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The Cox proportional hazards regression model has been widely used in the anal-

ysis of survival/duration data. It is semiparametric because the model includes a
baseline hazard function that is completely unspecified. We study here the statis-

tical inference of the Cox model where some information about the baseline hazard

function is available, but it still remains as an infinite dimensional nuisance param-
eter. We incorporate the information about the baseline hazard into the inference

for regression coefficient by using the empirical likelihood method (Owen 2001)
and obtained the modified test/estimator and their asymptotic distributions. The

modified estimator is shown to be better than the regular Cox partial likelihood

estimator in theory and in several simulations.

Some key words: Empirical likelihood; Information matrix; Log-rank test;
Wilks theorem.

1. Introduction and Background

One of the most widely used regression models in survival analysis is the Cox
proportional hazards model suggested by Cox (1972, 1975). Let X1, . . . , Xn

and C1, . . . , Cn be nonnegative independent random variables. Think of
Ci as the censoring time associated with the survival time Xi. Due to
censoring, we can only observe (T1, δ1), . . . , (Tn, δn) where

Ti = min(Xi, Ci) and δi = I[Xi≤Ci]. (1)

Also available are z1, . . . , zn, which are covariates associated with the sur-
vival times X1, . . . , Xn and we assume zi do not change with time in this
paper.

According to the Cox’s proportional hazards model, the cumulative haz-
ard function, Λi(t), of the ith survival time is related to the covariate zi.
That relation is given by

ΛXi
(t) = Λi(t) = Λ(t|zi) = Λ0(t) exp(β0zi) , (2)

1
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where β0 is an unknown regression coefficient and Λ0(t) is the so called
baseline cumulative hazard function. Another way to think of Λ0(t) is that
it is the cumulative hazard function for an individual with zero covariate,
z = 0.

The semiparametric Cox proportional hazards model assumes that the
baseline cumulative hazard function Λ0(t) is completely unknown and ar-
bitrary.

In this paper we study the statistical inference in the Cox model where
we have some information about the baseline hazard. For example, we may
know that the baseline hazard function has median equal to 40; or that the
cumulative hazard is linear within the time interval (25, 50). For the strat-
ified Cox model, we may know that the two baseline cumulative hazards
cross at t = 50, etc. In practice, when comparing a placebo against a new
treatment in a two sample test, we often have additional/prior knowledge
about the survival/hazard experience for the placebo group. Similarly, if a
desease is well studied before then there often are some information about
the baseline hazard available from prior studies. By using these informa-
tion, we strike a compromise between the complete nonparametric (Cox
model) and parametric models.

Empirical likelihood method is used in this paper to give inference about
β0 in the presence of this additional information. We show that the maxi-
mum empirical likelihood estimator has asymptotically a normal distribu-
tion and the (profile) empirical likelihood ratio also follows a Wilks type
theorem under null hypothesis.

It is worth pointing out that in the regular Cox model, the partial
likelihood estimator of β is “free” of the baseline, yet the information on
the baseline does help improve the estimation of β. Our modified estimator
of β is shown to be more accurate and the test have better power compared
to the regular Cox partial likelihood estimator/test.

What we propose to do in this paper with the additional information
is to shrink the space of the nuisance parameter, and show that this leads
to improved estimation/testing for the regression parameter via empirical
likelihood. Furthermore, if we keep shrinking the nuisance parameter space
by adding more information about the baseline hazard, we would eventually
get to the case where there is no nuisance parameter – the parametric pro-
portional hazard model. Therefore the models and methods we study here
bridges the gap between an empirical likelihood with a completely unspec-
ified infinite dimensional nuisance parameter and a parametric likelihood
with no nuisance parameter, or finite dimensional nuisance parameters. In
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fact we show the Fisher information of one model approaches that of the
other model with increasing knowledge about the nuisance parameter (The-
orem 6).

Similar idea also work for many other semi-parametric models with in-
finite dimensional nuisance parameters. If there are additional information
available for the nuisance parameter then by incorporating them into the
empirical likelihood (by shrinking the parameter space) we can improve the
estimation of the finite dimensional parameter of interest. See Chen (2005),
chapters four and five for details of this approach in other models.

