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Summary

We study in this paper some nonparametric inference problems where the nonparametric
maximum likelihood estimator (NPMLE) are not well defined. However, if we enlarge
the parameter space, the NPMLE will be well defined. We propose to gradually shrink
the enlarged parameter space by placing more and more restrictions on the parameter
space, producing a sequence of (envelope) estimators. The approach is a counter part of
the sieve MLE (Grenander, 1981).

Several different problems where this method can be applied effectively are discussed.
The detailed treatment of 2-sample location problem is presented, including a Wilks
type theorem for the empirical envelope likelihood ratio statistic and the asymptotic
distribution of the empirical envelope MLE of location.
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1. Introduction

The maximum likelihood estimation method, when applied in the nonparametric settings, often

have difficulties. The maximizer often do not exist or there may be many maximizers. Estimating

a density function from a sample of i.i.d. observations is one such example. The method of

sieve, (Grenander 1981, Geman and Huang 1982) is developed to get around this by adopting

a sequence of smaller but growing parameter spaces that approximates the original parameter

space. On the smaller parameter spaces, the MLEs are well defined.

In this paper, we consider empirical likelihood (Owen 1988, Thomas and Grunkemeier 1975).

The Empirical Likelihood (EL) method parallels the parametric maximum likelihood method,

except the assumption of a density is dropped and the likelihood function is replaced by the

Empirical Likelihood. Many research papers have appeared since and all of them testify that

the EL method is a very competitive and promising nonparametric statistical inference method,

see the recent book by Owen (2001).

However, in some important cases, the maximum empirical likelihood estimator do not exist

or there exist many maximizers of the empirical likelihood, and the empirical likelihood ratio

test of Owen (1988) cannot be used. We propose an estimation method called empirical envelope
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likelihood. It enlarges the parameter space to make the maximum empirical likelihood estimator

well defined and then gradually shrink the enlarged parameter space as sample size grows by

putting more and more constraints on the parameter space.

To explain the idea clearly we start with the simplest 2-sample location problem and indicate

later a variety of problems that can be solved similarly by the envelope MLE method.

2. The Location Problem, and the Proposed Solution

For n i.i.d. observations the log empirical likelihood is

∑
logwi ,

where wi > 0 and
∑
wi = 1. See Owen (1988), (1990) among others. When there are two

independent samples of size n and m, each with its own distribution, the log empirical likelihood

is

logLik =
n∑
i=1

logwi +
m∑
j=1

log pj , (1)

where wi > 0,
∑
wi = 1 and pj > 0,

∑
pj = 1.

The following 2-sample location shift problem presents some difficult for the empirical like-

lihood/NPMLE method.

Original Model: Suppose X1, · · · , Xn are i.i.d. F (t) and independently Y1 · · · , Ym are i.i.d.

F (t− θ), where θ ∈ R1 is the parameter of interest. The distribution F (t) is also unknown and

arbitrary (if needed we may assume the mean is finite), which can be thought of as an infinite

dimensional nuisance parameter.

If F (t) is a continuous distribution there will be n × m maximizers of the log empirical

likelihood (1), and those maximizers do not converge as sample size grows. Therefore neither of

the NPMLE of F and θ exist.

Enlarged model: If we enlarge the parameter space by

replace F (t− θ) with G(t)

where G is also arbitrary, then the NPMLE of F and G both exist based on the sample of

X’s and Y ’s (they are the empirical distributions). Here the parameter space is enlarged from

Θ1 = (F (·), θ) to Θ2 = (F (·), G(·)). The estimator of location parameter θ̂ in the enlarged
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parameter space can be obtained, for example, as the difference of the 2 means or medians of F̂

and Ĝ, which is the same as the difference of the two sample means/medians.

This estimator of θ is consistent but not efficient since it did not take into account the

information that X and Y sample have the same distribution, except a shift.

We propose a method of estimation (for θ and F ) which we will call it the empirical envelope

MLE. It uses the information that X and Y sample have same distribution, except a shift. It

proceeds as follows.

