
One of the most widely used regression models in survival analysis is
the Cox proportional hazards model (Cox 1972, 1975).

Let X1, · · · , Xn ; and C1, · · · , Cn be independent random variables. Think
of Ci as the censoring time associated with the survival time Xi. Due
to censoring, we can only observe (T1, δ1), · · · , (Tn, δn) where

Ti = min(Xi, Ci) and δi =

{
1 if Xi ≤ Ci
0 if Xi > Ci

. (1)

Also available are z1, · · · , zn, which are covariates associated with the
responses Xi, · · · , Xn and we assume zi do not change with time here.

According to Cox’s proportional hazards model, the cumulative hazard
function of Xi is related to the covariate zi.

ΛXi(t) = Λi(t) = Λ(t|zi) = Λ0(t) exp(β0zi) (2)



where β0 is the unknown regression coefficient and Λ0(t) is the so called

baseline cumulative hazard function. Another way to think of Λ0(t) is

that it is the cumulative hazard for an individual with zero covariate,

z = 0.

The semiparametric Cox proportional hazards model assumes that the

baseline cumulative hazard function Λ0 is completely unknown and ar-

bitrary.

We study here the inference in the Cox model where we have some in-

formation on the baseline hazard. But it remains an infinite dimensional

nuisance parameter.



For example, we may know that the baseline hazard has median 45.
Or median is between 44 and 46. For stratified Cox model, we may
know that one baseline hazard is stochastically smaller than the other
baseline, or the two hazards cross at t = 50, etc. When comparing a
placebo against a new treatment in a two sample case, we often have
extra knowledge about the survival experience for the placebo group,
may be from past experiences, other studies, etc.

Empirical Likelihood approach is used to obtain inference about β0
in the presence of this new information. We show that the modified
estimator also has asymptotic normal distribution and the empirical
likelihood ratio also follows a Wilks theorem under null hypothesis.

The modified estimator of β is more accurate and the test have better
power compared to the regular Cox partial likelihood estimator/test.



We made use of extra information. The information is on the baseline.

It helps improve estimate β.

We show how the extra information can be incorporated into the Cox

model via empirical likelihood, and provides a unified analysis.



Some known results about regular Cox estimates:

For simplicity we gave detailed formula for the case dim(zi) = 1. For

the case where dim(zi) = k, parallel results to those obtained here can

be obtained similarly.

Let <i = {j : Tj ≥ Ti}, the risk set at time Ti. Define

`(β) =
n∑
i=1

δizi −
n∑
i=1

δi

∑
j∈<i

zjexp(βzj)∑
j∈<i

exp(βzj)
, (3)



and

I(β0) =
n∑
i=1

δi


∑
j∈<i

z2
j exp(β0zj)∑

j∈<i
exp(β0zj)

−


∑
j∈<i

zjexp(β0zj)∑
j∈<i

exp(β0zj)


2
 = −`′(β0). (4)

If β̂c is the solution of (3), i.e. `(β̂c) = 0, then β̂c is called the Cox

partial likelihood estimate of regression coefficient β0.

Theorem 1 (Andersen and Gill 1982) Under regularity conditions we

have following results:

(1). If β̂c is the solution of (3), then, as n→∞, β̂c
P−→ β0.

(2). If β̂c is the solution of (3), then, as n→∞,

√
n(β̂c − β0)

D−→ N(0,Σ−1), (5)



where Σ = Plimn→∞
1

n
I(β0).

(3). If β?n
Pr−→ β0, then 1

nI(β?n)
P−→ Σ.



Define the asymptotic (Poisson) empirical likelihood function of Ti, δi
as

(∆Λi(Ti))δi exp{−Λi(Ti)}.

Under Cox’s proportional hazards model,

∆Λi(Ti) = ∆Λ0(Ti) exp(βzi), and Λi(Ti) = Λ0(Ti) exp(βzi) .

