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Abstract

Recently it has been shown that empirical likelihood ratios can be used to form confidence
intervals and test hypothesis just like the parametric case. We illustrate here the use of a par-
ticular kind of 1-parameter sub-family of distributions in the analysis of empirical likelihood
with censored data. This approach not only simplifies the theoretical analysis of the limiting
behavior of the empirical likelihood ratio, it also gave us clues for the numerical search of
constrained maxima of an empirical likelihood.
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1. Introduction

Based on the likelihood function there are 3 different methods to produce confidence intervals: namely

Wald’s method, Rao’s method and Wilks’ method. Among the 3, the Wilks likelihood ratio (LR)

method do not need the calculation of information or its inverse. It automatically adjust the statistics

−2 log LR to a pivotal. This can be a real advantage in the case where the information (or its inverse)

is difficult to estimate. Even when all 3 are easy to obtain, the LR method still holds some unique

advantages: it produces a confidence interval that is invariant under transformations, and is always

inside the parameter space. The drawback of the Wilks method is that we need to find the maximum

of the likelihood under a constraint and this could be non-trivial.

Recently, Owen (1988, 1990) and others showed that the likelihood ratio method can also be used

to produce confidence intervals in some nonparametric settings after appropriate modifications. He

term this empirical likelihood ratio method. A key feature of his approach is that the maximum of

the (empirical) likelihood under the constraint can (almost) be explicitly found. This is no longer

the case when either the likelihood or the constraint gets more complicated. For example, when the

constraint is not a linear function of distribution function or when the data are censored making the

likelihood more complicated. For some recent work on the censored data empirical likelihood ratio

method see Li (1995) and Murphy (1995).

In this paper we use the method of 1-parameter sub-family of distributions to deal with the

difficult of maximizing the likelihood under a constraint. In essence, this method delays (part of)

the task of finding the maximum under a constraint until after the limit (n → ∞) was taken. In
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the limiting form, the models are smoother and often easier to be maximized. We present below in

detail how this works for right censored data with the constraint of a linear functional of the hazard

function, but the same method works for many other cases too.

Now we formally describe the type of data and the likelihood we will be considering in this

paper. Suppose that X1, · · · , Xn are iid nonnegative random variables denoting the lifetimes with a

nondegenerate distribution function F (t) = P (X ≤ t). Independent of the lifetimes are the censoring

times C1, · · · , Cn which are iid with a distribution G. Only the censored observations are available

to us:

Ti = min(Xi, Ci) ; δi = I[Xi ≤ Ci] i = 1, 2, · · · , n. (1.1)

The empirical likelihood based on censored observations (Ti, δi) is

∏
∆F (Ti)δi [1− F (Ti)]1−δi∆G(Ti)δi [1−G(Ti)]1−δi .

Since we are only concerned in this paper with the inference of X distribution F , we drop the terms

involving G in the above. Thus the empirical likelihood pertaining F is

EL(F ) =
n∏
i=1

∆F (Ti)δi [1− F (Ti)]1−δi . (1.2)

When the distributions are continuous, the above likelihoods reduces to the familiar forms

∏
[∆ΛF (Ti)]δi [∆ΛG(Ti)]1−δi [1− F (Ti)][1−G(Ti)]

and ∏
[∆ΛF (Ti)]δi [1− F (Ti)] .

where ΛF (·) is the cumulative hazard function of X, etc.

But since the distributions here may not be continuous, in fact the nonparametric maximum

likelihood estimators: the Kaplan-Meier and the Nelson-Aalen estimators are all purely discrete, we

need to be more careful. We begin with a formula linking F and ΛF that is valid for continuous as

well as discrete distributions. The cumulative hazard function Λ(t) is defined in this case (see. eg.

Andersen, Borgan, Gill and Keiding (1993) p. 92)

Λ(t) = ΛF (t) =
∫

[0, t]

dF (s)
1− F (s−)

, (1.3)

and it is often more convenient to work with than distribution function when censoring are involved.