Since the NPMLE do exist when we enlarge the parameter space, we shall start from there

and try to shrink the parameter space gradually as the sample size increases. The idea is similar

to the sieve MLE of Grenander (Grenander, 1981, see also Geman and Huang 1982) but with

a sequence of shrinking envelopes (larger parameter spaces) instead of growing sieves (smaller

parameter spaces).

Specifically, we shall impose constraints on Θ2 that the two distributions F and G satisfy

the following: for some given ti’s

F (ti) = G(ti + θ), i = 1, 2, · · · , k; for some θ ∈ R1. (2)

We show that the maximizer of log likelihood (1) over Θ2 with constraint (2) (i.e. the constrained

NPMLE) is well defined. Other types of constraints are certainly possible and may have some

advantages due to smoothness, see (5), (6) and Lemma 2 later.

If we increase the number of ti points (thus the number of constraints) as sample size grows

and let ti’s become dense in the support of F , then in the limit we have the constraint: F (t) =

G(t + θ) for all t. The parameter space Θ2 with these constraints falls back to the parameter

space Θ1.

The choice of the points ti (or the choice of the gi(·) functions in (5), (6)) in the finite sample

is a problem similar to the choice of kernel/band-width in the density estimation.

The value θ̂, (and F̂ and Ĝ) that maximize the log likelihood among θ ∈ R1 and all possible

F , G distributions that satisfy (2), is our envelope MLE of θ. The value F̂ (ti) ≡ Ĝ(ti + θ̂)

can also be thought of as the envelope MLE of F (ti).

Testing hypothesis for the parameter θ can be accomplished by the empirical likelihood ratio

and Wilks type theorem.
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To be specific let us treat a testing hypothesis problem of

H0 : θ = θ0 vs HA : θ 6= θ0

without loss of generality we take θ0 = 0.

The test statistic we propose is the likelihood ratio statistic

T1 = −2{max logLik(with(2), θ = 0)−max logLik(with(2), θ = θ̂)} . (3)

This test statistic have an asymptotic chi-square distribution with 1 degree of freedom under

null hypothesis. We reject H0 for larger values of T1.

The two log likelihood functions in (3) are defined as follows: the first term, max logLik

(with(2), θ = 0), is maximized over Θ2 under the constraint (2) but with θ ≡ 0 in there. The

second term, max logLik(with(2), θ = θ̂), is maximized over Θ2 under the constraint (2) where

θ is also maximized over R1. As we defined above, the maximum over θ is assumed to attain at

θ̂, and some F̂ , Ĝ, where they satisfy F̂ (ti) = Ĝ(ti + θ̂).

2.1 Reformulation in terms of hazard

Next we reformulate the problem in terms of (cumulative) hazard function instead of distribution

function. It turns out that computations are much easier with the equivalent hazard formulation,

especially for proportional hazard type constraints. (Fang and Zhou 2000). A second advantage

of hazard formulation is that it can accommodate right censored data readily (Pan and Zhou

1999).

The log likelihood function in terms of hazard for the two independent samples is

logH Lik =
∑
i

[d1i log vi + (R1i − d1i) log(1− vi)] +
∑
j

[d2j log uj + (R2j − d2j) log(1− uj)] (4)

where d1i is the number of uncensored observations at xi — the ordered Xi’s, and R1i is the

number of X observations that are ≥ xi, etc. and 1 ≥ vi > 0, 1 ≥ uj > 0 are the discrete

hazards at xi and yj respectively. See, for example, Thomas and Grunkemeier (1975), Li (1995)

for similar notation.

The constraints we impose on the hazards vi and uj are: for given g1(·), · · · , gk(·) functions

∑
g1(xi) log(1− vi) =

∑
g1(yj − θ) log(1− uj) , (5)
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· · · · · ·∑
gk(xi) log(1− vi) =

∑
gk(yj − θ) log(1− uj) . (6)

If we take the function g1(t) = I[t≤t1] in the above then the first constraint becomes

∏
xi≤t1

(1− vi) =
∏

yj−θ≤t1
(1− uj) .

Since for discrete distributions 1− F (t) =
∏
xi≤t(1− vi), this is equivalent to the constraint we

imposed on the distributions in (2). We in fact shall allow gi(·) to be any predictable (or left

continuous) functions for generality.