If we use ALc(β,Λ0) to denote the (asymptotic) empirical likelihood
function under the Cox’s model for all observations, then we have

ALc(β,Λ0) =
n∏
i=1

(∆Λ0(Ti)e
βzi)δiexp{−eβzi

∑
j:Tj≤Ti

∆Λ0(Tj)}, (6)

where we shall require Λ0 � Λ̂NA, the Nelson-Aalen estimator. This
restriction is similar to the restriction for CDFs to have same support
as the empirical distribution in Owen (1988).



Theorem 2 (Pan 1997) Under the same conditions as in Theorem 1,
we have the following empirical likelihood ratio result:

−2log

max
{Λ0�Λ̂NA}

ALc(β0,Λ0)

max
{β,Λ0�Λ̂NA}

ALc(β,Λ0)
= I(ξ)(β0 − β̂c)2 D−→ χ2

(1) ,

where ξ is between β0 and β̂c.

Bartlett adjustment: (Gu and Zheng)

Denote the left-hand-side above by −2LLR. For one dimensional β, we
have

P (−2LLR ≤ u) = χ2
1(u) +

{
C1

n
χ2

1(u) +
C2

n
χ2

3(u) +
C3

n
χ2

5(u)
}

+O(n−3/2)

where Ci are constants.



The following lemma will be used in the next section.

Lemma 1 (Joint CLT): Under the same conditions as in Theorem 1,

assume also that g(·) is a square integrable function with respect to

Λ0(·), we have [
`(β0)
√
n
,
√
n ·m(β0,0)

]
D−→ N(0, V ),

where m is defined as

m(β, λ) =
n∑
i=1

δig(Ti)∑
j∈<i e

βzj + nλg(Ti)
−
∫
g(t)dΛ0(t) .

The variance-covariance matrix V is diagonal (or covariate between `



and m is zero): V = diag(Σ, V22), where Σ as given in Theorem 1, and

V22 = lim
n→∞

∫
g2(s)dΛ0(s)

1
n

∑
j exp(β0zj)I[Tj≥s]

= lim
n∑
i=1

ng2(Ti)δi[∑
j∈<i exp(β0zj)

]2 .

Assume the observations are ordered according to Ti values from now
on.

Another way to pose the question:

What is there in between I(β0), the information(Cox model) and the
information(exponential regression)?

How to get them?



2 Empirical Likelihood Ratio Statistic for β0 with Information on

Baseline

The simplest form of the extra information on the baseline is given in

terms of the following equation:∫
g(s)dΛ0(s) =

∑
g(Ti)∆Λ0(Ti) = θ (7)

where θ is a given constant, and g(·) is a given function. The second

expression above assumes a discrete hazard that only have possible

jumps at the observed survival times, Ti’s (like the Nelson-Aalen esti-

mator). This type of constraint include many situations. For example,

if g(s) = I[s≤45] and θ = − log 0.5, then the extra information can be

interpreted as “median equal to 45”.



The modified estimator of β is defined via the empirical likelihood. For

the Wilks theorem, the log of the empirical likelihood ratio becomes

the difference of two terms. We compute each term separately:

We will first compute the maximum of the log empirical likelihood (6)

when β is fixed at β0, and with the extra information (7).

Let w0
i = ∆Λ0(Ti) for i = 1,2, · · · , n. We write the logarithm of ALc(β0)

in terms of w0
i ’s as follows

logALc(β0) =
n∑
i=1

δilogw0
i +

n∑
i=1

δiβ0zi −
n∑
i=1

i∑
j=1

w0
j exp(β0zi)



After some calculation, it follows that

w0
i =

δi∑n
j=i exp(β0zj) + nγg(Ti)δi

for i = 1,2, · · · , n. The value of the γ in the above can be obtained as
the solution of the equation

0 = m(β0, γ) =
n∑
i=1

g(Ti)δi∑n
j=i exp(β0zj) + nγg(Ti)δi

− θ . (8)

The derivative of m(β0, γ) with respect to γ is always negative, so there
is a unique γ solution, for the feasible values of θ.

