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Abstract

We propose a new procedure for combining multiple tests in samples of right-censored

observations. The new method is based on multiple constrained censored empirical like-

lihood where the constraints are formulated as linear functionals of the cumulative hazard

functions. We prove a version of Wilks’ theorem for the multiple constrained censored em-

pirical likelihood ratio, which provides a simple reference distribution for the test statistic

of our proposed method. A useful application of the proposed method is found in examin-

ing the survival experience of one or more populations by combining different weighted

log-rank tests. A real data example is given using the log-rank and Gehan-Wilcoxon

tests. In a simulation study, we compare the new method to different weighted log-rank

statistics, Renyi-type suprema, and maximin efficiency robust tests. The empirical results

demonstrate that, in addition to its computational simplicity, the proposed combined test-

ing method can also be more powerful than previously developed procedures. Statistical

software is available in an R package ‘emplik’.
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1 Introduction

In studies examining the survival experience of one or more populations, one has a choice

among many different tests that are versions of weighted log-rank statistic, differing only in the

choice of the weight function. If the shape of the hazard ratio under the alternative hypothesis

is known, a test with an optimal weight function can be selected. For example, the log-rank test

is most powerful when the true hazard curve is proportional to the hypothesized one. However,

in general the shape is unknown and the selection of the weights is problematic as the power of

the weighted tests varies depending on where and how the curves depart from the hypothesized

one (see, e.g., Fleming and Harrington, 1991, Chapter 7; Lin and Kosorok, 1999; Letón and

Zuluaga, 2005). A wrong choice may result in a great loss of power. Kosorok and Lin (1999)

observe in theβ-Blocker Heart Attack Trial (BHAT) that the beneficial effect of propranolol

hydrochloride in patients with acute myocardial infarction can be detected with an optimally

weighted test at a much earlier calendar time than with the log-rank statistic that was originally

chosen by the investigators (β-Blocker Heart Attack Trial Research Group, 1982). Naturally, the

differing powers of the tests can lead to disagreement. Klein and Moeschberger (1997, p. 197)

use a kidney dialysis data set to illustrate the situation. We re-analyze the kidney dialysis data,

using our newly proposed method (see Section 3).

Several versatile procedures sensitive to a range of alternatives have been developed. Among

others, these include the maximin efficiency robust tests (MERT; Gastwirth, 1985), the supre-

mum version tests (Fleming, Harrington, and O’Sullivan, 1987), the maximum of a finite cluster

of statistics (Tarone, 1981; Fleming and Harrington, 1984; Lee, 1996), and a test with function

indexed scheme of the weights and time (Kosorok and Lin, 1999). These methods do not yield

asymptotically efficient tests. Lai and Ying (1991) proposed an asymptotically efficient test by

estimating efficient weights. However, their method uses kernel estimates. Therefore, it requires

large sample sizes to perform well, and it is inappropriate for small or moderate samples.

In this paper we take a different approach; we propose increasing the power by combining

different tests. While different versions of weighted log-rank tests are available, practitioners

are most familiar with the log-rank and Mann-Whitney-Wilcoxon test or its modified versions.

The aforementioned versatile procedures that are sensitive to a range of alternatives have the
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disadvantage of being complex and computationally intensive as the null distribution of the

test statistics often needs to be simulated. Hence, in practice, a choice is often made between

versions of the log-rank and the Mann-Whitney-Wilcoxon tests. We suggest, instead of making

a choice, to combine the two tests. If there is a simple way of combining the tests, the combined

test will be reasonably sensitive to a broad range of alternatives without being computationally

burdensome. However, standard ways of combining the tests are not trivial. A direct way

of combining the tests requires estimating the covariance matrix of the test statistics of the

individual tests. A simple alternative is adjusting the significance levels of the individual tests

by multiple testing procedures. However, in the latter case the simplicity is achieved at the

expense of the power of the combined test.

