆FKM (ti)]2

σ2
KM (φ)

× rh + op(1)

where

rh =
σ2

KM (φ)
[
∑
φ(xi, ti)h(xi, ti)∆F (ti)]2

−f ′′
(0)
n

.

Finally

−2 logR = −2 log sup
h
Rh = inf

h
−2 logRh =

[
√
n
∑
φ(xi, ti)∆FKM (ti)]2

σ2
KM (φ)

× inf
h
rh + op(1).

Calculations show that the infimum of rh over h is one, thus by Stute’s CLT we have

[
√
n
∑
φ(xi, ti)∆FKM (ti)]2

σ2
KM (φ)

converge to chi square in distribution as n→∞.
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