We end this section by presenting a few known results about the regular
Cox partial likelihood estimator of the regression coefficient β0, which can
be found in Andersen and Gill (1982), and Pan (1997). For simplicity we
gave detailed formula only for the case dim(zi) = 1. When dim(zi) = k,
parallel results to those obtained here can be obtained similarly.

Let <i = {j : Tj ≥ Ti}, the risk set at time Ti. Define

`(β) =
n∑

i=1

δizi −
n∑

i=1

δi

∑
j∈<i

zjexp(βzj)∑
j∈<i

exp(βzj)
, (3)

and

I(β0) =
n∑

i=1

δi


∑
j∈<i

z2
j exp(β0zj)∑

j∈<i

exp(β0zj)
−


∑
j∈<i

zjexp(β0zj)∑
j∈<i

exp(β0zj)


2 = −`′(β0).

(4)
If β̂c is the solution of (3), i.e. `(β̂c) = 0, then β̂c is called the Cox partial
likelihood estimator of the regression coefficient β0.

Theorem 1 (Andersen and Gill 1982) Under some mild regularity con-

ditions we have the following results:

(1). If β̂c is the solution of (3), then, as n →∞,

√
n(β̂c − β0)

D−→ N(0,Σ−1), (5)

where Σ = Plimn→∞
1
n

I(β0).

(2). If β?
n

P−→ β0, then 1
nI(β?

n) P−→ Σ.

Before we present the next theorem we need some definitions of the em-
pirical likelihood. The contribution to the asymptotic (Poisson) empirical
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likelihood function from (Ti, δi) is

(∆Λi(Ti))δi exp{−Λi(Ti)}.

Under Cox’s proportional hazards model,

∆Λi(Ti) = ∆Λ0(Ti) exp(βzi), and Λi(Ti) = Λ0(Ti) exp(βzi).

Also, we write Λ0(Ti) =
∑

j:Tj≤Ti
∆Λ0(Tj). Thus the empirical likelihood

function under the Cox’s model is

ALc(β, Λ0) =
n∏

i=1

(∆Λ0(Ti)eβzi)δiexp{−eβzi

∑
j:Tj≤Ti

∆Λ0(Tj)}, (6)

where we shall require Λ0 � Λ̂NA, the Nelson-Aalen estimator based on the
data (Ti, δi), i = 1, 2, · · · , n. This requirement is similar to that of F � F̂n

for CDFs imposed by Owen, see Owen (1988) for some discussions.
Theorem 2 (Pan 1997) Under the same conditions as in Theorem 1,

we have the following empirical likelihood ratio result:

−2 log
max

{Λ0: Λ0�Λ̂NA}
ALc(β0,Λ0)

max
{β, Λ0: Λ0�Λ̂NA}

ALc(β, Λ0)
= I(ξ)(β0 − β̂c)2

D−→ χ2
(1) ,

where ξ is between β0 and β̂c.

2. Inference of β0 with Information on the Baseline

The simplest form of the additional information on the baseline is given in
terms of the following equation:∫

g(s)dΛ0(s) =
∑

g(Ti)∆Λ0(Ti) = θ , (7)

where θ is a given constant, and g(·) is a given function. The second
expression above assumes a discrete hazard that only have possible jumps at
the observed survival times, Ti (like the Nelson-Aalen estimator). This type
of information includes many familiar cases. For example, if g(s) = I[s≤45]

and θ = − log 0.5, then the extra information corresponds to “median equal
to 45”.

For simplicity, we assume T1 < T2 < · · · < Tn for the rest of this paper.
The modified Cox estimator is defined via the empirical likelihood. Let
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w0
i = ∆Λ0(Ti) for i = 1, 2, · · · , n. We rewrite the log empirical likelihood

(6) in terms of w0
i :

logALc(β, Λ0) =
n∑

i=1

δilogw0
i +

n∑
i=1

δiβzi −
n∑

i=1

w0
i

n∑
j=i

exp(βzj).

To maximize the above with respect to β and w0
i , at the same time keep in

mind of the extra information (7) imposed on the baseline hazard, we form
the target function to be used by Lagrange multiplier method

G =
n∑

i=1

δi log w0
i +

n∑
i=1

δiβzi−
n∑

i=1

w0
i

n∑
j=i

exp(βzj)−nλ[
n∑

i=1

g(Ti)δiw
0
i − θ] .