Remark: We could even use two different g(·) in one constraint equation. For example, in

equation (5) if we take g1(xi) = I[xi≤t1] and replace g1(yj − θ) by α · I[yj−θ≤t1] then it is easy to

verify that we have the constraint

1− F (t1) = [1−G(t1 + θ)]α .

This is a shift plus proportional hazard constraint. We will discuss this model in a bit more detail

in section 4. If we let α = 1 then this is the same shift constraint as in (2). Notice that this

constraint would be awkward to work with by using the distribution formulation (2) because of

the nonlinearity of the constraint in terms of probabilities.

The test statistic in terms of hazards is

T2 = −2{logH maxLik(with constraint (5, 6), θ = 0)−logH max
θ
Lik(with constraint (5, 6), θ)} .

The term logH maxLik(with(5, 6), θ = 0) can be easily computed numerically. The com-

putation of the second term is a little more involved. But we can easily get an asymptotic

expression for θ̂ (see Theorem 2).

The 2-sample location problem discussed here is a basic problem and there are many other

possible nonparametric tests available for the location parameter in the original model. They

include the Wilcoxon type tests based on ranks. We chose to present the idea of the envelope

empirical likelihood method in this simple setting so that we can see clearly how it works. The

envelope empirical likelihood method clearly applies to other more complicated cases. For ex-

ample, it is non-trivial to generalize the ranks to the multivariate data case and/or censored
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data case. In contrast, the proposed empirical envelope MLE is easy to generalize to multi-

variate/censored data case, and have high efficiency. The Wilcoxon test is not always efficient.

Besides, the confidence interval for θ based on the empirical likelihood ratio test has all the

inherited nice properties of the likelihood ratio method (see Owen 1988, 1990, 2001).

3. Generality of the Problem/Method

In this section we discuss some other nonparametric problems where the envelope MLE

method can apply.

3.1 Symmetric Distributions

Suppose a sample of n i.i.d. observations have a symmetric distribution, but otherwise both

the point of symmetry (θ) and the (symmetric) distribution (F ) are unknown and arbitrary.

Maximizing the log empirical likelihood,
∑

logwi, among all symmetric distributions based on

the sample always yields many (≈ n) candidates for F and θ, when the true distribution is

continuous. They all have the same likelihood value but are far apart. Therefore the NPMLE

do not exist.

Empirical envelope MLE method can also be used here to get valid estimation/testing pro-

cedures. Professor Owen told me that this problem was considered by Qu for one dimensional

data with no censoring and with moment constraints.

To use the envelope MLE method, we proceed first by enlarge the parameter space to all

distributions, symmetric or not. The NPMLE exists now and is the empirical distribution

function.

The envelope MLE method then calls for shrinking the parameter space by putting con-

straints like these on the parameter space {F : all distributions}: for given ti,

F (θ − ti) = 1− F (θ + ti) i = 1, 2, · · · k; for some θ ∈ R1.

Or we may use smooth constraints like: for given gi(·),∫
gi(t)dF (θ − t) =

∫
gi(t)d[1− F (θ + t)] i = 1, 2, · · · k.

Maximize the log empirical likelihood ∑
logwi
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among distributions in the constrained parameter space yields both the empirical envelope MLE

θ̂ and F̂ (θ̂ − ti).

Empirical envelope likelihood ratio coupled with Wilks theorem can be used to obtain asymp-

totically correct α level tests and confidence intervals.

Remark: The efficiency of the estimator θ̂ can be shown to be close to the semiparametric

information bound. (Kim and Zhou 2002).

Remark: The problem of estimating the center of a symmetric but unknown density was

considered by many others. The approach of envelope MLE, however, do not assume a density.

The same approach works for higher dimensional data. With a little effort, the symmetry of a

distribution in R2 can be defined. (van der Vaart 1988).

Other related problems in the symmetric distribution case include: the symmetry equality

may only valid for a finite interval:

F (θ − t) = 1− F (θ + t) for t ∈ [0, c]

or that the equality is valid only after a transformation on the F .

