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Summary. Empirical likelihood ratio method (Thomas and Grunkmier 1975, Owen 1988,
1990, 2001) is a general nonparametric inference procedure that has many nice proper-
ties. Recently the procedure has been shown to work with some censored/truncated data
with various parameters. But the computation of the empirical likelihood ratios with cen-
sored/truncated data and parameter of mean is non-trivial. We propose in this paper to use
a modified self-consistency/EM algorithm (Turnbull 1976) to compute a class of arbitrarily
censored/truncated empirical likelihood ratios where the constraint is of mean type.

Tests and confidence intervals based on the censored/truncated likelihood ratio performs
well. Examples and simulations are given in the following cases: (1) right censored data with
a mean parameter; (2) left truncated and right censored data with mean type parameter.
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1. Introduction

Empirical likelihood ratio method was first used by Thomas and Grunkmier (1975) in connection

with the Kaplan-Meier estimator. Owen (1988, 1990, 1991) and many others developed this into a

general methodology. It has many desirable statistical properties, see the recent nice book of Owen

(2001). A crucial step in applying the empirical likelihood ratio method is to find the maximum of

the log empirical likelihood function (LELF) under some constraints. In all the papers mentioned

above, that is achieved by using the Lagrange multiplier method. It reduces the maximization of

n probabilities to a set of p monotone equations (for the multiplier λ), and p is fixed as n go to

infinity. These equations can easily be solved, and thus empirical likelihood ratio can be easily

computed.

Recently the empirical likelihood ratio method has been shown to work also with censored data

and the parameter of mean. Pan and Zhou (1999) showed that for right censored data the empirical

likelihood ratio with mean constraint also have a chi-square limit (Wilks theorem). Murphy and

Van der Vaart (1997) demonstrated, among other things, that the Wilks theorem hold for doubly

censored data too.

Theorem 1 (Pan and Zhou) For the right censored data defined in (1) with a continuous

distribution F , suppose the constraint equation is∫
g(t)dF (t) = θ0
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where θ0 is the true value (i.e. θ0 =
∫
gdF0). If g(t) satisfies certain regularity conditions, and h(t)

is another function that satisfy same regularity conditions, then as n→∞, the empirical likelihood

ratio on a sub-family of distributions indexed by h(·) has the limit

−2 logELR(θ0, h) D−→ rh × χ2
(1)

where the constant

rh =
Asy Var(

∫
gdF̂KM )×

(∫
h2(1−G)dF +

∫ ∫∞
t h2(s)dF (s)

1− F (t)
dG(t)− [

∫
hdF ]2

)
(∫

ghdF

)2 ,

and G is the CDF of the censoring times. Furthermore, the minimum value of the constant rh over

h is one.

Theorem 2 (Murphy and Van der Vaart) For doubly censored observations (see definition

in Example 2), suppose the distribution functions of the random variables involved are continuous

and satisfy certain other regularity conditions. Let g be a left continuous function of bounded vari-

ation which, is not F0-almost everywhere equal to a constant. If
∫
gdF0 = θ0, then the likelihood

ratio statistic for testing H0 :
∫
gdF = θ0 satisfies −2 logELR(θ0) converges to χ2

(1) under F0.

For truncated data we refer readers to Li (1995), but the result is only for g(t) = I[t≤C].

One of the advantages of empirical likelihood method is that we can construct confidence inter-

vals without estimating the variance of the statistic, which could be very difficult as in the situation

of Theorem 2.

However, in the proofs of the Wilks theorem for the censored empirical likelihood ratio in the

above two papers, the maximization of the log likelihood is more complicated then straight use of

Lagrange multiplier. It is more of an existence proof rather than a constructive proof. In fact it

involves least favorable sub-family of distributions and the existence of such, and thus it do not offer

a viable computational method for the maximization of the empirical likelihood under constraint.