We propose a simple and powerful alternative method of combining tests that is based on

censored empirical likelihood (EL) with multiple constraints. The test statistics of the individ-

ual tests are formulated as linear functionals of the cumulative hazard functions and serve as

the constraints for the censored EL. We show that Wilks’ theorem holds for the censored EL

with multiple constraints similarly as in an uncensored case. This provides a simple reference

distribution for the test statistic of our proposed method. Clearly, the new method utilizes the

likelihood and hence avoids directly estimating the covariance matrix of the test statistics. The

proposed combined test can be much more powerful than each of its member tests (see Example

2 in Section 3 below), while it can be less powerful if one member is optimal. We discuss the

relative loss of power of the combined test at the end of Section 3.

We note that the multiple testing procedure is only one possible application of the more

general EL approach. It could also be used, e.g., to obtain confidence regions for a collection of

the population quantiles. More specifically, the EL results of this paper are readily applicable

to the two sample quantile testing problems of Kosorok (1999) and to one sample quantile

problems by using the test statistics of the quantile tests as constraints for the censored EL. The

proposed EL approach is simpler than the existing quantile tests as it does not require estimating

the covariance matrix of the test statistics.

The theoretical interest of this paper is filling a gap in the literature for censored empirical

likelihood with multiple parameters. Although empirical likelihood has appeared as a useful
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nonparametric statistical inference method since Owen (1988), there are less available results

for censored data and most, if not all, are concerned with just one parameter. Pan and Zhou

(2002) studied the right censored data empirical likelihood with a parameter that is a general

functional of the cumulative hazard. For functionals that are simple indicator functions, results

are in Murphy (1995) and Thomas and Grunkemeier (1975). For the case where the parameter

is a general functional of the distribution function, results can be found in Murphy and Van

der Vaart (1997) and Pan and Zhou (1999). However, no results for the censored empirical

likelihood with multiple parameters have been available.

The rest of the paper is organized as follows. Section 2 describes theoretical aspects of the

proposed method. We present the general results in Sections 2.1 and 2.2, and apply the empirical

likelihood approach to the multiple testing situation in Section 2.3. Section 3 provides empirical

results to confirm Wilks’ theorem for the multiple constrained censored empirical likelihood

ratio, and a simulation study comparing our proposed method to different weighted log-rank

statistics, Renyi-type suprema, and maximin efficiency robust tests (MERT, Gastwirth, 1985).

Application of the proposed method is also illustrated on real data with the log-rank and Gehan-

Wilcoxon tests. The empirical results are obtained by implementing the proposed method with

functions in an R package ‘emplik’. All proofs are deferred to the appendix.

2 Censored Empirical Likelihood with k (k > 1) Constraints

We will first explain the underlying theory of the proposed method in the one sample case. The

results extend straightforwardly to the two sample situation.

2.1 One Sample Censored Empirical Likelihood

Forn independent, identically distributed observations,X1, · · · , Xn, assume the distribution of

the Xi is Fx(t) and the cumulative hazard function ofXi is Λx(t). With right censoring, we

only observe

Ti = min(Xi, Ci) and δi = I[Xi≤Ci] (1)
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where theCi’s are the censoring times, assumed to be independent, identically distributed, and

independent of theXi’s. Based on the censored observations, the log empirical likelihood

pertaining to the distributionFx is

log EL(Fx) =
∑

[δi log ∆Fx(Ti) + (1− δi) log{1− Fx(Ti)}] . (2)

As shown in Pan and Zhou (2002), computations are much easier with the empirical likelihood

reformulated in terms of the (cumulative) hazard function. The equivalent hazard formulation

of (2), denoted bylog EL(Λx), is given as follows:

log EL(Λx) =
∑

i

{di log vi + (Ri − di) log(1− vi)} (3)

wheredi =
∑n

j=1 I[Tj=ti]δj, Ri =
∑n

j=1 I[Tj≥ti], andti are the ordered, distinct values ofTi.

See, for example, Thomas and Grunkemeier (1975) and Li (1995) for similar notation. Here,

0 < vi ≤ 1 are the discrete hazards atti. The maximization of (3) with respect tovi is known

to be attained at the jumps of the Nelson-Aalen estimator:vi = di/Ri.