Taking partial derivatives of G with respect to β and w0
i , and letting them

equal to zero, we obtain

∂G

∂w0
i

=
δi

w0
i

−
n∑

j=i

exp(βzj)− nλg(Ti)δi = 0, i = 1, 2, · · · , n (8)

and

∂G

∂β
=

n∑
i=1

δizi −
n∑

i=1

w0
i

n∑
j=i

zj exp(βzj) = 0. (9)

Solving (8), we have

w0
i =

δi∑n
j=i exp(βzj) + nλg(Ti)δi

i = 1, 2, · · · , n. (10)

The λ in the above equation is the solution of

m(β, λ) =
n∑

i=1

δig(Ti)∑n
j=i exp(βzj) + nλg(Ti)δi

− θ = 0. (11)

Substituting (10) into (9), we get the equation

`∗(β, λ) =
n∑

i=1

δizi −
n∑

i=1

δi

∑
j∈<i

zjexp(βzj)∑
j∈<i

exp(βzj) + nλg(Ti)δi

= 0. (12)

Solving (12) and (11) for β and λ simultaneously requires iterative methods.
We notice that the computation for the regular Cox estimator of β needs
iteration too. We shall discuss the computation in more detail in the next
section. Let us use β̂, λ̂ to denote the solution of (12) and (11). The
solution β̂ is also the modified estimator of the regression coefficient.
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Theorem 3 As n → ∞, the regression estimator, β̂, incorporating

the additional information (7) on the baseline has the following limiting

distribution:
√

n(β̂ − β0)
D−→ N(0, (Σ∗)−1) ,

where Σ∗ = Σ + BA−1B and

A = lim An = lim
n∑

i=1

δig
2(Ti)[∑

j∈<i
exp(β0zj)

]2 ;

B = lim Bn = lim
n∑

i=1

δig(Ti)
∑

j∈<i
zj exp(β0zj)[∑

j∈<i
exp(β0zj)

]2 .

Notice the variance is smaller than that of the regular Cox estimator.

The proof of Theorem 3 is deferred to appendix.
We also have the Empirical Likelihood Theorem (Wilks) for the modified

regression estimator.
Theorem 4 Assume all the conditions of Theorem 1. In addition we

assume g(·) is integrable. Finally assume the true baseline hazard satisfy

(7). Then we have, as n →∞,

−2 logALRc(β0,Λ0) = −2 log
supALc(β0,Λ0)
supALc(β, Λ0)

D−→ χ2
(1) ,

where the numerator ALc is maximized with β fixed at β0 and Λ0 satisfy

(11). The denominator ALc is maximized with Λ0 satisfy (11) but β may

change freely.

See appendix for proof.

Remark 2.1. If the regression coefficient β is a vector, then a similar proof
will show that the limiting distribution in Theorem 4 becomes a χ2

(p) where
p = dim(β).

We may also consider the situation where the additional information is
not given by (7) but by an interval type constraint,

C1 ≤
∑

w0
i g(Ti) ≤ C2

or equivalently replace equation (11) by k1 ≤ m(β, λ) ≤ k2. This is
probably more practical since people are often reluctant to assume a pre-
cise value for the baseline feature, but a range is much more reasonable.
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As sample size tends to infinity this type of information may not yield
any improvements in estimation/testing since

∑
w0

i g(Ti) → θ and thus
k1 ≤ m(β, λ) ≤ k2 holds with probability approach one (assuming k1 and
k2 are fixed). But for finite samples, there is always some probability that
the inequalities will be violated and the adjustment that forces the sum-
mation value into the interval [C1, C2] will lead to improvements of the
estimation for β. This means we only need to adjust the estimator when
the feature of the (un-adjusted) baseline falls outside the interval and when
it does, we only do minimal adjustment to pull the feature to the bound-
ary of the interval. We call this “finite sample adjustment” in simulation
section next.

The above discussion assumes the true value θ satisfy C1 < θ < C2.
If however θ equals to one of the boundaries, then the asymptotics are
more complicated. If θ is outside the interval [C1, C2], then the modified
estimate/test will not be consistent.