Therefore the study of computational method that can find the relevant censored/truncated

empirical likelihood ratios numerically is needed. A good computational method will make the

above nice theoretical results practical. We propose in this paper to use a modified EM algorithm

to achieve that. We have implemented the algorithm in R software (Gentleman and Ihaka 1998).

In fact, the modified EM/self-consistent algorithm we propose can be used to compute empirical

likelihood ratios in many other types of censored/truncated data cases as described in Turnbull

(1976).
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Of course, for problems where a simple Lagrange multiplier computation is available, it will

usually be faster than the EM algorithm. Uncensored data, or right censored data with weighted

hazard constraint are such cases, see (Pan and Zhou 2000) for details. But as we point out above,

this is not the case for mean type constraints with censored/truncated data.

We end this section with two specific examples where we introduce the notation and setup of

censored data with the mean constraint case.

Example 1 Suppose i.i.d. observations X1, · · · , Xn ∼ F (·) are subject to right censoring so

that we only observe

Zi = min(Xi, Ci) ; δi = I[Xi≤Ci], i = 1, 2, . . . , n; (1)

where C1, · · · , Cn are censoring times.

The log empirical likelihood function (LELF) for the survival distribution based on the censored

observations (Zi, δi) is

L(p) = LELF =
n∑
i=1

δi log pi + (1− δi) log

 ∑
Zj>Zi

pj

 . (2)

where pi = ∆F (Zi) = F (Zi)− F (Zi−).

To compute the empirical likelihood ratio (Wilks) statistic for testing the hypothesis: mean(F ) =

µ, we need to find the maximum of the above LELF with respect to pi under the constraint

n∑
i=1

piZi = µ ,
n∑
i=1

pi = 1 , pi ≥ 0 ; (3)

where µ is given. Similar arguments to those of Li (1995) show that the maximization will force the

pi = 0 except when Zi is an uncensored observation. We focus on finding those pis. The straight

application of Lagrange multiplier method leads to the equations

δi
pi

+
n∑
k=1

(1− δk)
I[Zk<Zi]∑
Zj>Zk

pj
− λZi − γ = 0 ; for δi = 1

which do not have a simple solution for pi.

The calculations for the mean type constraint
∫
g(t)dF (t) = µ has similar difficulty and the

solution with EM algorithm is also similar.

Example 2: Let X1, · · · , Xn be positive random variables denoting the lifetimes which is i.i.d.

with a continuous distribution F0. The censoring mechanism is such that Xi is observable if and

only if it lies inside the interval [Zi, Yi]. The Zi and Yi are positive random variables with continuous

distribution functions GL0 and GR0 respectively, and Zi ≤ Yi with probability 1. If Xi is not inside
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[Zi, Yi], the exact value of Xi cannot be determined. We only know whether Xi is less than Zi or

greater than Yi and we observe Zi or Yi correspondingly.

The variable Xi is said to be left censored if Xi < Zi and right censored if Xi > Yi. The

available information may be expressed by a pair of random variables: Ti, δi, where

Ti = max(min(Xi, Yi), Zi) and δi =


1 if Zi ≤ Xi ≤ Yi
0 if Xi > Yi
2 if Xi < Zi

i = 1, 2, · · · , n. (4)

The log empirical likelihood for the lifetime distribution F is

L(p) =
∑
δi=1

log pi +
∑
δi=0

log(
∑
Zj>Zi

pj) +
∑
δi=2

log(
∑
Zj<Zi

pj) . (5)

We show how to use the EM algorithm to compute the maximum of the above empirical likeli-

hood (under constraint), and also in many other truncated data cases. Examples and simulations

are given in section 5.

2. Maximization of empirical likelihood with uncensored, weighted observations

The following is basically a weighted version of Owen (1990) Theorem 1. Suppose we have in-

dependent (uncensored, not truncated) observations X1, · · · , Xn from distribution F (·). Associated

with the observations are non-negative weights w1, · · · , wn. The meaning of the weights are such

that if wi = 2, it means Xi is actually 2 observations tied together, etc. But we allow the weights

to be fractions for the application later.

