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Summary

• The computational algorithm proposed here generalizes the self-

consistent/EM algorithm as described in Turnbull (1976). It computes

the NPMLE of CDF under some weighted mean constraints.

• The E-step remains the same as in Turnbull (1976), we changed the

M-step.

• This, in turn, enables us to compute the −2 log empirical likelihood

ratio in those cases. Coupled with empirical likelihood theorem (Wilks

theorem), the latter can be used to do statistical inference on the

functionals of the CDF.



1. Introduction

The Empirical likelihood method was first proposed by Thomas and
Grunkmier (1975) to obtain better confidence intervals in connection
with the Kaplan-Meier estimator. Owen (1988, 1990) and many oth-
ers developed this into a general methodology. It has many desirable
statistical properties, see Owen’s (2001) book “Empirical Likelihood”.

One of the nice features of the empirical likelihood ratio that is par-
ticularly appreciated in the censored/truncated data analysis is that we
can test hypothesis/construct confidence intervals without estimating
the variance of the statistic.

For theoretical studies, (Wilks theorem) we refer readers to Li (1995),
Murphy and van der Vaart (1997), Pan and Zhou (1999) and Owen
(2001).



A crucial step in carry out the empirical likelihood ratio test is to find

the maximum of the log empirical likelihood function (LELF) under

some constraints.

In simple cases, that is achieved by using the Lagrange multiplier

method. It reduces the maximization over n − 1 probability masses

to a set of p equations. Furthermore, p is fixed as n go to infinity.

These equations can easily be solved, and thus the empirical likelihood

ratio can be obtained.

However, for empirical likelihood ratio with censored/truncated data

and the parameter of weighted mean, the computations are more dif-

ficult.



The proofs of the Wilks theorem for the censored empirical likelihood
ratio with mean constraint do not offer a viable computational method.
It is more of an existence proof rather than a constructive proof. In
fact, it involves the least favorable sub-family of distributions and the
existence of such.

Therefore the study of computational methods that can find the rele-
vant censored/truncated empirical likelihood ratios numerically is needed.

We propose in this paper to use a modified EM algorithm to achieve
that. We have implemented the algorithm in R software (Gentleman
and Ihaka 1998). In fact, the modified EM/self-consistent algorithm
we propose can be used to compute empirical likelihood ratios in many
other types of censored/truncated data cases as described by Turnbull
(1976).



Of course, for problems where a simple Lagrange multiplier computa-

tion is available, it will usually be faster than the EM algorithm. Uncen-

sored data, or right censored data with weighted hazard constraint

are such cases (Pan and Zhou 1999). But as we point out above, this is

not the case for mean type constraints with censored/truncated data.

Example 1 Suppose i.i.d. observations X1, · · · , Xn ∼ F (·) are subject

to right censoring so that we only observe

Zi = min(Xi, Ci) ; δi = I[Xi≤Ci], i = 1,2, . . . , n; (1)

where C1, · · · , Cn are censoring times.

The log empirical likelihood function (LELF) for the survival distribu-



tion based on the censored observations (Zi, δi) is

L(p) = LELF =
n∑
i=1

δi log pi + (1− δi) log

 ∑
Zj>Zi

pj


 . (2)

where pi = ∆F (Zi) = F (Zi)− F (Zi−).

To compute the empirical likelihood ratio (Wilks) statistic for testing

the hypothesis: mean(g(X)) = θ, we need to find the maximum of the

above LELF with respect to pi under the constraint

n∑
i=1

pig(Zi) = θ ,
n∑
i=1

pi = 1 , pi ≥ 0 ; (3)

where µ is given. Similar arguments to those of Li (1995) show that

the maximization will force the pi = 0 except when Zi is an uncensored



observation. We focus on finding those pis. The straight application

of Lagrange multiplier method leads to the equations

δi
pi

+
n∑

k=1

(1− δk)
I[Zk<Zi]∑
Zj>Zk

pj
− λ[g(Zi)− θ]− γ = 0 ; for δi = 1

which do not have a simple solution for pi.

Example 2: Let X1, · · · , Xn be positive random variables denoting the

lifetimes which is i.i.d. with a continuous distribution F0. The censoring

mechanism is such that Xi is observable if and only if it lies inside

the interval [Zi, Yi]. The Zi and Yi are positive random variables with

continuous distribution functions GL0
and GR0

respectively, and Zi ≤ Yi
with probability 1. If Xi is not inside [Zi, Yi], the exact value of Xi
cannot be determined. We only know whether Xi is less than Zi or

greater than Yi and we observe Zi or Yi correspondingly.