3. Computation of the Modified Estimator and Simulations

We have modified the programs for the regular Cox model in R language
(Gentleman and Ihaka 1996) to do the computations for the Cox esti-
mator with additional information on the baseline hazard, (available at
http://www.ms.uky.edu/∼mai/splus/library/coxEL). These programs
solve (by iterative method) equation (12) for a given λ value and g(·) func-
tion. It does not solve (11) but rather, it will give the value (13) in the
output. If you happen to pick θ equal to this value then this λ also solves
(11). In general, we need to solve another equation in terms of λ to obtain
the λ for a given θ.

The package is called coxEL. The relevant function is coxphEL(). This
function is similar to the function coxph() in the survival package. But
you need to supply an extra value lam and a function g(·) when calling the
function coxphEL(). The program will output, among other things, β̂, the
modified regression coefficient estimator, and the value

n∑
i=1

δig(Ti)∑
j∈<i

eβ̂z∗j + nλg(Ti)δi

=
∑

δig(Ti)wi =
∫

g(t)dΛ0(t) , (13)

where z∗j = zj − z̄.
R/Splus (also SAS) re-centers the covariates, z, automatically, therefore

the baseline hazard is actually the hazard for a subject with z = z̄ instead
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of z = 0. If you would rather recover the constraint value for the hazard at
z = 0, you need to multiply the value obtained in (13) by exp(−β̂z̄). This
is because we are in a proportional hazards model and the ratio of hazards
for z = z̄ and z = 0 is exp(β̂z̄).

If the constraint value (13) in the output is not what you wanted, then
you should adjust the value of lam. Keep changing the input lam value until
you get the desired output value. This is relatively easy due to the fact that
the value (13) is monotone in λ and one dimensional. In the simulation, we
achieve that by calling the uniroot( ) function in R.

For lam= 0, you get the regular Cox estimator, β̂c, and the constraint
value (13) is the NPMLE of the integral

∫
gdΛ0.

3.1. Some Simulation Results

We use a two sample setup and both samples are exponentially distributed,
and having the same sample size. Sample one ∼ exp(0.2). Sample two ∼
exp(0.3). We use a binary covariate, z, to indicate the samples: if zi = 0
then yi is from sample one; if zi = 1 then yi is from sample two.

The risk ratio or hazard ratio is 0.3/0.2. In Cox model, this imply the
true β should be log(0.3/0.2) = 0.4054651.

We did not impose censoring in this simulation. The extra information
we suppose we have on the baseline hazard is∫

exp(−t)dΛ0(t) = θ = 0.2 .

We generated 400 such samples (each of size 400) and for each sample
we computed the Cox estimator of the regression coefficient, β̂c, and the
modified estimator, β̂. The sample means and sample variances below are
based on 400 simulation runs.

sample mean sample variance
Regular Cox estimator β̂c 0.4160447 0.009736113

Modified estimator β̂ 0.4129862 0.008310867

Table 1. Comparison of two estimators.

The simulation show β̂ has smaller bias and smaller variance compared
to that of β̂c. We expect the improvements for smaller samples to be more
visible.
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3.2. Additional Information Given as Interval

The extra information about the baseline may take the form
∫

g(t)dΛ0(t) ∈
[C1, C2], instead of assume we know its exact value.

In the next two simulations, we only adjust the regular Cox estimator
when the value of the integration

∫
g(t)dΛ̂0(t) falls outside the interval

[θ − ε, θ + ε] where θ is the true theoretical value of the integration (=0.2
in this case). For sample size n = 400, ε = 0.05 we obtained the following
results:

sample mean sample variance
Regular Cox estimator β̂c 0.4160447 0.009736113

Modified estimator β̂ 0.4085578 0.009332247

Table 2. Sample size 400. 400 simulations.

For sample size n = 180 (equal sample size of 90 each), ε = 0.1, the
results of 500 simulation runs gave the following table 3:

sample mean sample variance
Regular Cox estimator β̂c 0.4194698 0.02715997

Modified estimator β̂ 0.4187548 0.02708653

Table 3. Sample size 180. 500 simulations.

We see that the adjusted estimator is again having smaller bias and
smaller variance. Although as ε increases the improvement diminished.