3.2. Location Related Problems

1). Two sample location-scale problems: where

x1, · · · , xn ∼ F (t) ; y1, · · · , ym ∼ G(t)

and

G

(
t+ θ

σ

)
= F (t) .

The parameters θ and σ are two parameters of interest and F (·) is treated as infinite dimensional

nuisance parameter.

2). Location-transformation problems: similar to above model but

G(t+ θ) = h(F (t)) .

For example the h() could be the proportional hazard transformation.

For example, the treatment of AZT for HIV positive patients may delay the onset of AIDS,

as well as prolong the time to death after the onset of AIDS. So the effect of treatment on
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survival are twofold, a shift of onset time and a proportional hazards change in the distribution

of death time after onset of AIDS. Such a parametric model assume exponential distribution is

F (t) = 1− e−λ1t ; G(t) = 1− e−λ2(t−θ) .

A nonparametric model of the similar type should be more flexible/desirable and this leads

to the shift proportional hazard model:

1− F (t) = [1−G(t− θ)]λ . (7)

We can estimate θ and λ simultaneously by using the empirical envelope MLE method. The

initial envelope would be an arbitrary F and an arbitrary G. We then impose constraints exactly

as in (7) above except the equalities hold only at k given times t1, t2, · · · , tk. The estimation of

F (ti) are also available.

3). Censored data or data from biased sampling poses no problem as long as we can compute

the constrained NPMLE. In fact Theorem 1 and 2 in next section work without change for right

censored data.

4). M samples shift problem, where θ will then be a (M − 1) dimensional shift parameter.

5). The observations X and Y may be r dimensional vectors, and thus θ is also a r dimen-

sional vector.

We shall study some of those problems in forthcoming papers.

In general, when the constraint we want to impose on the NPMLE(s) can not be obtained by

adjusting the jump size of the un-constrained NPMLE(s), the usual empirical likelihood method

will have difficulty. In those cases the empirical envelope MLE method can often be used.

4. Large Sample Results for the Location Envelope MLE

We shall prove in this section that under null hypothesis our proposed test statistic T2 defined

in section 2 has asymptotically a chi-square distribution with one degree of freedom, and obtain

the asymptotic distribution for the envelope MLE θ̂.

Denote the column vectors

g(t) = {g1(t), · · · , gk(t)}T ; and λ = {λ1, · · · , λk}T .
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Lemma 1 The hazards that maximize the log likelihood function (4) under the constraints

(5), (6) with a fixed θ are given by

vi(λ) =
d1i

R1i +NλT · g(xi)
; (8)

uj(λ) =
d2j

R2j −NλT · g(yj − θ)
; (9)

where N = n+m and λT · g(xj) denote the inner product
∑
i λigi(xj). The λ value in equation

(8), (9) above is obtained as the solution of the following k equations

∑
i

g1(xi) log(1− vi(λ)) =
∑
i

g1(yj + θ) log(1− uj(λ)) (10)

· · · · · ·∑
i

gk(xi) log(1− vi(λ)) =
∑
i

gk(yj + θ) log(1− uj(λ)) . (11)

Proof: The result follow from a standard Lagrange multiplier argument applied to (4), (5)

and (6). ♦.

Since the solution of equations (10), (11) clearly depend on θ, we shall denote the solution

λ as λ(θ) for the rest of this paper.

Lemma 2 When X’s and Y ’s have same distribution/hazard function, the solution λ(θ) of

the constraint problem (10), (11) have the following asymptotic representations:

(i)
√
Nλ(0) D−→ N(0,Σ) ;

where Σ is defined by (21).

(ii) Assume g(·) is smooth and h′(0) (defined in (20)) is invertible. For |θ| = O(1/
√
N) we

have

λ(θ) = λ(0) + θa+ op(1/
√
N)

where

a = [h′(0)]−1
{∫

g′1(t) log(1− dΛ(t)), · · · ,
∫
g′k(t) log(1− dΛ(t))

}T
and Λ(t) is the common cumulative hazard function of X and Y .

Proof: See appendix. ♦.
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The proof of the following two theorems actually work for right censored observations without

change. Of course we will need the usual conditions on the censoring that ensure the Nelson-

Aalen estimators to have asymptotic normal distributions. See Andersen et. al. (1993) for

details.