The variable Xi is said to be left censored if Xi < Zi and right censored

if Xi > Yi. The available information may be expressed by a pair of

random variables: Ti, δi, where

Ti = max(min(Xi, Yi), Zi) and δi =


1 if Zi ≤ Xi ≤ Yi
0 if Xi > Yi
2 if Xi < Zi

i = 1,2, · · · , n.

(4)

The log empirical likelihood for the lifetime distribution F is

L(p) =
∑
δi=1

log pi +
∑
δi=0

log(
∑

Zj>Zi

pj) +
∑
δi=2

log(
∑

Zj<Zi

pj) . (5)



2. Maximization of empirical likelihood with uncensored, weighted

observations

The following is basically a weighted version of Owen (1990) The-

orem 1. Suppose we have independent (uncensored, not truncated)

observations X1, · · · , Xn from distribution F (·). Associated with the

observations are non-negative weights w1, · · · , wn. The meaning of the

weights are such that if wi = 2, it means Xi is actually 2 observations

tied together, etc. But we allow the weights to be fractions for the

application later.

The empirical likelihood based on the weighted observations is
∏

(pi)
wi

and the log empirical likelihood is∑
wi log pi . (6)



Theorem 3 The maximization of the log empirical likelihood (6) with
respect to pi subject to the two constraint:∑

pi = 1 ,
∑

g(Xi)pi = µ

is given by the formula

pi =
wi∑

j wj + λ(g(Xi)− µ)

where λ is the solution of the equation∑
i

wi(g(Xi)− µ)∑
j wj + λ(g(Xi)− µ)

= 0 .

For µ in the range of the the g(Xi)’s, there exist a unique solution of
the λ and the pi given above is also positive.

The proof of the above theorem is similar to (Owen 1990) and we omit
the details here.



3. The constrained EM algorithm for censored data

There is a large amount of literature on the EM algorithm. For exam-

ple, see Dempster, Laird, and Rubin (1977). For the particular setting

where the parameter is the CDF and observations are censored, see

Efron (1967) and Turnbull (1976). In particular, Turbull (1976) covers

a variety of censored/truncated data cases.

It is known that the EM algorithm will converge (eg. starting from

the empirical distribution based on uncensored data only) for the non-

parametric estimation of the survival function with right censored data.

However, EM algorithm was not used in that situation because an ex-

plicit formula exists (the Kaplan-Meier estimator). With a constraint

on the mean, there no longer exist an explicit formula. For doubly



censored data, it is even worse: there is no explicit formula for the

NPMLE with or without mean constraints. EM algorithm may be used

to compute both NPMLE. And thus this present opportunity for EM

to play its role and show its muscle here.

We describe below the EM algorithm for censored data.

E-Step: Given F , the weights, wj, at location tj can be computed as

n∑
i=1

EF
[
I[Xi=tj]

|Zi, δi
]

= wj .

We only need to compute the weights for those locations that either (1)

tj is a jump point for the given distribution F , or (2) tj is an uncensored



observation. In many cases (1) and (2) coincide (eg. the Kaplan-Meier

estimator). The weights wi for other locations is obviously zero. Also

when Zi is uncensored, the conditional expectation is trivial.

M-Step: with the (uncensored) pseudo observations X = tj and weights

wj from E-Step, we then find the probabilities pj by using our Theorem

3 above. Those probabilities give rise to a new distribution F .

A good initial F to start the EM calculation is the NPMLE without the

constraint (if available). In the case of right censored data that is the

Kaplan-Meier estimator. If that is not easily available, like in doubly

censored cases, a distribution with equal probability on all the possible

jump locations can also be used.



The EM iteration ends when the predefined convergence criterion is

satisfied.

Example (continue)

Suppose the ith observation is a right censored one: (δi = 0) the E

Step above can be computed as follows

for tj > Zi ; EF [I[Xi=tj]
|Zi, δi] =

∆F (tj)

1− F (Zi)

and EF [·] = 0 for tj ≤ Zi.

For uncensored observation Zi, it is obvious that EF [·] = 1 when tj = Zi
and EF [·] = 0 for any other tj.