The empirical likelihood based on the weighted observations is
∏

(pi)wi and the log empirical

likelihood is ∑
wi log pi . (6)

Theorem 3 The maximization of the log empirical likelihood (6) with respect to pi subject to

the two constraint: ∑
pi = 1 ,

∑
g(Xi)pi = µ

is given by the formula

pi =
wi∑

j wj + λ(g(Xi)− µ)

where λ is the solution of the equation

∑
i

wi(g(Xi)− µ)∑
j wj + λ(g(Xi)− µ)

= 0 .
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For µ in the range of the the g(Xi)’s there exist a unique solution of the λ and the pi given above

is also positive.

The proof of the above theorem is similar to (Owen 1990) and we omit the details here.

3. The constrained EM algorithm for censored data

There is a large amount of literature on the EM algorithm, see for example Dempster, Laird,

and Rubin (1977). For the particular setting where the parameter is the CDF and observations

are censored, see Efron (1967) and Turnbull (1974, 1976). In particular, Turbull (1976) covers a

variety of censored/truncated data cases.

It is known that the EM algorithm will converge (eg. starting from the empirical distribution

based on uncensored data only) for the nonparametric estimation of the survival function with right

censored data. However, EM algorithm was not used in that situation because an explicit formula

exists (the Kaplan-Meier estimator). With a constraint on the mean, there no longer exists any

explicit formula for right censored data. For doubly censored data, it is even worse: there is no

explicit formula for the NPMLE with or without mean constraints. EM algorithm may be used

to compute both NPMLE. And thus this present opportunity for EM to play its roll and show its

muscle here.

We describe below the EM algorithm for censored data.

E-Step: Given F , the weight, wj , at location tj can be computed as

n∑
i=1

EF
[
I[Xi=tj ]|Zi, δi

]
= wj .

We only need to compute the weight for those locations that either (1) tj is a jump point for

the given distribution F , or (2) tj is an uncensored observation. In many cases (1) and (2) coincide

(eg. the Kaplan-Meier estimator). The wi for other locations is obviously zero. Also when Zi is

uncensored, the conditional expectation is trivial.

M-Step: with the (uncensored) pseudo observations X = tj and weights wj from E-Step, we

then find the probabilities pj by using our Theorem 3 above. Those probabilities give rise to a new

distribution F .

A good initial F to start the EM calculation is the NPMLE without the constraint. In the

case of right censored data that is the Kaplan-Meier estimator. If that is not easily available, like

in doubly censored (or other) cases, a distribution with equal probability on all the possible jump

locations can also be used.
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The EM iteration ends when the predefined convergence criterion is satisfied.

Example (continue)

Suppose the ith observation is a right censored one: (δi = 0) the E Step above can be computed as

follows

for tj > Zi ; EF [I[Xi=tj ]|Zi, δi] =
∆F (tj)

1− F (Zi)

and EF [·] = 0 for tj ≤ Zi.

For uncensored observation Zi, it is obvious that EF [·] = 1 when tj = Zi and EF [·] = 0 for any

other tj .

For left censored observation Zi, the E Step above can be computed as follows

for tj < Zi ; EF [I[Xi=tj ]|Zi, δi] =
∆F (tj)
F (Zi)

and EF [·] = 0 for tj ≥ Zi.

Remark: The E-step above is no different then Turnbull (1976). For interval censored or even

set censored data the E-Step can also be computed similarly. Our modification is in the M-step.

4. Truncated and censored data

Similar idea of last section actually carry through for arbitrarily truncated and censored data as

described in Turnbull (1976). We first describe in some details the left truncated and right censored

observation case, since this seems to be the most commonly seen situation. We then briefly outline

the algorithm for the general case and a theorem that basically says the constrained NPMLE is

equivalent to the solution of the modified self-consistent equation.