Thus we have ∆F (t) = ∆Λ(t)[1−F (t−)] and 1−F (t) =
∏
s≤t(1−∆Λ(s)). This leads to the rewriting

of (1.2) as

EL =
∏

(∆Λ(Ti))δi [1− F (Ti−)]δi [1− F (Ti)]1−δi , (1.4)
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and

EL(Λ) =
n∏
i=1

(∆Λ(Ti))δi [
∏
s<Ti

(1−∆Λ(s))]δi [
∏
s≤Ti

(1−∆Λ(s))]1−δi . (1.5)

If the distributions (and thus the cumulative hazards) have discrete as well as continuous part then

the later two products above should be understood as product integrals. But for discrete distributions

or hazards that have possible jumps only at the observed times, Ti, the likelihood is

EL(Λ) =
n∏
i=1

(∆Λ(Ti))δi [
∏
Tj<Ti

(1−∆Λ(Tj))]δi [
∏
Tj≤Ti

(1−∆Λ(Tj))]1−δi . (1.6)

See Owen (1988) for a discussion on why we can restrict the support of F on the observed sample.

See also Gill (1989) for more detailed discussion on the extension of the likelihood function that

covers discrete case. One point made clear by Gill is that even though the true distribution of X

may be continuous, we should write the likelihood to include the discrete case.

In the worst case, we may forget about whether EL is a true likelihood or not and only think of

EL as just some statistic and using it we can construct a pivotal: −2 log ratio of maximized EL.

It is well known the unconstrained maximizer of EL(Λ) is the Nelson-Aalen estimator:

Λ̂NA(t) =
∑
i:Ti≤t

δi
R(Ti)

where R(t) is the number at risk at time t: R(t) = #{i| Ti ≥ t}. This estimator is a pure jump

function. All of its jump sizes are less then one with the possible exception of the last jump which

could be one. For detailed discussion of the cumulative hazard function and Nelson-Aalen estimator,

see Andersen, Borgan, Gill and Keiding (1993) Chapter IV.

2. Main Theorems

Since the likelihood (1.6) is now in terms of the cumulative hazard function, we consider a constraint

that is a linear functional of the (unknown) cumulative hazard function:∫
g(t)dΛ(t) = θ . (2.1)

Remark: Parameters of the form (2.1) can arise in a Cox model with a time-dependent covariate.

In such a model the cumulative hazard up to time τ for a patient with a time-change multiplicative

covariate g(t) is
∫ τ

0 g(t)dΛb(t) where Λb(t) is the baseline hazard. More specifically, if smoking doubles

the hazard and a patient that smokes for 10 years and then quit will have a cumulative hazard up

to time τ given by the above integral with g(t) = 1 + I[t≤10].

With a constraint of this form the maximizer of EL(Λ) is not easy to find explicitly thus we

cannot mimic the approach Owen used. For technical reasons we require

g(t) is left continuous, and σ2
Λ(g) =

∫
g2

(1− F )(1−G)
dΛ <∞. (2.2)
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In order to make the problem of maximizing EL(Λ) under constraint (2.1) easier, we define a

1-parameter sub-family of cumulative hazard functions, and only look for the maximum within this

family first. The family we are going to define are all dominated by the Nelson-Aalen estimator, and

indexed by λ as

Λλ(·) has jump at t =


∆Λ̂NA(t) 1

1 + λh(t) if ∆Λ̂NA(t) < 1;

∆Λ̂NA(t) if ∆Λ̂NA(t) = 1.

(2.3)

where h(t) is a given function. In the definition we need to single out the case of ∆Λ̂NA(Ti) = 1,

because any purely discrete cumulative hazard function must have the jump sizes ≤ 1. This is similar

to the constrain of “total jump size adds up to one” in the distribution case.

The range of λ needs to be restricted to ensure the above defined Λλ is a true cumulative hazard

function: i.e. we need to ensure 0 ≤ ∆Λλ < 1 except when ∆Λ̂NA(t) = 1. This is similar to the

restriction that all the jumps of a distribution function must be non-negative. This imposes an

interval of λ range J to guarantee that. For detailed definition of J see appendix. This interval will

always contain the value 0 because when λ = 0, Λλ=0 falls back to Λ̂NA, a perfect legitimate hazard

function. The function h has the interpretation as the direction Λλ passes through Λ̂NA.