Lemma 2 The solution, γ̂, of (8) with θ =
∫
g(s)dΛ0(s) has the fol-

lowing representation

γ̂ = m(β0,0)×A−1 + op(1/
√
n)



where

A =
n∑
i=1

ng2(Ti)δi[∑
j∈<i exp(β0zj)

]2 .

Proof: Use Taylor expansion on (8). We point out that limA = V22.

QED

Thus the log likelihood maximized over baselines that satisfy the extra

constraint, and with β fixed at β0, is

logALc(β0, Λ̂(β0)) =



n∑
i=1

δiβ0zi−
n∑
i=1

δi log

 n∑
j=i

eβ0zj + nγ̂g(Ti)δi

− n∑
i=1

δi
∑n
j=i exp(β0zj)∑n

j=i e
β0zj + nγ̂g(Ti)δi

.

where γ̂ is the solution of the equation (8).

Step II: We now compute the maximum of the log empirical likelihood

without fixing the β, (i.e. maximize over β) but still have extra infor-

mation on the baseline hazard, (7). Here we shall also define the

modified estimator of the regression coefficient.

Again let w0
i = ∆Λ(Ti) for i = 1,2, · · · , n. We rewrite the log likelihood

logALc(β,Λ0) in terms of w0
i similar as in step I:

logALc(β,Λ0) =
n∑
i=1

δilogw0
i +

n∑
i=1

δiβzi −
n∑
i=1

w0
i

n∑
j=i

exp(βzj).



After some calculation we have

w0
i =

δi∑n
j=i exp(βzj) + nλg(Ti)δi

i = 1,2, · · · , n. (9)

The λ in the above equation is the solution of

m(β, λ) =
n∑
i=1

δig(Ti)∑n
j=i exp(βzj) + nλg(Ti)δi

− θ = 0. (10)

Substituting (9) into

∂G

∂β
=

n∑
i=1

δizi −
n∑
i=1

w0
i

n∑
j=i

zj exp(βzj) = 0 (11)



we get the equation

`∗(β, λ) =
n∑
i=1

δizi −
n∑
i=1

δi

∑
j∈<i

zjexp(βzj)∑
j∈<i

exp(βzj) + nλg(Ti)δi
= 0. (12)

Solving (12) and (10) for β and λ simultaneously requires iterative
methods. We shall discuss the computation in more detail in the next
section. Let us use β̂, λ̂ to denote the solution of (12) and (10). The
solution β̂ is also our modified estimator of the regression coefficient.

Lemma 3 The simultaneous solution of (12) and (10) has the following
representation:

√
n[β̂ − β0, λ̂] = −

[
`(β0)
√
n
,
√
nm(β0,0)

]
D−1√n+ o(1)



where D is the matrix

D =

(
−I(β0)/

√
n −

√
nB√

nB −
√
nA

)
.

The quantity A is defined in Lemma 2. The quantity B is defined as

B =
n∑
i=1

δig(Ti)
∑
j∈<i zj exp(β0zj)[∑

j∈<i exp(β0zj)
]2 .

Proof: The β̂ and λ̂ is the solution of (0,0) = [`
∗(β,λ)√

n
,m(β, λ)

√
n] . By

Taylor expansion

[
`∗(β, λ)
√
n

,m(β, λ)
√
n] = [

`∗(β0,0)
√
n

,m(β0,0)
√
n]+(β−β0, λ)·D+o(|β−β0|+|λ|)



where D is the matrix of the first derivatives of the vector. We let

β = β̂ and λ = λ̂ in the above to get

(0,0) = [
`∗(β0,0)
√
n

,m(β0,0)
√
n] + (β̂ − β0, λ̂) ·D + o(|β − β0|+ |λ|) .

Notice `∗(β0,0) = `(β0), which gives

[β̂ − β0, λ̂] = −[
`(β0)
√
n
,
√
nm(β0,0)]×D−1 + op(1/

√
n) .