4.1 Left truncated and right censored case

For left truncated observations, there is an explicit expression for the NPMLE of CDF, the Lynden-

Bell estimator. Li (1995) discussed the empirical likelihood where the parameter is the probability

F (t). For left truncated and right censored observations, there is also an explicit NPMLE of the

CDF. (Tsai, Jewell and Wang 1987). But to compute the NPMLE under the mean constraint, we

need the EM algorithm described here.

Suppose the observations are (Y1, Z1, δ1), · · · , (Yn, Zn, δn) where the Y ’s are the left truncation

times, Z’s are the (possibly right censored) lifetimes. Denote by X the lifetimes before trunca-

tion/censoring. Censoring indicator δ assumes the usual meaning that δ = 1 means Z is uncen-

sored, δ = 0 means Z is right censored. Truncation means for all i, (Zi > Yi), and n is random.

We assume Y is independent of X and both distributions are unknown.
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The log likelihood pertaining the distribution of X is

L(p) =
∑
i:δi=1

log pi − log(
∑
Zj>Yi

pj)

+
∑
i:δi=0

log(
∑
Zj>Zi

pj)− log(
∑
Zj>Yi

pj)

 .

The NPMLE of the CDF puts positive probability only at the locations of observed, uncensored

Zi’s. Denote those locations by tj .

E-step Given a current estimate F (·) that have positive probability only at tj ’s, we compute

the weight

wj =
n∑
i=1

EF [I[Xi=tj ]|Xi, δi] +
n∑
i=1

I[tj<Yi]∆F (tj)/PF (X > Yi) ,

M-step with the pseudo observations tj and associated weights wj obtained in the E-step, we

compute a new probability as described in Theorem 3, where the mean constraint weighs in.

The E-step above can be written more explicitly by noticing that (1) the EF part can be

computed same as in the example of the censored data case, and (2) the second term is (without

summation)

I[tj<Yi]∆F (tj)/PF (X > Yi) =
I[tj<Yi]pj∑
k I[tk>Yi]pk

where we used pj = ∆F (tj).

4.2 The general case

This subsection uses the same setup and notation of Turnbull (1976) and should be read along side

that paper.

Our self-consistent equation with a mean constraint

m∑
j=1

sjg(tj) = µ (7)

(in the context of Turnbull 1976) is just

π∗j (s) = sj j = 1, 2, · · ·m (8)

where

π∗j (s) =
∑N
i=1{µij(s) + νij(s)}

M(s) + λ(g(tj)− µ)
. (9)

In the above tj is any value picked (but fixed) inside the interval [qj , pj ], M(s), µij , νij are as defined

by Turnbull 1976, and λ is the solution of the following equation:

0 =
m∑
j=1

(g(tj)− µ)×
∑N
i=1{µij(s) + νij(s)}

M(s) + λ(g(tj)− µ)
. (10)
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The function g(·) and constant µ are assumed given.

We now consider the equivalence of the modified self-consistency equation (8) with the con-

strained NPMLE. The log likelihood of the data is given by Turnbull (1976), equation (3.6). To

maximize it under the mean constraint (7) and
∑
sj = 1, we proceed by Lagrange multiplier.

Taking partial derivative of the target function

G =
N∑
i=1

log(
m∑
j=1

αijsj)− log(
m∑
j=1

βijsj)

− γ(
m∑
j=1

sj − 1)− λ(
m∑
j=1

sj(g(tj)− µ))

with respect to sj we get

d∗j (s) =
N∑
i=1

{
αij∑m

k=1 αiksk
− βij∑m

k=1 βiksk

}
− γ − λ(g(tj)− µ) . (11)

For s to be the (constrained) NPMLE, those partial derivatives must be zero. Multiply each of

the partial derivatives d∗j (s) by sj and summation over j, we get γ = 0.

The left side of self-consistent equation (8) can then be written as

π∗j (s) =
sj

M(s) + λ(g(tj)− µ)

d∗j (s) + λ(g(tj)− µ) +
N∑
i=1

(
m∑
k=1

βiksk

)−1
 .