Let us consider a hypothesis testing problem for ak dimensional parameterθ = (θ1, · · · , θk)
T

with respect to the cumulative hazard function such that

H0 : θ = µ vs. HA : θ 6= µ for θr =

∫
gr(t) log(1− dΛx(t)), r = 1, · · · , k

where thegr(t) are some nonnegative functions andµ = (µ1, · · · , µk)
T is a vector ofk con-

stants. We note that theθr are functionals of the cumulative hazard function. The constraints we

shall impose on the hazardsvi are: for given functionsg1(·), · · · , gk(·) and constantsµ1, · · · , µk,

we have

N−1∑
i

g1(ti) log(1− vi) = µ1 , · · · ,
N−1∑

i

gk(ti) log(1− vi) = µk , (4)

whereN is the total number of distinct observation values. We need to exclude the last value

as we always havevN = 1 for discrete hazards. Let us abbreviate the maximum likelihood es-

timators of∆Λx(ti) under constraints (4) asvi. Application of the Lagrange multiplier method

shows

vi(λ) =
di

Ri + nλT G(ti)
,
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whereG(ti) = {g1(ti), · · · , gk(ti)}T andλ is the solution to the maximization of (3) under the

constraints in (4) (Lemma 1 in the appendix). Then, the test statistic in terms of hazards is given

by

W2 = −2{log max EL(Λx)(with constraint (4))− log max EL(Λx)(without constraint)} .

We have the following result that proves a version of Wilks’ theorem forW2 under some regular-

ity conditions which include the standard conditions on censoring that allow the Nelson-Aalen

estimators to have an asymptotic normal distribution (see Andersenet al., 1993, for details).

Theorem 1. Suppose that the null hypothesisH0 holds, i.e.µr =
∫

gr(t) log{1− dΛx(t)}, r =

1, . . . , k. Then, the test statisticW2 has asymptotically a chi-square distribution withk degrees

of freedom.

Remark 1 The integration constraints are originally given asθr =
∫

gr(t)d log{1−Fx(t)},

r = 1, · · · , k. The above formulations are found by using the suggestive notationd log{Fx(t)} =

log{dΛx(t)}. These two formulations are identical for both continuous and discreteFx(t).

Remark 2: If the functionsgr(t) are random but predictable with respect to the filtrationFt

(see Gill, 1980), Theorem 1 is still valid.

2.2 Two Sample Censored Empirical Likelihood

Suppose in addition to the censored sample ofX-observations, we have a second sample

Y1, · · · , Ym coming from a distribution functionFy(t) with a cumulative hazard functionΛy(t).

Assume that theYj ’s are independent of theXi’s. With censoring, we can only observe

Uj = min(Yj, Sj) and τj = I[Yj≤Sj ] (5)

whereSj are the censoring variables for the second sample. Denote the ordered, distinct values

of theUj by sj.

Similar to (3), the log empirical likelihood function based on the two censored samples

pertaining to the cumulative hazard functionsΛx andΛy is simply EL(Λx, Λy) = L1 + L2

where

L1 =
∑

i

d1i log vi +
∑

i

(R1i − d1i) log(1− vi) and
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L2 =
∑

j

d2j log wj +
∑

j

(R2j − d2j) log(1− wj), (6)

with d1i, R1i, d2j andR2j defined analogous to the one sample situation (see p.5). Accordingly,

let us consider a hypothesis testing problem for ak dimensional parameterθ = (θ1, · · · , θk)
T

with respect to the cumulative hazard functionsΛ1 andΛ2 such that

H0 : θ = µ vs. HA : θ 6= µ,

whereθr =
∫

g1r(t) log{1 − dΛx(t)} −
∫

g2r(t) log{1 − dΛy(t)}, r = 1, · · · , k, for some

predictable functionsg1r(t) andg2r(t). Then, the constraints imposed onvi andwj are

µr =
N−1∑
i=1

g1r(ti) log(1− vi)−
M−1∑
j=1

g2r(sj) log(1− wj), r = 1, . . . , k, (7)

whereN andM are the total number of distinct observation values from the two samples. As

in the one sample case, we need to exclude the last values.