For left censored observation Zi, the E Step above can be computed

as follows

for tj < Zi ; EF [I[Xi=tj]
|Zi, δi] =

∆F (tj)

F (Zi)

and EF [·] = 0 for tj ≥ Zi.

Remark: The E-step above is no different then Turnbull (1976). For

interval censored or even set censored data the E-Step can also be

computed similarly. Our modification is in the M-step.

4. Truncated and Censored Data

The similar idea of the last section also carrys through for arbitrarily

truncated and censored data as described in Turnbull (1976). We



first describe in some details the left truncated and right censored

observation case, since this is a common situation seen in practice. We

then briefly outline the algorithm for the general case and a theorem

that basically says the constrained NPMLE is equivalent to the solution

of the modified self-consistent equation.

4.1 Left Truncated and Right Censored Case

For left truncated observations, there is an explicit expression for the

NPMLE of CDF, the Lynden-Bell estimator. Li (1995) discussed the

empirical likelihood where the parameter is the probability F (T0) for a

given T0. For left truncated and right censored observations, there is

also an explicit NPMLE of the CDF. (Tsai, Jewell and Wang 1987).

But to compute the NPMLE under the mean constraint, no explicit

formula exist and we need the EM algorithm described here.



Suppose the observations are (Y1, Z1, δ1), · · · , (Yn, Zn, δn) where the Y ’s

are the left truncation times, Z’s are the (possibly right censored)

lifetimes. Denote by X the lifetimes before censoring/truncation. Cen-

soring indicator δ assumes the usual meaning that δ = 1 means Z is

uncensored, δ = 0 means Z is right censored. Truncation means for all

i, (Zi > Yi), and n is random. We assume Y is independent of X and

both distributions are unknown.

The log empirical likelihood pertaining the distribution of X is (see, for

example Tsai, Jewell and Wang 1987)

L(p) =
∑

i:δi=1

log pi − log(
∑

Zj>Yi

pj)

+
∑

i:δi=0

log(
∑

Zj>Zi

pj)− log(
∑

Zj>Yi

pj)

 .



The NPMLE of the CDF puts positive probability only at the locations

of observed, uncensored Zi’s. Denote those locations by tj.

E-step Given a current estimate F (·) that have positive probability only

at tj’s, we compute the weight

wj =
n∑
i=1

EF [I[Xi=tj]
|Xi, δi] +

n∑
i=1

I[tj<Yi]∆F (tj)/PF (X > Yi) ,

M-step with the pseudo observations tj and associated weights wj
obtained in the E-step, we compute a new probability as described in

Theorem 3, where the mean constraint weighs in.

The E-step above can be written more explicitly by noticing that (1)

the EF part can be computed same as in the example of the censored



data case, and (2) the second term is (without summation)

I[tj<Yi]∆F (tj)/PF (X > Yi) =
I[tj<Yi]pj∑
k I[tk>Yi]pk

where we used pj = ∆F (tj).



5. Arbitrary Censored/Truncated Observations Case

This section uses the same setup and notation of Turnbull (1976).

Suppose independent random variables, Xi, are drawn from the condi-
tional distribution functions P (X ≤ t|X ∈ Bi). Here Bi are truncation
sets.

Furthermore, Xi is censored into the set Ai, i.e. we only know that
Xi ∈ Ai. We suppose Ai = ∪j[Lij, Rij].

The empirical (or nonparametric) likelihood, based on the censored and
truncated observations (Ai, Bi), pertaining to the CDF of X is∏

i

P (X ∈ Ai)
P (X ∈ Bi)

,



see Turnbull 1976 (3.6) .

Turnbull (1976) identified the intervals, [qj, pj], where the NPMLE may
have positive probability masses. Let us denote the mid point of those
intervals by tj and the corresponding probability masses by sj.

We seek to maximize the empirical likelihood with a mean constraint
m∑
j=1

sjg(tj) = µ . (7)

Our self-consistent equation is just

π∗j(s) = sj j = 1,2, · · ·m (8)

where

π∗j(s) =

∑N
i=1{µij(s) + νij(s)}
M(s) + λ(g(tj)− µ)

. (9)



In the above M(s), µij, νij are as defined in Turnbull (1976), and λ is

the solution of the following equation:

0 =
m∑
j=1

(g(tj)− µ)×
∑N
i=1{µij(s) + νij(s)}

M(s) + λ(g(tj)− µ)
. (10)

The function g(·) and constant µ are assumed given.



and

M(s) =
∑
i

∑
j

(µij + νij) ,

µij = µij(s) = EI{xi∈[qj,pj]} ,

νij = EJij .