Theorem 1 Suppose that F ≡ G, the test statistics T2 has asymptotically a chi-square

distribution with one degree of freedom.

Proof: Let

f(λ(θ)) =
∑
{d1i log vi(λ(θ)) + (R1i − d1i) log[1− vi(λ(θ))]}

+
∑
{d2j log uj(λ(θ)) + (R2j − d2j) log[1− uj(λ(θ))]} (12)

then we have

T2 = −2{f(λ(0))− f(λ(θ̂))} .

Or, recall the definition of θ̂ we have also

T2 = −2 min
θ
{f(λ(0))− f(λ(θ))} .

By Taylor expansion we have

T2 = −2 min
θ
{f(0) + λT (0)f ′(0) + 1/2λT (0)Dλ(0) + op(1)

− f(0)− λ(θ)T f ′(0)− 1/2λT (θ)Dλ(θ) + op(1)} (13)

where we used D to denote the matrix of second derivatives of f(·) with respect to λ. The

expansion are valid in view of Lemma 2.

Notice we have f ′(0) = 0 (appendix), the above is reduced to

T2 = −min
θ
{λT (0)Dλ(0)− λT (θ)Dλ(θ) + op(1)} . (14)

Use the representation λ(θ) = λ(0) + θa + op(1/
√
N) from Lemma 2 and ignore the op(1)

term, we readily find the minimization over θ and obtain the minimized value (Lemma 5)

T2 =
[λT (0)Da]2

−aTDa
+ op(1) . (15)

Recall the distributional result for λ(0) in Lemma 2 and notice that (appendix)

−D
N
→ D∗ ,
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it is not hard to show that

√
NλT (0)(D/N)a D−→ N(0, aTD∗ΣD∗a) .

Finally we check D∗ = (Σ)−1 (see appendix) to get

√
NλT (0)(D/N)a D−→ N(0, aTD∗a) . (16)

This together with (15) imply that

T2
D−→ χ2(1) .

♦.

Theorem 2 The asymptotic distribution of the empirical envelope ML estimator θ̂ is given

by
√
N(θ̂ − θ0) D−→ N(0, σ2)

where

σ2 =
1

(aTD∗a)
.

Proof: Recall we assumed WLOG that θ0 = 0. Let us focus on the expression (14). Aside

from the op(1/
√
N) term, the θ that achieves the minimum is easily computed (Lemma ?):

θ̂ = −λ
T (0)Da
aTDa

+ op(1/
√
N) .

Therefore
√
Nθ̂ = −

√
NλT (0)Da
aTDa

+ op(1) .

In view of (16) we see that the theorem is proved. ♦.

Remark 1: The asymptotic variance of θ̂ is of interest. In fact we can show aTD∗a is

equal to a summation that approximates the integral which in turn is the semiparametric Fisher

information of the parameter θ in the original model. The approximation gets better when more

constraints are used as in (2).

Remark 2: The asymptotic distribution of F̂ (ti) or more generally the asymptotic distri-

bution of
∑
g1(xi) log[1− vi(λ(θ̂))] can also be obtained easily using Theorem 2. We shall study

the estimation of the nuisance parameter F and efficiency elsewhere.

Remark 3: The limiting distribution in Theorem 1 do not depend on k – the number of

constraints we imposed on the distribution/hazard function. On the other hand, the limiting
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distribution in Theorem 2 and the confidence interval of θ based on the likelihood ratio statistic

for a given sample do change with k.

5. An Example

We present one small example to illustrate the empirical envelope MLE procedure. We shall use

the famous iris data set (of Fisher), focus on the petal length measurements for two species of

iris: versicolor and virginica. There are 50 measurements for each species. The data is available

as a built-in data set from the software R (Gentleman and Ihaka 1996).

The sample mean of petal length for versicolor is 4.26. The sample mean of petal length for

virginica is 5.552, with a difference of 1.292.

We shall use three constraints in estimating θ, that for t = 3.8, t = 4.2 and t = 4.5

Fvc(t) = Gvg(t− θ) .