QED



Theorem 3 As n→∞ the regression estimator with extra information,
β̂, has the following limiting distribution

√
n(β̂ − β0)

D−→ N(0, (Σ∗)−1)

where Σ∗ = Σ + B2A−1 and thus the variance is smaller then that of
the regular Cox estimator.

Proof: From Lemma 3 we can compute

√
n(β̂ − β0) =

`(β0)√
n
A+

√
nm(β0,0)B

AI(β0)/n+B2
+ op(1)

The asymptotic normality is immediate from Lemma 1. We compute
the asymptotic variance. Since ` and m are asymptotically indepen-
dence (Lemma 1), we compute

V ar(
√
n(β̂ − β0)) =

A2Σ +B2V22

(ΣA+B2)2
+ o(1) .



Since limV22 = limA, we have

limV ar(
√
n(β̂ − β0)) =

A

ΣA+B2
=

1

Σ +B2A−1
=

1

Σ∗
.

We know A > 0 therefore we have

limV ar(
√
n(β̂ − β0)) = (Σ∗)−1 ≤ Σ−1 = limV ar

√
n(β̂c − β0) .

QED ♦

It is interesting to note that the variance of β̂ above is smaller than that

of a regular Cox estimator, but if B = 0 then there is no improvement.



Substituting β in (9) by β̂, λ by λ̂, we get the expression of w0
i :

w0
i =

δi∑
j∈<i

exp(β̂zj) + nλ̂g(Ti)δi
, i = 1,2, · · · , n. (13)

Therefore we can write the max of log likelihood as:

log max
{β,Λ�Λ̂NA,satisfy (7)}

ALc(β,Λ) =

n∑
i=1

δiβ̂zi −
n∑
i=1

δi log

 n∑
j=i

eβ̂zj + nλ̂g(Ti)δi

− n∑
i=1

δi
∑n
j=i e

β̂zj∑n
j=i e

β̂zj + nλ̂g(Ti)δi
.



If we let C(β, λ) =

n∑
i=1

δiβzi −
n∑
i=1

δi log

 n∑
j=i

eβzj + nλg(Ti)δi

− n∑
i=1

δi
∑n
j=i e

βzj∑n
j=i e

βzj + nλg(Ti)δi
,

and combine step I and II, we have that the Wilks statistic

−2logALRc(β0) = −2 log

max
{Λ�Λ̂NA, Λsatisfy(7)}

ALc(β0,Λ)

max
{β,Λ�Λ̂NA, Λsatisfy(7)}

ALc(β,Λ)

= 2(C(β̂, λ̂)− C(β0, γ̂)) = T1 − T2. (say)



We can verify easily that for any β value we have

∂C(β, λ)

∂λ
|λ=0 = −

∑ nδig(Ti)∑
eβzj + nλg(Ti)

|λ=0+
∑ nδig(Ti)

∑
eβzj

(
∑
eβzj + nλg(Ti))2

|λ=0 = 0

(14)

and

∂2C(β, λ)

∂λ2
|λ=0,β=β0

=
∑ δin

2g2(Ti)

(
∑

)2
−2

∑ δin
2g2(Ti)

(
∑

)2
= −n2∑ δig

2(Ti)

[
∑
eβ0zj]2

= −nA < 0 .

We have the following Taylor expansion

T2 = 2{C(β0,0)+γ̂C′(β0,0)+1/2C′′(β0,0)γ̂2+o(1)} = 2C(β0,0)−nAγ̂2+o(1)

On the other hand

T1 = 2{C(β0,0)+(β̂−β0, λ̂)(C′β(β0,0), C′λ(β0,0))T+1/2(β̂−β0, λ̂)C′′(β0,0)(β̂−β0, λ̂)T+o(1)}



= 2C(β0,0) + 2(β̂ − β0)C′β(β0,0) + (β̂ − β0, λ̂)Q(β̂ − β0, λ̂)T + o(1)}

where Q is the second derivative matrix of C(β, λ) at β = β0, λ = 0.