Because of truncation, each observation Xi = xi, can be considered

a remnant of a group, the size which is unknown and all (except the

one observed) with x-values in Bci . They can be thought of as Xi’s

“ghosts”.

Jij is the number in the group corresponding to the ith observation

which have values in [qj, pj].



We now show the equivalence of the modified self-consistency equation
(8) with the constrained NPMLE. The log likelihood of the data is given
by Turnbull (1976), equation (3.6). To maximize it under the mean
constraint (7) and

∑
sj = 1, we proceed by Lagrange multiplier. Taking

partial derivative of the target function

G =
N∑
i=1

log(
m∑
j=1

αijsj)− log(
m∑
j=1

βijsj)

−γ(
m∑
j=1

sj−1)−λ(
m∑
j=1

sj(g(tj)−µ))

with respect to sj we get

d∗j(s) =
N∑
i=1

{
αij∑m

k=1αiksk
−

βij∑m
k=1 βiksk

}
− γ − λ(g(tj)− µ) . (11)

For s to be the (constrained) NPMLE, those partial derivatives must be
zero. Multiply each of the partial derivatives d∗j(s) by sj and summation
over j, we get γ = 0.



The left side of self-consistent equation (8) can then be written as

π∗j(s) =
sj

M(s) + λ(g(tj)− µ)

d∗j(s) + λ(g(tj)− µ) +
N∑
i=1

 m∑
k=1

βiksk

−1
 .

Similar calculation to Turnbull (1976), gives

π∗j(s) =

{
1 +

d∗j(s)

M(s) + λ(g(tj)− µ)

}
sj .

Therefore the self-consistent equation (8) becomes{
1 +

d∗j(s)

M(s) + λ(g(tj)− µ)

}
sj = sj .

Now a similar argument to Turnbull (1976) leads to



Theorem 4 The solution of the constrained log likelihood equation

(11) is equivalent to the solution to the self-consistent equations (8).



Remark: Other constraints of the type∫
g1(t)dF (t) =

∫
g2(t)dF (t)

for one, two or more samples can be handled similarly.

Remark: Using the same modified EM method, we can compute the
NPMLE under weighted hazard constraint:∫

g(t)dΛ(t) = θ

for arbitrary censored/truncated data. (constrained NPMLE of hazard
function).

This can even be generalized to cover the case where X’s follow a
Cox model. Modified self-consistent/EM algorithm can be used to
compute the empirical likelihood ratio for β there with arbitrary cen-
sored/truncated data. (forthcoming paper.)



6. Simulations and Examples

We have implemented this EM computation in R software (Gentleman

and Ihaka 1996). It is available within a package emplik at one of

the CRAN web site (http://cran.us.r-project.org). The R function

el.cen.EM inside the package emplik is for right, left or doubly censored

observations with a mean type constraint. The R function el.ltrc.EM is

for left truncated and right censored data with a mean type constraint.

6.1 Confidence Interval, real data, right censored

The first example concerns Veteran’s Administration Lung cancer study

data (for example available from the R package survival). We took

the subset of survival times for treatment 1 and smallcell group. There

are two right censored observations. The survival times are:



30, 384, 4, 54, 13, 123+, 97+, 153, 59, 117, 16, 151, 22, 56, 21, 18,

139, 20, 31, 52, 287, 18, 51, 122, 27, 54, 7, 63, 392, 10.

We use the EM algorithm to compute the log empirical likelihood with

constraint mean(F ) = µ for various values of µ.



Figure 1: Log likelihood for µ near maximum

The log empirical likelihood has a maximum when µ = 94.7926, which

is the mean computed from the Kaplan-Meier estimator.



The 95% confidence interval for the mean survival time is seen to be

[61.70948,144.912] [Figure 1] since the log empirical likelihood was

3.841/2 = χ2(0.95)/2 below the maximum value (= -93.14169) both

when µ = 61.70948 and µ = 144.912. We see that the confidence

interval is not symmetric around the MLE, a nice feature of the confi-

dence intervals derived from the empirical likelihood.