For a given sample if the value θ in (2.1) is too far away from
∫
g(t)dΛ̂NA(t) = θ̂ then the

constraint equation may not have a solution (at least not with a legitimate λ value that makes

0 ≤ ∆Λλ < 1). This is exactly similar to Owen (1990) where the mean µ needs to be inside the

convex hull of the sample. Following Owen (1991) we define the likelihood to be zero when θ value

is too far away from θ̂.

Finding the maximizer of EL(Λ) under constraint (2.1) for this family of cumulative hazard

functions only is easy: there is only one such cumulative hazard function in this family that satisfy

the constraint and thus it is the one that maximizes the EL under the constraint!

We have to chose a λ to satisfy the constraint:∫
gdΛλ =

n∑
i=1

g(Ti)∆Λλ(Ti) = θ . (2.4)

We require h(t)g(t) ≥ 0 a.s. F to guard against the possibility of multiple solutions of (2.4). This

makes
∫
gdΛλ a monotone function of λ, which can easily be checked by computing its derivative.

Let us denote the λ root of (2.4) by λn.

Thus the un-constrained maximizer of the likelihood is Λ̂NA (or Λλ=0) and the constrained

maximizer (among the family (2.3)) is Λλ=λn .

We can thus form the empirical likelihood ratio for this family of cumulative hazard functions by

ELRh(θ) =
sup{EL(Λ)|Λ ∈ family (2.3) and satisfy constraint (2.4)}

supEL(Λ)
=

EL(Λλn)
EL(Λ̂NA)

. (2.5)
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We are now ready to state the following Theorem. To clearly present the use of 1-parameter sub-

family of distributions and minimize the digress to the technical details we shall assume a continuous

distribution for the observations.

Theorem 1 For the censored data (1.1) with a continuous distribution F , if the constraint is

given by (2.1) with θ = θ0 =
∫
gdΛ0 and the given function g(t) satisfy (2.2) and h(t) in (2.3) is

another function that is (i) left continuous (ii)
∫
h2dΛ <∞ and (iii) h(t)g(t) ≥ 0 a.s. F , then

−2 logELRh(θ0) D−→ χ2
(1) × rh as n →∞,

where

rh =

∫ g2dΛ
(1−F )(1−G)

∫
h2(1−G)(1− F )dΛ

(
∫
ghdΛ)2 .

Proof: See appendix. 2

The constant rh in the Theorem 1 above can easily be shown by Cauchy-Schwartz inequality

to be always ≥ 1 and for a particular choice of h it becomes one. This amounts to find an h that

maximize the (limit of) EL under constraint.

Theorem 2 The constant in Theorem 2, rh, is always greater then or equal to one. For the

choice h(t) = g(t)/[(1 − F )(1 − G)] the constant rh = 1. Thus for this choice of h we have, under

the conditions of Theorem 1,

−2 logELRh(θ0) D−→ χ2
(1) as n →∞.

Proof: We begin by rewrite the 3 integrals in rh with respect to Λ as expectations:∫ ∞
0

g2(x)
(1− F0(x))(1−G0(x))

dΛ0(x) =
∫ ∞

0

g2(x)
(1− F0(x))2(1−G0(x))

dF0(x)

= EF0

g2(X)
(1− F0(X))2(1−G0(X))

,

∫ ∞
0

h2(x)(1−G0(x))(1− F0(x))dΛ0(x) =
∫ ∞

0
h2(x)(1−G0(x))dF0(x)

= EF0h
2(X)(1−G0(X)),

and (∫ ∞
0

g(x)h(x)dΛ0(x)
)2

=
(∫ ∞

0

g(x)h(x)
1− F0(x)

dF0(x)
)2

=
(

EF0

g(X)h(X)
1− F0(X)

)2

=

(
EF0h(X)

√
1−G0(X)

g(X)
(1− F0(X))

√
1−G0(X)

)2

.
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By Cauchy-Schwartz inequality we know(
EF0

[
h(X)

√
1−G0(X)

g(X)
(1− F0(X))

√
1−G0(X)

])2

≤ EF0

[
h2(X)(1−G0(X))

]
EF0

[
g2(X)

(1− F0(X))2(1−G0(X))

]
,

this immediately imply rh ≥ 1 and the equality holds if

h(X)
√

1−G0(X) =
g(X)

(1− F0(X))
√

1−G0(X)
.