4. Growing information about Λ0(t)

In this section we suppose there are many more information available about
the nuisance parameter Λ0(t). If the additional information is given in the
form of several equations like (7),

for i = 1, 2, · · · , k;
∫

gi(t)dΛ0(t) = θi , (14)

then analysis similar to those in section two leads to
Theorem 5 Let the maximum empirical likelihood estimator in the Cox

model with additinal information (14) be denoted by β̂. Under some mild

regularity conditions the asymptotic distribution of
√

n(β̂ − β0) is normal

with zero mean and variance given by

[Σ∗]−1 = [Σ + BT A−1B]−1 ,
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where the vector B and matrix A is defined by

A = (Ars), Ars = lim
n∑

i=1

δigr(Ti)gs(Ti)[∑
j∈<i

exp(β0zj)
]2 ;

Bm = lim
n∑

i=1

δigm(Ti)
∑

j∈<i
zj exp(β0zj)[∑

j∈<i
exp(β0zj)

]2 .

Next we take a closer look at the asymptotic variance of β̂. Let us call
Σ∗ = [Σ + BT A−1B] the Fisher information for β in the Cox model with
additional information (14) on the baseline hazard. In view of Theorem 1,
we see that the quantity BT A−1B is the increment of the Fisher information
due to the additional information (14) on the baseline.

When gi(t) are the indicator functions: gi(t) = I[t≤ui] for some constants
ui, i = 1, 2, · · · , k, the increment in the Fisher information, BT A−1B, takes
a particularly simple form (see Kim and Zhou (2002) for a proof):

BT A−1B =
k∑

i=1

[h(ui)− h(ui−1)]2

V (ui)− V (ui−1)
,

where h(ui) = Bi and V (min(ui, uj)) = Aij . When k →∞ and ui become
dense, this summation will approach from below the integral∫

[h′(t)]2

V ′(t)
dt .

This integration can also be written as∫
[h′(t)]2

V ′(t)
dt = lim

∫
[
∑

zje
βzj /

∑
eβzj ]2

n/
∑

eβzj
dΛ0(t) = lim

n∑
i=1

(∑
zje

βzj∑
eβzj

)2
δi

n
.

In view of the expression of I(β0) in (4), we see that the Fisher infor-
mation, Σ∗, in Theorem 5 can approach but never exceed the upper bound

Σ∗ = [Σ + BT A−1B] ≤ Σ∗∗

with

Σ∗∗ = lim
1
n

n∑
i=1

δi

∑
j∈<i

z2
j exp(β0zj)∑

j∈<i

exp(β0zj)
.
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The relation between Σ and Σ∗∗ is like that of a variance and a second
moment.

As the next lemma and theorem reveals, the expectation of this informa-
tion upper bound, Σ∗∗, is identical to that of the parametric model Fisher
information.

Lemma 4 In the parametric proportional hazards model where the

baseline is completely specified, the expected information for β (when there

is no censoring) is

Ipara(β) =
n∑

i=1

z2
i .

With censoring, the information is

Ipara(β) = E
∑

z2
i Hi(min(Yi, Ci)) =

∑
z2
i EHi(min(Yi, Ci)) =

n∑
i=1

z2
i Eδi.

The proof of the lemma is straight forward and is omitted.
Theorem 6 We have the following equality concerning the expected

informations

EΣ∗∗ =
1
n

Ipara ,

where the expectation is over all the possible ordering of the observations.

Proof: This can be proved by induction. Assuming no censoring and
for two observations, notice the probability

p = 1− q = P (Y1 < Y2) =
eβ0z1

eβ0z1 + eβ0z2
.

We can now compute the expectation:

p(z2
1p + z2

2q + z2
2) + q(z2

2q + z2
1p + z2

1) = z2
1 + z2

2 .

Assume the Theorem is true for (n−1) observations, then for n observations
the expectation is∑

pi1pi2 · · · pin

[
z2
i1pi1 + · · ·+ z2

inpin +
n−1∑
i=1

∑
z2
j exp(β0zj)∑
exp(β0zj)

]

=
∑

i

(z2
i pi + pi

∑
j 6=i

z2
j ) =

n∑
i=1

z2
i .

For details of the induction proof in the censored data cases, see Luan
(2004). ♦
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This theorem gives us the following picture: additional information on
the baseline hazard increases the Fisher information of β. These Fisher
informations form a continuous spectrum from the completely unspeci-
fied baseline model (i.e. Cox model with Fisher information Σ) to com-
pletely specified baseline model (parametric proportional hazards model
with Fisher information Σ∗∗).