6.2 Simulation: right censored data

It is generally believed that for the smaller sample sizes the likelihood ra-

tio/chi square based inference is more accurate then those obtained by

Wald method. The Q-Q plot [Figure 2] from the following simulation

shows that the chi square distribution is a pretty good approximation

of the -2 log empirical likelihood ratio statistic for right censored data

and mean parameter.



We randomly generated 5000 right-censored samples, each of size

n = 50 as in equation (1), where X ∼ exp(1) and C ∼ exp(0.2) and

g(t) = I[t≤1], or g(t) = (1 − t)I[t≤1]. i.e. the constraint is
∫ 1
0 g(t)d(1 −

exp(−t)) = µ. Both plots look similar, we only show here the one with

g(t) = (1− t)I[t≤1].



Figure 2: A Q-Q plot for right censored likelihood ratio

We computed 5000 empirical likelihood ratios, using the Kaplan Meier



estimator’s jumps as (p̃) which maximizes the denominator in (13)
and the modified EM method of section 3 gave (p̂) that maximizes
the numerator under H0 constraint. The Q-Q plot is based on 5000
empirical likelihood ratios and χ2

1 percentiles, and is shown in Figure
2. Two vertical lines were drawn at the point 3.84 and 2.71 which are
the critical values of χ2

1 with nominal level 5% or 10%. From the Q-Q
plot, we can see that the χ2

1 approximation is pretty good since the
−2log-likelihood ratios are very close to χ2

1 percentiles. Only at the tail
of the plot, the differences between −2log-likelihood ratios and χ2

1 are
getting bigger.

6.3 Simulation and example – Left truncated, right censored Case

We generate (left) truncation times, Y , as shifted exponential dis-
tributed random variables, exp(4) − 0.1. We generate lifetimes X dis-
tributed as exp(1) and censoring times C distributed as exp(0.15). The



truncation probability P (Y > X) is around 13.4%. The censoring prob-

ability P (X > C) is around 13%.

The triplets, (Y,X,C), are rejected unless we have Y < X and Y < C.

In that case we return the triplets Y, min(X,C) and d = I[X≤C]. In

the simulation, 50 triplets {Y, min(X,C), d} are generated each time

a simulation is run. The function g(t) we used is t(1− t)I[0<t<1]. The

mean of this function is µ = (3e−1 − 1). Figure 3 shows the Q-Q plot

of this simulation.



Figure 3: Q-Q plot of −2log-likelihood ratios vs. χ2
(1) percentiles

for sample size 50



Lastly, let us look at a small data taken from the book of Klein and

Moeschberger (1997). The survival times of female psychiatric inpa-

tients as reported in Table 1.7 on page 16 of the above book. Y =(51,

58, 55, 28, 25, 48, 47, 25, 31, 30, 33, 43, 45, 35, 36); Z =(52, 59,

57, 50, 57, 59, 61, 61, 62, 67, 68, 69, 69, 65, 76) and d =(1, 1, 1, 1,

1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1 ). The mean computed from the Tsai-

Jewell-Wang estimate is 63.18557. The plot of the -2 log likelihood

ratio against changing µ value is similar to Figure 1 and is omitted.

The -2 log likelihood ratio has a minimum of zero at µ = 63.18557

as it should be. A 95% confidence interval for µ are those values of

µ that the -2log likelihood ratio is less than 3.84. In this case it is

[58.78936,67.81304].



7. Discussion

The asymptotic theory for the constrained NPMLE and for the empir-

ical likelihood ratio lags behind the computation. There is yet a result

that covers all the cases described in Turnbull (1976).

One of the advantages of the EM algorithm is that it requires min-

imal computer memory. In the EM iteration, we only need to store

the current copy of F (·) and vector w. In contrast, the Newton type

method, Sequential Quadratic Programming method, (also available

inside emplik) needs to store matrices of size n × n (and inverting it).

This advantage is most visible for samples of size above 500 in our

experience.



On a PC with 3 GHz CPU, 512 MB.

Sample size 2000 (25% right censored). EM - 2 seconds. Newton - 20

seconds.

Sample size 4000 (25% right censored). EM - 5 seconds. Newton -

over 5 minutes.



Interval censored data, Type I (current status data).

Using the modified EM algorithm proposed here, the empirical likeli-

hood can be maximized under the constraint

F (t1) = 1− F (t2).

We obtain the constrained NPMLE, F̂ (·).

Banerjee and Wellner (2001) studied the constraint F (t) = θ.
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