Now we compute Q. Notice also that

∂C(β, λ)

∂β
|λ=0 =

∑
δizi −

∑
δi

∑
zje

βzj∑
eβzj

= `(β) .

and

∂2C(β, λ)

∂β2
|λ=0 = −I(β).

Also

∂2C(β, λ)

∂λ∂β
|λ=0 =

∂2C(β, λ)

∂β∂λ
|λ=0 = 0.



Thus we have a diagonal matrix Q:

Q = diag[−I(β0),−nA].

Put these all together we have

−2logALRc(β0)

= {nAγ̂2 + 2(β̂ − β0)C′β(β0,0) + (β̂ − β0, λ̂)Q(β̂ − β0, λ̂)T + o(1)}

= (
√
n
m(β0,0)√

A
+ op(1))2 + 2((β̂ − β0)C′β(β0,0))

+ [
`(β0)
√
n
,
√
nm(β0,0)]D−1√n

Q

n
(
√
nD−1)T [

`(β0)
√
n
,
√
nm(β0,0)]T

= [
`(β0)
√
n
,
√
nm(β0,0)] · (I + II + III) · [

`(β0)
√
n
,
√
nm(β0,0)]T + op(1)

= [
`(β0)
√
n
,
√
nm(β0,0)] ·M · [

`(β0)
√
n
,
√
nm(β0,0)]T + op(1) (15)



where

I =

(
0 0
0 A−1

)
, II =

1

AΣ +B2

(
2A B
B 0

)
and III =

1

AΣ +B2

(
−A 0
0 −Σ

)
.

and

M =
1

AΣ +B2

(
A B

B B2A−1

)
.

Now we are ready to present the Wilks theorem.

Theorem 4 Assume all the conditions of Theorem 1. In addition

we assume g(·) is square integrable wrt Λ0. Finally assume the true

baseline hazard satisfy (7). Then we have, as n→∞,



−2 logALRc(β0)
D−→ χ2

(1) .

Proof: We compute

M · V =
1

AΣ +B2

(
AΣ AB

BΣ B2

)
.

It is easy to verify that the above matrix is idempotent and has rank
1. In view of (15) and by Lemma 1 and 4 we have the desired result.
QED

Lemma 4 (Graybill 1976) Suppose Y
D−→ N(0, V ) and M is a symmetric

matrix. Then YMY T
D−→ χ2

p if and only if MV is idempotent and
rank(MV ) = p.



Remark If the regression coefficient β is a vector, then the same proof

still holds with the limiting distribution becomes a χ2
p where the integer

p = dim(β).

Remark We also get an improved estimator of the baseline hazard

function, Λ0(t), which satisfy (7).



3 Computation of the Improved Estimator

We have modified the programs for the regular Cox model in R lan-

guage (Gentleman and Ihaka 1996) survival package (Therneau) to

do the computation for the new estimator here (it is open source).

The package is called coxEL. The relevant function is coxphEL(). This

function is similar to the function coxph() in the survival package for

regular Cox model. But you need to supply additional input: a value

lam and a function g(·) when calling coxphEL().

It will solve (by iterative method) for β the equation (12) for the given

λ value and g(·) function. It does not solve (10).



The program will output, among other things, β̂, the modified regres-

sion coefficient estimator, and the value

n∑
i=1

δig(Ti)∑
j∈<i e

β̂z∗j + nλg(Ti)δi

=
∑

δig(Ti)ŵ
∗
i =

∫
g(t)dΛ̂∗0(t) (16)

where z∗j = zj− z̄ ...... since R/Splus (also SAS) re-centers the covari-

ates, z, automatically.

If you happen to pick θ equal to this value, (16), then this λ also solves

(12). If not, you need to adjust λ until you get (16) to equal to your

θ. Notice (16) is monotone in λ so this is not too hard.