The fact that the maximum empirical likelihood estimators achieve all
these Fisher informations in the spectrum reinforces the view that empirical
likelihood is the extension of parametric likelihood.

Appendix

Lemma 1 (Joint CLT): Assume the same conditions as in Theorem 1. In

addition, assume that g(·) is square integrable with respect to Λ0(·), then

we have [
`(β0)√

n
,
√

n ·m(β0, 0)
]

D−→ N(0, V ),

as n →∞ where m is defined as

m(β, 0) =
n∑

i=1

δig(Ti)∑
j∈<i

eβzj
−
∫

g(t)dΛ0(t) .

The variance-covariance matrix V is diagonal, V = diag(Σ, V22), Σ is de-

fined in Theorem 1 and

V22 = lim
n→∞

∫
g2(s)dΛ0(s)

1
n

∑
j exp(β0zj)I[Tj≥s]

= lim
n∑

i=1

ng2(Ti)δi[∑
j∈<i

exp(β0zj)
]2 .

Proof: It is now a standard result that we have the following martin-
gale representation:

m(β0, 0) =
n∑

i=1

δig(Ti)∑
Tj≥Ti

eβ0zj
−
∫

g(s)dΛ0(s) =
n∑

i=1

∫
g(s)∑n

j=1 eβ0zj I[Tj≥s]
dMi(s)

and

`(β0) =
n∑

i=1

∫ (
zi −

∑n
j=1 zje

β0zj I[Tj≥s]∑n
j=1 eβ0zj I[Tj≥s]

)
dMi(s)
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where

Mi(t) = I[Ti≤t,δi=1] −
∫ t

I[Ti≥s] exp(β0zi)dΛ0(s)

with

〈Mi(t)〉 =
∫ t

0

I[Ti≥s] exp(β0zi)dΛ0(s) .

Standard computation of the predictable quadratic variation process for
the martingales yields〈√

nm(β0, 0), `(β0)/
√

n
〉

= 0 and
〈√

nm(β0, 0)
〉

=
∫

g2(s)dΛ0(s)
1
n

∑
j exp(β0zj)I[Tj≥s]

.

By the martingale central limit theorem, we see the Lemma is proved. ♦
Lemma 3 The simultaneous solution of equations (12) and (11) has

the following representation:

√
n[β̂ − β0, λ̂] = −

√
n

[
`(β0)√

n
,
√

nm(β0, 0)
]

D−1 + op(1)

where D is a matrix

D =
(
−I(β0)/

√
n −

√
nB√

nB −
√

nA

)
.

The quantity A and B is defined in Theorem 3.

Proof: The β̂ and λ̂ are the solutions of (0, 0) = [ `∗(β,λ)√
n

,m(β, λ)
√

n].
By Taylor expansion

[
`∗(β, λ)√

n
,m(β, λ)

√
n] = [

`∗(β0, 0)√
n

,m(β0, 0)
√

n]+(β−β0, λ)·D+o(|β−β0|+|λ|)

where D is the matrix of the first derivatives of the vector. We let β = β̂

and λ = λ̂ in the above to get

(0, 0) = [
`∗(β0, 0)√

n
,m(β0, 0)

√
n] + (β̂ − β0, λ̂) ·D + o(|β̂ − β0|+ |λ|) .

Notice `∗(β0, 0) = `(β0), which gives

[β̂ − β0, λ̂] = −[
`(β0)√

n
,
√

nm(β0, 0)] ∗D−1 + op(1/
√

n) . ♦

Proof of Theorem 3: From Lemma 3 we have

√
n(β̂ − β0) =

`(β0)√
n

A +
√

nm(β0, 0)B

AI(β0)/n + B2
+ op(1) .
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The asymptotic normality is immediate from Lemma 1. We need to com-
pute the asymptotic variance. Since ` and m are asymptotically indepen-
dence (Lemma 1), we compute

V ar(
√

n(β̂ − β0)) = lim
A2Σ + B2V22

(ΣA + B2)2
.

Since lim V22 = lim A, we have

=
A

ΣA + B2
=

1
Σ + B2/A

=
1

Σ∗
.