Similar to Turnbull 1976, we finally have

π∗j (s) =

{
1 +

d∗j (s)
M(s) + λ(g(tj)− µ)

}
sj .

So the self-consistent equation becomes{
1 +

d∗j (s)
M(s) + λ(g(tj)− µ)

}
sj = sj .

Now a similar argument to Turnbull 1976 leads to the

Theorem 4 The solution of the constrained log likelihood equation (11) is equivalent to the

solution to the self-consistent equations (8).

5. Empirical Likelihood Ratio Computation

Once the NPMLE of probabilities, pi, are computed, we can plug them into the log likelihoods

as in (2) or (5) or other cases to get the censored/truncated log empirical likelihood with mean

constraint easily. This in turn allows us to compute the empirical log likelihood ratio statistic:

−2 logR(H0) = −2 log
maxH0 L(p)

maxH0+H1 L(p)
(12)

= 2
[
log( max

H0+H1

L(p))− log(max
H0

L(p))
]

= 2 [log(L(p̃))− log(L(p̂))] . (13)
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Here p̃ is the NPMLE of probabilities without any constraint; p̂ is the NPMLE of probabilities

under H0 constraint.

Both NPMLEs can be computed by EM algorithm, like in section 3. In some cases, there may

be other (faster) methods available to compute p̃, the NPMLE without constraint. A case in point

is the Kaplan-Meier estimator for the right censored data.

After we obtained the p̃ and p̂, the likelihood ratio can be computed and Wilks theorem can

then be used to find the P-value of the observed statistic. Thus we can use empirical likelihood ratio

to test hypothesis and construct confidence intervals. To illustrate we will show some examples

and simulation results in the next section.

6. Simulations and Examples

In this section example with real data and simulation results are reported for right-censored/left-

truncated data to illustrate the usefulness of the proposed EM method, and also to illustrate the

small to medium sample performance of the chi square approximation.

We have implemented this EM computation in R software (Gentleman and Ihaka 1996). It is

available as a package emplik at one of the CRAN web site (http://cran.us.r-project.org). The

R function el.cen.EM is for right, left or doubly censored observations with a mean type con-

straint. The R function el.ltrc.EM is for left truncated and right censored data with a mean type

constraint.

6.1 Confidence Interval, real data, right censored

The first example concerns Veteran’s Administration Lung cancer study data (for example

available from the R package survival). We took the subset of survival data for treatment 1 and

smallcell group. There are two right censored observations. The survival times are:

30, 384, 4, 54, 13, 123+, 97+, 153, 59, 117, 16, 151, 22, 56, 21, 18, 139, 20, 31, 52, 287, 18, 51,

122, 27, 54, 7, 63, 392, 10.

We use the EM algorithm to compute the log empirical likelihood with constraint mean(F ) = µ

for various values of µ. The log empirical likelihood has a maximum when µ = 94.7926, which is

the mean computed from the Kaplan-Meier estimator.

The 95% confidence interval for the mean survival time is seen to be [61.70948, 144.912] since

the log empirical likelihood was 3.841/2 = χ2(0.95)/2 below the maximum value (= -93.14169)

both when µ = 61.70948 and µ = 144.912. We see that the confidence interval is not symmetric
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around the MLE, a nice feature of the confidence intervals derived from the empirical likelihood.

Figure 1: Log likelihood for µ near maximum

6.2 Simulation: right censored data

It is generally believed that for the smaller sample sizes the likelihood ratio/chi square based

inference is more accurate then those obtained by Wald method. The Q-Q plot from the following

simulation shows that the chi square distribution is a pretty good approximation of the -2 log

empirical likelihood ratio statistic for right censored data and mean parameter.