This implies h0 = g
(1− F0)(1−G0) . With the choice h = h0, the constant rh0 = 1.

2

Remark: The above theorems actually point out a way to find the maximum of EL under

constraint for finite sample sizes: solve (2.4) with h = h0 and compute EL(Λh0
λn

) as the constrained

maximum, albeit we need to estimate the h0 in practice. An obvious estimator of h0 is

h0(t) =
g(t)

R(t)/n
.

In fact this is what we shall do in the examples of next section.

The method of 1 parameter sub-family of distributions is also useful in finding the maximum of

the likelihood when the constraint is a linear functional of the distribution function
∫
gdF = θ, and

similar theorems can be proved by this approach. In this case the likelihood in terms of distribution,

(1.2), is more convenient. The 1 parameter sub-family of distributions should also be defined via the

distribution function:

Fλ is << F̂n and has jump at t = ∆F̂n(t)× 1
1 + λh(t)

× 1
C(λ)

, (2.6)

where F̂n is the usual nonparametric maximum likelihood estimator of distribution function: the

Kaplan-Meier estimator. The factor 1/C(λ) is the normalizing constant to ensure that the total

jump size adds up to 1, and thus is

C(λ) =
n∑
i=1

∆F̂n(Ti)
1 + λh(Ti)

.

For a given function h(t) and F̂n, at least for small values of λ, the jumps of the so defined function

will be positive. It thus define a bona fide distribution function at least for λ in a neighborhood of

zero.

For a simple concrete example of the distribution defined by (2.6), suppose there is no censoring

and there is no tie in the sample (1.1). In this case the Kaplan-Meier estimator is the usual empirical

distribution which has jumps at each observation Ti with jump size 1/n. Further suppose the function
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h is such that h(Ti) = 1 for 1 ≤ i ≤ k and h(Ti) = 0 for k + 1 ≤ i ≤ n. Then it is not hard to see in

this case

C(λ) =
1
n

[
k

1 + λ
+ n− k

]
,

and

Fλ(·) has jump at Ti =


1

k + (n− k)(1 + λ)
for 1 ≤ i ≤ k;

1
k/(1 + λ) + n− k

for k + 1 ≤ i ≤ n.

The range of the legitimate λ in this case is −1 ≤ λ ≤ ∞.

Similar theorems to the Theorem 1 and 2 can be shown to hold. The minimizing of the constant

(theorem 2) can also be achieved by a simple application of Cauchy-Schwartz inequality when there

is no censoring in the data. When there is censoring, however, the minimizing of the constant is not

so apparent but with the help of van der Vaart (1991) we can still show that the minimum value

is one. We summarize these in the following Corollary. For details see Pan (1997). Notice in the

original JSPI version, there was a typo, the role of h and g was exchanged in (2.8). We also provide

here some details.

Theorem 3 For the censored data (1.1) with a continuous distribution F , if the constraint

equation is ∫
g(t)dF (t) = θ0 (2.7)

where θ0 is the true value (i.e. θ0 =
∫
gdF0 ) and g(t) satisfies certain regularity conditions and h(t)

is another function that satisfy same regularity conditions as g(t), then as n→∞,

−2 logELRh(θ0) = −2 log
sup{(1.2)among (2.6) and satisfy(2.7)}

(1.2) with F = Kaplan-Meier
D−→ χ2

(1) × rh ,

where

rh =
Asy Var(

∫
gdF̂n)×

(∫
h2(1−G)dF +

∫ [
∫∞
t h(s)dF (s)]2

1− F (t)
dG(t)− [

∫
hdF ]2

)
(∫

ghdF

)2 . (2.8)

Furthermore, the minimum value of the constant rh over h is one.