Let us abbreviate the maximum likelihood estimators of∆Λx(ti) and∆Λy(sj) under the

constraints (7) asvi andwj, respectively, wherei = 1, · · · , N andj = 1, · · · , M . Application

of the Lagrange multiplier method shows

vi(λ) =
d1i

R1i + min(n,m)λT G1(ti)
, wj(λ) =

d2j

R2j −min(n,m)λT G2(sj)
,

whereG1(ti) = {g11(ti), · · · , g1k(ti)}T , G2(sj) = {g21(sj), · · · , g2k(sj)}T , andλ is the solu-

tion to maximizingEL(Λx, Λy) = L1 + L2 under the constraints in (7). Then, the two-sample

test statistic is given as follows:

W ∗
2 = −2{log max EL(Λx, Λy)(with constraint (7))−log max EL(Λx, Λy)(without constraint)}

analogous to the one-sample case. The following theorem provides the asymptotic distribution

result forW ∗
2 .

Theorem 2. Suppose that the null hypothesisH0 : θr = µr holds. i.e.µr =
∫

g1r(t) log{1 −

dΛx(t)} −
∫

g2r(t) log{1− dΛy(t)}, r = 1, . . . , k. Then, asmin(n, m) →∞, W ∗
2 has asymp-

totically a chi-square distribution withk degrees of freedom.
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2.3 Combined Multiple Testing Based on Censored Empirical Likelihood

The basic idea of combining a family of tests by the multiple constrained censored EL is to

formulate the test statistics of the individual tests as linear functionals of the cumulative hazard

functions and using them as the constraints of the multiple constrained empirical likelihood. To

be more specific, let us consider a hypothesisH0 : Λx = Λ0 vs. H1 : Λx 6= Λ0 and consider

combining the log rank test and one of its weighted versions for the one sample problem. We can

formulate the test statistics of theGρ,γ family of Harrington and Fleming (1982) with respect to

the hazard as
∑N−1

i h(ti, ρ, γ) log(1− vi), where

h(t, ρ, γ) = R(t)Ŝ(t−)ρ(1− Ŝ(t−))γ for ρ, γ ≥ 0, (8)

whereR(t) =
∑

I[Ti≥t] andŜ(t) denotes the Kaplan-Meier estimator. The test statistics of the

log rank and Wilcoxon tests correspond to (8) with(ρ, γ) = (0, 0) and(ρ, γ) = (1, 0) respec-

tively. Note that the functionh(t, ρ, γ) is a nonnegative, random yet predictable function. In the

combined test, the null hypothesis in Theorem 1 becomesµr =
∫

gr(t) log(1 − dΛ0(t)), r =

1, . . . , k, where different functionsgr correspond toh(t, ρ, γ) with different choices ofρ andγ

in display (8). Then, the test statisticW2 is obtained under the constraints in (4) withh(t, ρ, γ)

with appropriate choices ofρ andγ serving asgr.

In a two-sample problem, the test statistics of individual tests can be formulated as∑N−1
i=1 h∗(ti, ρ, γ) log(1− vi)−

∑M−1
j=1 h∗(sj, ρ, γ) log(1− wj), where

h∗(u, ρ, γ) = (
n + m

nm
)1/2W (u)ρ(1−W (u))γ R1(u)R2(u)

R1(u) + R2(u)
for ρ ≥ 0, (9)

and whereR1(u) =
∑

I[Ti≥u] andR2(u) =
∑

I[Uj≥u]. If W (u) = Ŝ(u−) andŜ is the pooled

sample Kaplan-Meier estimator, then the test corresponds to theGρ,γ family of Harrington and

Fleming (1982). IfW (u) = {R1(t) + R2(t)}/(n + m) andγ = 0, then it corresponds to the

Tarone-Ware (1977) class of statistics. The value(ρ, γ) = (0, 0) corresponds to the log-rank

statistic in both cases, while(ρ, γ) = (1, 0) corresponds to the Prentice-Wilcoxon statistic in the