The empirical envelope MLE of θ is found to be any value between 1.2 and 1.3. The non-

uniqueness of the solution can be avoided if we use constraints (9), (10) with a continuous

g.

Appendix

We first check f ′(0) = 0. To this end we compute

∂

∂λr
f(λ) = A+B

where

A =
∑
i

d1i
(vi)′r
vi(λ)

− (R1i − d1i)
(vi)′r

1− vi(λ)
.

Letting λ = 0 and after some simplification we have

A = −
∑
i

(R1i −R1i)
d1iNgr(xi)

R2
1i

≡ 0 .

The calculation for term B is similar. ♦.

We now compute f ′′(0) = D. The rlth element of the k × k matrix D is

Drl =
∂2

∂λr∂λl
f(λ)|λ=0 .
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After straight forward but tedious calculations we obtain

Drl = −

∑
i

N2grgl
R1i

d1i

R1i − d1i
+
∑
j

N2grgl
R2j

d2j

R2j − d2j

 .

Now by a standard counting process argument, we see

−Drl

N
→ D∗rl .

♦

Proof of Lemma 2. We show the asymptotic distribution of λ(0). The argument is

similar to, for example, Owen (1990) and Pan and Zhou (1999). Define a vector function

h(s) = (h1(s), · · · , hk(s)) by

h1(s) =
∑
i

g1(xi) log(1− vi(s))−
∑
j

g1(yj) log(1− uj(s)) , (17)

· · · · · ·

hk(s) =
∑
i

gk(xi) log(1− vi(s)))−
∑
j

gk(yj) log(1− uj(s)) , (18)

then λ(0) is the solution of h(s) = 0. Thus we have

0 = h(λ(0)) = h(0) + h′(0)λ(0) + op(1/
√
N) , (19)

where h′(0) is a k × k matrix. Therefore

√
Nλ(0) = [h′(0)]−1(−

√
Nh(0)) + op(1) .

The elements of h′(0) are easily computed as

h′rl =
∑
i

Ngr(xi)gl(xi)d1i

R1i(R1i − d1i)
+
∑
j

Ngr(yj)gl(yj)d2j

R2j(R2j − d2j)
. (20)

Notice we have Nh′rl = −Drl. By the standard counting process martingale central limit theorem

(see, for example, Gill (1981), Andersen et. al. (1993)) we can show that

√
Nh(0) D−→ N(0,Σh)

with Σh = limh′(0).

Finally, putting it together we have

√
Nλ(0) = [h′(0)]−1(−

√
Nh(0)) + op(1) D−→ N(0,Σ)
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with

Σ = lim[h′(0)]−1 . (21)

Recall Nh′rl = −Drl, we see that Σ−1 = lim[h′(0)] = Σh = D∗. This completes the proof of (i).

The result (ii) can be obtained by noticing

∑
j

gk(yj) log(1− uj)−
∑
j

gk(yj + θ) log(1− uj) = −θ
∑
j

g′k(yj) log(1− uj) + o(|θ|) ,

and thus

−θ
∑
j

g′(yj) log(1− uj) ≈ h(λ(θ))− h(λ(0)) ≈ h′(0)[λ(θ)− λ(0)].

♦
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Lemma 5 Suppose D is a positive definite matrix of k× k, and a is a vector of k× 1,
b is a matrix of k × p and u is a vector of p× 1.

The minimization of the following quadratic form

min
u

(a− bu)TD(a− bu)

occurs when u = u∗ where u∗ is the solution of the following equations

bTD(a− bu∗) = 0 .

The minimum value achieved is

aTDa− aTDbu∗ = aTDa− (bu∗)TDbu∗ .

Proof: Define an inner product of any two k × 1 vectors as

(v1 · v2) = vT1 Dv2 ,

and then define the length of the vector as ||v|| =
√

(v · v) in terms of this inner product.
Then the minimization problem above can be viewed as the minimization of the length
of the vector (a− bu).

The u∗ that achieve the minimization makes the vector (a − bu∗) orthogonal to the
linear space spanned by b. Therefore we have

b · (a− bu∗) = bTD(a− bu∗) = 0 .

The minimum value can then be easily calculated. ♦
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