Proof: We only sketch the proof for the minimum value of the constant rh. For details of the

convergence in distribution, please see Pan (1997).

First we notice that(∫
h2(1−G)dF +

∫ [
∫∞
t h(s)dF (s)]2

1− F (t)
dG(t)− [

∫
hdF ]2

)
(∫

ghdF

)2
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is precisely the information defined by van der Vaart (1991), as iα in his (4.1).

The infimum of iα over all one-dimentional submodels is called “efficient Fisher information”.

And in this case (right censored observations), the reciprocal of it is given by the last equation on

p. 193 of van der Vaart (1991), (as the lower bound for the asymptotic variance in estimate
∫
gdF ):

inf iα =
1
||β||2F

=

(∫ (Rχ̃F )2

1−G
dF

)−1

.

Lastly, we notice that
∫
gdF̂n is an efficient estimate and therefore we can easily check

Asy Var
(∫

gdF̂n

)
=
∫ (Rχ̃F )2

1−G
dF .

Therefore inf rh = 1. 2

3. A Small Example

The computation of the empirical likelihood ratio statistic is quite easy for the one parameter sub-

family of distribution functions. All we need to solve is the constrain equation for λ.

For a concrete example we took the following data of Remission Times for Solid Tumor Patients

n = 10, slightly modified version of example 4.2 of Lee (1992): 3, 6.5, 6.51, 10, 12, 15, 8.4+, 4+,

5.7+, and 10+ .

The estimated median remission time is 9.8 months. Suppose we are interested in getting a

95% confidence interval for the cumulative hazard at the median remission time, Λ0(9.8). Hence

θ0 = Λ0(9.8). In this case the function g is an indicator function: g(t) = I[t≤9.8].

The 95% confidence interval using empirical likelihood ratio ELR for Λ0(9.8) is (0.106, 0.945).

On the other hand, the Wald confidence interval based on the Nelson-Aalen estimator and Aalen’s

formula of variance estimation is (−0.063, 0.882). We use Aalen’s formula of variance estimation

because this is the recommended one after extended simulation by Klein (1991). This shows that the

empirical likelihood ratio based confidence interval inherit some of the advantage from its parametric

cousin: shorter and inside the natural parameter space.

5. Appendix

DEFINITION OF THE λ RANGE J IN (2.3) :

In order to ensure 0 < ∆Λλ(t) < 1, we find that the λ range depends on the function h(·) as

well as the sample. The following max and min should all be taken in the domain 1 ≤ i ≤ n − 1,

h(Ti) 6= 0 and δi = 1. Additional restrictions, if any, are specified individually.

Case 1: all h(Ti) ≥ 0.

J =

(
max

∆Λ̂NA(Ti)− 1
h(Ti)

, ∞
)
.
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Case 2: all h(Ti) ≤ 0.

J =

(
−∞, min

∆Λ̂NA(Ti)− 1
h(Ti)

)
.

Case 3: maxh(Ti) > 0 > minh(Ti).

J =

(
max
h(Ti)>0

∆Λ̂NA(Ti)− 1
h(Ti)

, min
h(Ti)<0

∆Λ̂NA(Ti)− 1
h(Ti)

)
.

Lemma A Let g(·) be a given function that satisfy (2.2) and h(·) be another given left continuous

function such that
∫
h2dΛ <∞ then as n→∞,

n∑
i=1

h2(Ti)∆Λ̂NA(Ti)
P−→
∫
h2(t)dΛ0(t)

n−1∑
i=1

g(Ti)h(Ti)∆Λ̂NA(Ti)
P−→
∫
g(t)h(t)dΛ0(t)

and
√
n
[∑

g(Ti)∆Λ̂NA(Ti)− θ0

] D−→ N(0, σ2
Λ(g))

where σ2
Λ(g) =

∫ g(t)
[1−F0(t)][1−G0(t)]dΛ0(t).

Proof: For the first two limits, rewrite the sums as the integrals against Λ̂NA(t) and then use

Lenglart inequality to finish the proof.

As for the third limit, notice the left hand side can be written as

√
n

∫
g(t)d[Λ̂NA(t)− Λ0(t)] .