Therefore the baseline hazard is actually the hazard for a subject with

z = z̄ instead of z = 0. If you would rather recover the constraint value



for the hazard at z = 0, we need to multiply the value obtained in (16)

by exp(−β̂z̄).

For lam = 0, you get the regular Cox estimator, β̂c, and the constraint

value is the NPMLE of the integral
∫
gdΛ0.

3.1 Some Preliminary Simulation Results

We use a two sample situation and both samples are exponentially

distributed, and have same sample size. Sample 1 ∼ exp(0.2). Sample

2 ∼ exp(0.3). We use a binary covariate, z, to indicate the samples: if

zi = 0 then yi is from sample 1; if zi = 1 then yi is from sample 2.



The risk ratio or hazard ratio is 0.3/0.2. In Cox model, this imply
the true coefficient, β0, should be log(0.3/0.2) = 0.4054651, since
exp(coef) ∗ 0.2 = 0.3.

We did not impose censoring in this simulation.

The extra information we suppose we have is that the integration∫
exp(−t)dΛ0(t) = θ = rate1 .

When both sample have 200 observations, i.e. (yi, zi) i = 1, · · · ,400,
we obtained the following results:

We generate 400 such samples (each of size 400) and for each sample
we compute the two Cox estimators of the regression coefficient. The



mean and variance of the regular Cox estimator is (sample mean and

sample variance based on 400 trials):

> mean(result1[2,1:400])

[1] 0.4160447

> var(result1[2,1:400])

[1] 0.009736113

The mean and variance of the improved Cox estimator:

> mean(result1[1,1:400])

[1] 0.4129862

> var(result1[1,1:400])

[1] 0.008310867



But for smaller sample sizes, the iteration computation sometimes has

problem to converge for larger λ values. One reason is that the sample

is too far away from the true value of the extra info required. Similar to

“the true mean is zero, but the observations in the sample happens to

be all positive” then the empirical likelihood computation is impossible.

Those needs to be redefined as having infinite likelihood ratio.

Remark: The above example actually demonstrated a better log-rank

test in the two sample case. The estimator we compared can be think

of as the Hodges-Lehmann estimator derived from tests.



Information on the baseline is that the integration of baseline hazard

is in an interval. We took the interval to be = true value ±0.1.

Sample size = 90 + 90.

> mean( result1[1,1:500])

[1] 0.4187548

> mean( result1[2,1:500])

[1] 0.4194698

> var( result1[1,1:500])

[1] 0.02708653

> var( result1[2,1:500])

[1] 0.02715997



result1 is better!! and is closer to the true value: log(1.5) = 0.4054651.

If the integral is inside the interval, no adjustment. If the integration

is outside, adjust to the boundary.



Multiple regression. (no problem).

More information on baseline.

For extra information in the form of many equations like (7), with many

g() functions, m(·) in (8) becomes a vector, and

√
n(β̂−β0) =

`(β0)
√
n

(I/n+BA−1B)−1+
√
nm(β0,0)[A+B(I/n)−1B]−1B(I/n)−1+op(1)

with the obvious definition of matrix A and vector B. This leads to

an estimator β̂ that is asymptotically normal with asymptotic variance

given by

[Σ∗]−1 = [Σ +BTA−1B]−1 .



Let us call the Fisher information of β in the restricted baseline Cox
model as

Σ∗ = [Σ +BTA−1B] .

The quantity BTA−1B is the increment of the Fisher information due
to the restriction on baseline. It is a special matrix, by a Lemma of Kim
and Zhou (2002) this can be written as a summation that approximates
an integration.

When gi(t) are indicator functions: gi(t) = I[t≤ui] for several constants

ui, the increment in the Fisher information, BTA−1B takes a particular
simple form:

BTA−1B =
∑ [h(ui)− h(ui−1)]2

V (ui)− V (ui−1)
,



where h(ui) = Bi and Aij = V (min(ui, uj)).

h(t) =
∑
Ti≤t

δi
∑
j∈<i zje

β0zj[∑
j∈<i e

β0zj
]2 ;

V (t) =
∑
Ti≤t

δin[∑
j∈<i e

β0zj
]2 .