Notice A > 0, therefore we have

limV ar(
√

n(β̂ − β0)) = (Σ∗)−1 < Σ−1 = lim V ar
√

n(β̂c − β0) . ♦

Lemma G (Graybill 1976) Suppose Y
D−→ N(0, V ) and M is a sym-

metric matrix. Then Y MY T D−→ χ2
p if and only if MV is idempotent and

rank(MV ) = p.

Proof of Theorem 4: In the Wilks theorem, the log of the empirical
likelihood ratio becomes the difference of two terms. We shall compute
each term separately:

Step I: We first compute the maximum of the log empirical likelihood
(6) when β is fixed at β0, and with the additional information (7).

Let w0
i = ∆Λ0(Ti) for i = 1, 2, · · · , n. We write the logarithm of

ALc(β0,Λ0) in terms of w0
i ’s as follows

logALc(β0,Λ0) =
n∑

i=1

δilogw0
i +

n∑
i=1

δiβ0zi −
n∑

i=1

i∑
j=1

w0
j exp(β0zi)

=
n∑

i=1

δilogw0
i +

n∑
i=1

δiβ0zi −
n∑

i=1

w0
i

n∑
j=i

exp(β0zj).

To maximize the above empirical likelihood under the constraint (7) via
Lagrange multiplier, we form the target function:

G =
n∑

i=1

δilogw0
i +

n∑
i=1

δiβ0zi −
n∑

i=1

w0
i

n∑
j=i

exp(β0zj)− nγ[
∑

g(Ti)w0
i − θ]

Taking derivatives of G with respect to w0
i for i = 1, 2, · · · , n, and letting

them equal to zero, we obtain the equations

∂G

∂w0
i

=
δi

w0
i

−
n∑

j=i

exp(β0zj)− nγg(Ti)δi = 0.
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It follows that

w0
i =

δi∑n
j=i exp(β0zj) + nγg(Ti)δi

for i = 1, 2, · · · , n. The value of the γ in the above can be obtained as the
solution of the equation

0 = m(β0, γ) =
n∑

i=1

g(Ti)δi∑n
j=i exp(β0zj) + nγg(Ti)δi

− θ . (15)

The derivative of m(β0, γ) with respect to γ is always negative, so there is
a unique γ solution, for the feasible values of θ.

By using the Taylor expansion on (15), it is easy to see that the solution,
γ̂, of (15) with θ =

∫
g(s)dΛ(s) has the following representation

γ̂ = m(β0, 0)×A−1 + op(1/
√

n)

where A = lim An is defined in Theorem 3. We notice that A = lim An =
V22.

The Hessian matrix of logALc(β0,Λ0) is negative-definite so the w0
i ’s

provide the maximum of the log likelihood. Thus the maximized log likeli-
hood under the extra baseline constraint is: (maximized over baseline, with
β fixed at β0 )

logALc(β0, Λ̂(β0))

=
n∑

i=1

δilog
δi∑n

j=i eβ0zj + nγ̂g(Ti)δi
+

n∑
i=1

δiβ0zi −
n∑

i=1

δi

∑n
j=i exp(β0zj)∑n

j=i eβ0zj + nγ̂g(Ti)δi

=
n∑

i=1

δiβ0zi −
n∑

i=1

δi log

 n∑
j=i

eβ0zj + nγ̂g(Ti)δi

−
n∑

i=1

δi

∑n
j=i exp(β0zj)∑n

j=i eβ0zj + nγ̂g(Ti)δi
,

where γ̂ is the solution of the equation (15).
Step II: We now compute the maximum of the log empirical likelihood

without fixing the β. The extra information on the baseline hazard, (7),
shall remain in effect. Recall that the maximum is achieved at (β = β̂, λ =
λ̂).

Substituting β in (10) by β̂, λ by λ̂, we get the expression of w0
i :

w0
i =

δi∑
j∈<i

exp(β̂zj) + nλ̂g(Ti)δi

, i = 1, 2, · · · , n. (16)
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The Hessian matrix of logALc(β, Λ0) is negative-definite so the station-
ary point of logALc(β, Λ0) is a maximum point. Therefore we obtain the
expression for the maximum of the log likelihood

log max
{β,Λ0�Λ̂NA}

ALc(β, Λ0) =

n∑
i=1

δiβ̂zi −
n∑

i=1

δi log

 n∑
j=i

eβ̂zj + nλ̂g(Ti)δi

−
n∑

i=1

δi

∑n
j=i exp(β̂zj)∑n

j=i eβ̂zj + nλ̂g(Ti)δi

.