Now counting process and martingale argument similar to Andersen et. al. (1993) Chapter 4 can

be used to analyze the integral. Since g(t) is predictable (left continuous), martingale central limit

theorem can be used here, which also give the expression of σ2
Λ(g).

2

Lemma B Let g be a given function that satisfy (3.4) and h be any left continuous function such

that
∫
h2dΛ <∞ and g(t)h(t) ≥ 0 a.s. F . If λn is the solution of (3.6) then

(1) λn = Op(n−1/2) ,

(2) nλ2
n
D−→ χ2

(1)
σ2

Λ(g)(∫ ∞
0

g(x)h(x)dΛ0(x)
)2 as n→∞, where

σ2
Λ(g) =

∫ ∞
0

g2(x)
(1− F0(x))(1−G0(x))

dΛ0(x) .

Proof:
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The fact that
∫
g2dΛ0 <∞ and

∫
h2dΛ0 <∞ imply that

EF0,G0

δig
2(Ti)

(1− F0(Ti))(1−G0(Ti))
<∞, (1)

and

EF0,G0

δih
2(Ti)

(1− F0(Ti))(1−G0(Ti))
<∞, (2)

which also imply that EF0,G0δig
2(Ti) <∞ and EF0,G0δh

2(Ti) <∞ respectively. Therefore, by using

a Lemma of Owen (1990, p98), we have

max
1≤i≤n

δi|g(Ti)| = o(n1/2) (3)

max
1≤i≤n

δi|h(Ti)| = o(n1/2) (4)

with probability 1 as n→∞. Define Mn = max1≤i≤nδi|h(Ti)|, by (4), Mn = o(n1/2) with probability

1 as n→∞.

Now we show that λn = Op(n−1/2). For the sake of simple notation we assume that T1 < · · · < Tn.

Consider

0 ≡
∣∣∣∣∣
n−1∑
i=1

g(Ti)∆Λ̂NA(Ti)
1

1 + λnh(Ti)
+ g(Tn)∆Λ̂NA(Tn)− θ0

∣∣∣∣∣
=

∣∣∣∣∣
n∑
i=1

g(Ti)∆Λ̂NA(Ti))− θ0 + λn

n−1∑
i=1

g(Ti)h(Ti)
1 + λnh(Ti)

∆Λ̂NA(Ti)

∣∣∣∣∣
≥

∣∣∣∣∣
n∑
i=1

δig(Ti)∆Λ̂NA(Ti))− θ0

∣∣∣∣∣+ |λn|
1 + |λn|Mn

n−1∑
i=1

δig(Ti)h(Ti)∆Λ̂NA(Ti). (5)

The first term of (5) has a limiting normal distribution by Lemma A, so it is Op(n−1/2). Again by

Lemma A we have that, as n→∞,

n−1∑
i=1

δig(Ti)h(Ti)∆Λ̂NA(Ti)
P−→
∫ ∞

0
g(x)h(x)dΛ0(x). (6)

It follows that
|λn|

1 + |λn|Mn
= Op(n−1/2),

which implies that λn = Op(n−1/2). This rate of λn is used in the following expansion.

Expanding the right hand side of the constraint equation,

0 =
n−1∑
i=1

g(Ti)∆Λ̂NA(Ti)
1

1 + λnh(Ti)
+ g(Tn)∆Λ̂NA(Tn)− θ0

=
n∑
i=1

g(Ti)∆Λ̂NA(Ti)− θ0 − λn
n−1∑
i=1

g(Ti)h(Ti)
1 + λnδih(Ti)

∆Λ̂NA(Ti)

=
n∑
i=1

g(Ti)∆Λ̂NA(Ti)− θ0 − λn
n−1∑
i=1

g(Ti)h(Ti)∆Λ̂NA(Ti) + λ2
n

n−1∑
i=1

g(Ti)h2(Ti)
1 + λδih(Ti)

∆Λ̂NA(Ti),
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from which we get an expression of λn:

λn =
∑n
i=1 g(Ti)∆Λ̂NA(Ti)− θ0∑n−1

i=1 g(Ti)h(Ti)∆Λ̂NA(Ti)− λn
∑n−1
i=1

g(Ti)h2(Ti)
1 + λnδih(Ti)

∆Λ̂NA(Ti)
,

where two of the three sums are familiar as in Lemma A. The third sum is (recall λn = Op(n−1/2))∣∣∣∣∣λn
n−1∑
i=1

g(Ti)h2(Ti)
1 + λnδih(Ti)

∆Λ̂NA(Ti)

∣∣∣∣∣
≤ |λn|Mn

1− |λn|Mn

n−1∑
i=1

g(Ti)h(Ti)∆Λ̂NA(Ti) = Op(n−1/2)o(n1/2)Op(1) = op(1),

by Lemma A and (4). Again by Lemma A and Slutsky theorem it follows that, as n→∞

nλ2
n
D−→ χ2

(1)

σ2
Λ(g)(∫ ∞

0
g(x)h(x)dΛ0(x)

)2 .

2

Proof of Theorem 2:

Define

f(λ) = log


n∏
i=1

[∆Λλ(Ti)]δi [
∏

j:Tj<Ti

(1−∆Λλ(Tj))]δi [
∏

j:Tj≤Ti
(1−∆Λλ(Tj))]1−δi)

 , (7)

where Λλ is defined in (3.5). It is obvious that

f(0) = log


n∏
i=1

[∆Λ̂NA(Ti)]δi [
∏

j:Tj<Ti

(1−∆Λ̂NA(Tj))]δi [
∏

j:Tj≤Ti
(1−∆Λ̂NA(Tj))]1−δi

 . (8)

We still assume that T1 < T2 < ... < Tn for the sake of simple notation, thus f(λ) can be written as

follows

f(λ) =
n∑
i=1

δi log ∆Λλ(Ti) +
n∑
i=1

δi


i−1∑
j=1

log(1−∆Λλ(Tj))


+

n∑
i=1

(1− δi)


i∑

j=1

log(1−∆Λλ(Tj))


=

n∑
i=1

δi log ∆Λλ(Ti) +
n∑
i=1

i−1∑
j=1

log(1−∆Λλ(Ti))

+
n∑
i=1

(1− δi) log(1−∆Λλ(Ti))

=
n∑
i=1

δi log ∆Λλ(Ti) +
n∑
i=1

(n− i) log(1−∆Λλ(Ti))

11



+
n∑
i=1

(1− δi) log(1−∆Λλ(Ti))

=
n∑
i=1

δi log ∆Λλ(Ti) +
n∑
i=1

(n− i+ 1− δi) log (1−∆Λλ(Ti))

By Lemma B, λn = Op(n−1/2). Now we may apply Taylor’s theorem to get:

f(λn) = f(0) + λnf
′
(0) +

λ2
n

2
f
′′
(ξ), |ξ| ≤ |λn|.

Consider the first derivative of f with respect to λ

f
′
(λ) = −

n−1∑
i=1

δi
h(Ti)

1 + λh(Ti)
+
n−1∑
i=1

(n− i+ 1− δi)
∆Λ̂NA(Ti)

h(Ti)
(1 + λh(Ti))2

1−∆Λ̂NA(Ti)
1

1 + λh(Ti)

,

Thus

f
′
(0) = −

n−1∑
i=1

δih(Ti) +
n−1∑
i=1

(n− i+ 1− δi)h(Ti)
∆Λ̂NA(Ti)

1−∆Λ̂NA(Ti)

= −
n−1∑
i=1

δih(Ti) +
n−1∑
i=1

(n− i+ 1− δi)h(Ti)
δi

n− i+ 1− δi
= 0 . (9)

The second derivative of f with respect of λ evaluated at ξ is given by

f
′′
(ξ) =

n−1∑
i=1

δih
2(Ti)

(1 + ξh(Ti))2
+
n−1∑
i=1

(n− i+ 1− δi)∆Λ̂NA(Ti)

−2h2(Ti)
(1 + ξh(Ti))3

+
∆Λ̂NA(Ti)h2(Ti)