We randomly generated 5000 right-censored samples, each of size n = 50 as in equation (1),

where X ∼ exp(1) and C ∼ exp(0.2) and g(t) = I[t≤1], or g(t) = (1 − t)I[t≤1]. i.e. the constraint

is
∫ 1

0 g(t)d(1 − exp(−t)) = µ. Both plots look similar, we only show here the one with g(t) =

(1− t)I[t≤1].

We computed 5000 empirical likelihood ratios, using the Kaplan Meier estimator’s jumps as (p̃)

which maximizes the denominator in (13) and the modified EM method of section 3 gave (p̂) that

maximizes the numerator under H0 constraint. The Q-Q plot is based on 5000 empirical likelihood

ratios and χ2
1 percentiles, and is shown in Figure 1 Two vertical lines were drawn at the point 3.84
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Figure 2: A Q-Q plot for right censored likelihood ratio

and 2.71 which are the critical values of χ2
1 with nominal level 5% or 10%. From the Q-Q plot, we

can see that the χ2
1 approximation is pretty good since the −2log-likelihood ratios are very close to

χ2
1 percentiles. Only at the tail of the plot, the differences between −2log-likelihood ratios and χ2

1

are getting bigger.

6.3 Simulation and example – Left truncated, right censored Case

We generate (left) truncation times, Y , as shifted exponential distributed random variables, exp(4)−

0.1. We generate lifetimes X distributed as exp(1) and censoring times C distributed as exp(0.15).

The truncation probability P (Y > X) is around 13.4%. The censoring probability P (X > C) is

around 13%.

The triplets, (Y,X,C), are rejected unless we have Y < X and Y < C. In that case we return

the triplets Y, min(X,C) and d = I[X≤C]. In the simulation, 50 triplets {Y, min(X,C), d} are

generated each time a simulation is run. The function g(t) we used is t(1− t)I[0<t<1]. The mean of

this function is µ = (3e−1 − 1).

Lastly, let us look at a small data taken from the book of Klein and Moeschberger (1997). The
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Figure 3: Q-Q plot of −2log-likelihood ratios vs. χ2
(1) percentiles for sample size 50

survival times of female psychiatric inpatients as reported in Table 1.7 on page 16 of the above

book. Y = (51, 58, 55, 28, 25, 48, 47, 25, 31, 30, 33, 43, 45, 35, 36);

Z = (52, 59, 57, 50, 57, 59, 61, 61, 62, 67, 68, 69, 69, 65, 76) and d = (1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1).

The mean computed from Tsai-Jewell-Wang estimate is 63.18557. The plot of -2 log likelihood

ratio against changing µ value is similar to Figure 1 and is omitted. The -2 log likelihood ratio

have a minimum of zero at µ = 63.18557 as it should be. A 95% confidence interval for µ are those

values of µ that the -2log likelihood ratio is less than 3.84. In this case it is [58.78936, 67.81304].

7. Discussion

The computational algorithm proposed in this paper covers a wide variety of censored/truncated

data cases as in Turnbull (1976). It enables us to compute the NPMLE of CDF under a mean type

constraint. It also enables us to compute the −2 log empirical likelihood ratio in those cases.

Coupled with empirical likelihood theory (Wilks theorem), the latter can be used to do inference

on the NPMLE of CDF.
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The asymptotic theory for the constrained NPMLE and for the empirical likelihood ratio lags

behind the computation. There is yet a result that covers all the cases described in Turnbull (1976),

but see Owen (2001), Murphy and van der Vaart (1997) for some known cases. We conjecture that

for left truncated and right censored observations, the asymptotic χ2 distribution remains valid for

the empirical likelihood ratio with a mean constraint (Wilks theorem).

One of the advantages of EM algorithm is that it requires minimal computer memory. In the

iteration, we only need to store the current copy of F (·) and vector w. In contrast, the Sequential

Quadratic Programming method, (Chen and Zhou 2001, Owen 2001), which try to minimize the

censored empirical likelihood (2) by quadratic approximation, needs to store matrices of size n×n.

This advantage is most visible for samples of size above 500 in our experience.
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