If we let

C(β, λ) =
n∑

i=1

δiβzi −
n∑

i=1

δilog

 n∑
j=i

exp(βzj) + nλg(Ti)δi

−
n∑

i=1

δi

∑n
j=i exp(βzj)∑n

j=i eβzj + nλg(Ti)δi
,

and combine step I and II, we have the Wilks statistic

−2logALRc(β0,Λ0) = −2 log
max

{Λ0�Λ̂NA,Λ0satisfy(7)}
ALc(β0,Λ0)

max
{β,Λ0�Λ̂NA,Λ0satisfy(7)}

ALc(β, Λ0)

= 2(C(β̂, λ̂)− C(β0, γ̂)) = T1 − T2. (say)

We can verify easily that for any β value we have

∂C(β, λ)
∂λ

|λ=0 (17)

= −
∑ nδig(Ti)∑

eβzj + nλg(Ti)
|λ=0 +

∑ nδig(Ti)
∑

eβzj

(
∑

eβzj + nλg(Ti))2
|λ=0 = 0(18)

and

∂2C(β, λ)
∂λ2

|λ=0,β=β0

=
∑ δin

2g2(Ti)
(
∑

)2
− 2

∑ δin
2g2(Ti)
(
∑

)2
= −n2

∑ δig
2(Ti)

[
∑

eβ0zj ]2
= −nA < 0 .

We have the following Taylor expansion

T2 = 2{C(β0, 0)+γ̂C ′(β0, 0)+1/2C ′′(β0, 0)γ̂2+o(1)} = 2C(β0, 0)−nAγ̂2+o(1) .

On the other hand

T1 = 2{C(β0, 0)+(β̂−β0, λ̂)(C ′β(β0, 0), C ′λ(β0, 0))T +(β̂−β0, λ̂)Q/2(β̂−β0, λ̂)T +o(1)}
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= 2C(β0, 0) + 2(β̂ − β0)C ′β(β0, 0) + (β̂ − β0, λ̂)Q(β̂ − β0, λ̂)T + o(1)

where Q is the second derivative matrix of C(β, λ) at β = β0, λ = 0.
Now we compute Q. Notice also that

∂C(β, λ)
∂β

|λ=0 =
∑

δizi −
∑

δi

∑
zje

βzj∑
eβzj

= `(β) .

and
∂2C(β, λ)

∂β2
|λ=0 = −I(β).

Also
∂2C(β, λ)

∂λ∂β
|λ=0 =

∂2C(β, λ)
∂β∂λ

|λ=0 = 0.

Thus we have a diagonal matrix Q:

Q = diag[−I(β0),−nA].

Putting these all together we have

−2logALRc(β0,Λ0)

= {nAγ̂2 + 2(β̂ − β0)C ′β(β0, 0) + (β̂ − β0, λ̂)Q(β̂ − β0, λ̂)T + o(1)}

= (
√

n
m(β0, 0)√

A
+ op(1))2 + 2((β̂ − β0)C ′β(β0, 0))

+ [
`(β0)√

n
,
√

nm(β0, 0)]D−1
√

n
Q

n
(
√

nD−1)T [
`(β0)√

n
,
√

nm(β0, 0)]T

= [
`(β0)√

n
,
√

nm(β0, 0)] · (I + II + III) · [`(β0)√
n

,
√

nm(β0, 0)]T + op(1)

= [
`(β0)√

n
,
√

nm(β0, 0)] ·M · [`(β0)√
n

,
√

nm(β0, 0)]T + op(1)

where

I =
(

0 0
0 1/A

)
, II =

1
AΣ + B2

(
2A B

B 0

)
and

III =
1

AΣ + B2

(
−A 0
0 −Σ

)
, M =

1
AΣ + B2

(
A B

B B2/A

)
.

In view of the Lemma G and Lemma 1, we only need to verify two
matrix properties. To this end we compute

M · V =
1

AΣ + B2

(
AΣ AB

BΣ B2

)
.
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It is easy to verify that the above matrix is idempotent and has rank 1. By
Lemma 1 and Lemma G we have the desired result. ♦
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