(1 + ξh(Ti))4(
1−∆Λ̂NA(Ti)

1
1 + ξh(Ti)

)2

=
n−1∑
i=1

δih
2(Ti)

(1 + ξh(Ti))2
− 2

n−1∑
i=1

(n− i+ 1− δi)∆Λ̂NA(Ti)h2(Ti)
[1 + ξh(Ti)][1 + ξh(Ti)−∆Λ̂NA(Ti)]2

+
n−1∑
i=1

(n− i+ 1− δi)∆Λ̂2
NA(Ti)h2(Ti)

[1 + ξh(Ti)]2[1 + ξh(Ti)−∆Λ̂NA(Ti)]2
.

Notice that max ξδih(Ti) = o(1), it implies that 1/(1 + ξδih(Ti))2 = 1 + o(1) uniformly for

1 ≤ i ≤ n− 1 etc. Using this and remember ∆Λ̂NA(Ti) = δi/(n− i+ 1) we have

f
′′
(ξ) =

n−1∑
i=1

δih
2(Ti)(1 + o(1))− 2

n−1∑
i=1

δih
2(Ti)

[1 + o(1)][ n−i+1
n−i+1−δi ]

[1 + o(1)n−i+1
n−i ]2

+
n−1∑
i=1

δih
2(Ti)

[1 + o(1)][ 1
n−i+1−δi ]

[1 + o(1)n−i+1
n−i ]2

and obviously 1 + o(1)n−i+1
n−i = 1 + o(1) uniformly for 1 ≤ i ≤ n− 1, thus

f
′′
(ξ) = −

n−1∑
i=1

δih
2(Ti)(1 + o(1))− 2

n−1∑
i=1

δih
2(Ti)

1
n− i

(1 + o(1)) +
n−1∑
i=1

δih
2(Ti)

1
n− i

(1 + o(1)) .
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Now we show that, as n→∞,

1
n

n−1∑
i=1

δi
(n− i)

h2(Ti)
P−→ 0. (10)

Observe

0 ≤
n−1∑
i=1

δi
(n− i)

h2(Ti) =
n−1∑
i=1

δi
n− i+ 1

h2(Ti)
n− i+ 1
n− i

≤
n−1∑
i=1

h2(Ti)∆Λ̂NA(Ti)2 ≤ 2
n∑
i=1

h2(Ti)∆Λ̂NA(Ti),

we have, by lemma A, as n→∞,

n∑
i=1

h2(Ti)∆Λ̂NA(Ti)
P−→
∫ ∞

0
h2dΛ0 <∞,

so (10) holds.

Since EF0,G0δih
2(Ti) <∞, by the law of large numbers

1
n

n∑
i=1

δih
2(Ti)

P−→ EF0,G0δ1h
2(T1) as n→∞

where

EF0,G0δ1h
2(T1) =

∫ ∫
x≤c

h2(x) dG0(c) dF0(x)

=
∫ ∞

0
h2(x)(1−G0(x))(1− F0(x))dΛ0(x) .

Note that δnh2(Tn) = op(n) by the assumption
∫
hdΛ < ∞, in view of the just mentioned law of

large number and (10) we have

− 1
n
f
′′
(ξ) P−→

∫ ∞
0

h2(x)(1−G0(x))(1− F0(x))dΛ0(x), as n→∞. (11)

By (7) and (8) we can write −2 logELRh(µ) as follows

−2 logELRh(µ) = 2(logEL(Λ̂NA)− logEL(Λλn))

= 2(f(0)− f(λn))

= 2

(
f(0)− f(0)− λnf

′
(0)− λ2

n

2
f
′′
(ξ)

)

= −λ2
nf
′′
(ξ) = nλ2

n ×
−1
n
f
′′
(ξ).

Thus by (11) and Lemma B we have

−2 logELRh(µ) D−→ χ2
(1) × rh,

13



where

rh =
σ2

Λ(g)
∫ ∞

0
h2(x)(1−G0(x))(1− F0(x))dΛ0(x)(∫ ∞

0
g(x)h(x)dΛ0(x)

)2 .

2
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