It will approach from below the integral (when ui become dense)∫ [h′(t)]2

V ′(t)
dt



In the limit, this integration is also equal to

lim
∫ [

∑
zje

βzj/
∑
eβzj]2

n/
∑
eβzj

dΛ0(t) = lim
n∑
i=1

∑ zje
βzj∑

eβzj

2
δi
n
.

In view of the expression of I(β0) in (4), we see that the Fisher infor-
mation of the restricted baseline hazard Cox model can approach but
never exceed the upper bound

Σ∗ = [Σ +BTA−1B] ≤ Σ∗∗

with

Σ∗∗ = lim
1

n

n∑
i=1

δi

∑
j∈<i

z2
j exp(β0zj)∑

j∈<i
exp(β0zj)

= lim
I∗∗(β0)

n



The relation between I(β) and I∗∗(β) is like that of a variance and a

second moment.

We have the following equality in expected information.

Theorem The fully parametric proportional hazards model (where the

baseline is completely specified) has the expected information for β

easily calculated (when no censoring) as

Ipara(β) =
n∑
i=1

z2
i ,

where we used the fact that EHi(Yi) = 1 since Hi(Yi) ∼ exp(1). With

censoring, the information is

E
∑

z2
i Hi(min(Yi, Ci)) =

∑
z2
i EHi(min(Yi, Ci)).



We have the following

Theorem At least without censoring, the expected information

EI∗∗ = Ipara

where the expectation is over all the possible ordering of the obsvera-

tions (when no censoring). This can be proved by induction.

Summerizing the results above paints the following picture: more

restrictions on the baseline hazard increases the Fisher information of

β. They form a continuous spectrum from the completely unspecified

baseline model (i.e. Cox model with information I) to completely spec-

ified baseline model (parametric model) with information Ipara = EI∗∗.



The maximum empirical likelihood estimator (MELE) have variances

given by the inverse of those informations in the spectrum.

This also show that empirical likelihood is a continuous extension of

parametric likelihood when nuisance parameter is of infinite dimesional,

in the sense that, in terms of information, it reduces to parametric

likelihood with added restrictions on the infinite dimensional nuisance

parameter.



This “Information Spectrum” phenomena also showing up in the En-

velope Empirical Likelihood as described by Zhou (2000) where on one

end is the Fisher information of a location estimator (like median) with

arbitrary distribution, on the other end is the Fisher information of

location parameter with a symmetric (but unknown) distribution.

Both ends are semiparametric models.
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The Regularity Conditions A - D

A.(Finite interval).

B.(Asymptotic stability).

C.(Lindeberg condition).

D.(Asymptotic regularity conditions).

Proof of The joint CLT of martingales (Lemma 1): It is now a standard result
that we have the following martingale representation:

m(β0,0) =
n∑
i=1

δig(Ti)∑
Tj≥Ti e

β0zj
−
∫
g(s)dΛ0(s) =

n∑
i=1

∫
g(s)∑n

j=1 e
β0zjI[Tj≥s]

dMi(s)



and

`(β0) =
n∑
i=1

∫ (
zi −

∑n
j=1 zje

β0zjI[Tj≥s]∑n
j=1 e

β0zjI[Tj≥s]

)
dMi(s)

where

Mi(t) = I[Ti<t] −
∫ t

I[Ti>s] exp(β0zi)dΛ0(s)

with

< Mi(t) >=

∫ t

0
I[Ti>s] exp(β0zi)dΛ0(s)

Using the standard computation of the predictable quadratic process for the martin-
gales we get

<
√
nm(β0,0), `(β0)/

√
n >= 0 and <

√
nm(β0,0) >= V22

etc.



Similar to the proof of Theorem 1, we may use the CLT for the martingales (Rebolledo
theorem) to get the convergence in distribution result.

Σ =< `(β0)/
√
n >