Harrington and Fleming (1982) class and the Gehan-Wilcoxon statistics (Gehan, 1965) in the

Tarone-Ware (1977) class. Also note thath∗(u, ρ, γ) are predictable functions. In the combined

test, we chooseg1r andg2r to be the functionh∗(u, ρ, γ) with some appropriateρ andγ. Hence,
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the null hypothesis in Theorem 2 becomesµr =
∫

gr(t) log{1 − dΛx(t)} −
∫

gr(t) log{1 −

dΛy(t)}, r = 1, . . . , k, where different functionsgr correspond toh∗(u, ρ, γ) with different

choices ofρ andγ in display (9). If we are concerned with testing whetherΛx(t) is equal to

Λy(t), thenµr = 0 for r = 1, . . . , k. The test statisticW ∗
2 is obtained under the constraints in

(7) whereh∗(u, ρ, γ) with appropriate choices ofρ andγ serves asgr = g1r = g2r.

3 Examples and Simulations

We provide Monte Carlo simulation results for one- and two-sample cases to empirically con-

firm the chi-square limit distribution of the -2 log empirical likelihood ratio with multiple con-

straints. The proposed methods are illustrated with real data sets where we combine the log-rank

and Wilcoxon tests for one sample and the log-rank and Gehan-Wilcoxon tests for two sam-

ples. Furthermore, we show results from an extensive comparative simulation study including

members of theGρ,γ family of weighted log-rank statistics, the associated Renyi-type suprema

(GSρ,γ), and their maximin efficiency robust test (MERT, Gastwirth, 1985) counterparts. All

the computations have been carried out using version 0.9-1 of the emplik package in R.

Simulation 1

This simulation study examines the distribution of the -2 log empirical likelihood ratio in the

one sample case with multiple constraints where the constraints are the non-random functions

g1(t) = exp(−t), g2(t) = 1
2
t · I[t<1], andg3(t) = I[t<0.9]. We use the following distributions to

generate the random variables.

X ∼ exp(1) , C ∼ exp(0.5), (10)

and the censored observations are created via (1). The Q-Q plot (Figure 1) is based on 5,000

runs. It agrees well with the theoretically derivedχ2
(3) distribution.

Simulation 2

This simulation study examines the distribution of the -2 log empirical likelihood ratio with

multiple constraints where the constraints are random functions. We choose random functions

to correspond to the test statistics of the log rank and Gehan-Wilcoxon tests in order to confirm

the chi-square limit distribution of the proposed test statistic and the level of the combined test.
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The test statistics of the log rank and Gehan-Wilcoxon tests belong to the Tarone-Ware (1977)

class of statistics and correspond to (9) withW (u) = {R1(u)+R2(u)}/(n+m), (ρ, γ) = (0, 0)

and(ρ, γ) = (1, 0) respectively. In each of 10,000 runs, two identically distributed equal sized

random samples are generated from the simulation setup in (10), and the test statisticW ∗
2 is

calculated under the constraints in (7) whereh∗(u, ρ, γ) with the prescribedW (u) serve asg1r

andg2r. Table 1 shows that the proposed combined test attains the type I error at the nominal

levels. Figure 2 shows that the distribution ofW ∗
2 agrees well withχ2

(2). The distribution

deviates in the tail area with the sample sizen = 30, but the deviation is in the extreme end of

the tail.

Example 1. Iowa Psychiatric Patient Data

We apply the combined test of the log-rank and Wilcoxon tests to a sample of survival times

of 26 psychiatric inpatients to compare with the survival time distribution of the general pop-

ulation in Iowa. The data is part of a larger study of psychiatric inpatients admitted to the

University of Iowa hospital during the years 1935-1948 (for more information on the data, see

Tsuang and Woolson, 1977). Klein and Moeschberger (1997, p. 189) use the data to illustrate

the one-sample log-rank test. The test statistics of the log rank and Wilcoxon tests areh(t, ρ, γ)

in (8) with (ρ, γ) = (0, 0) and(ρ, γ) = (1, 0), respectively. Theh(t, ρ, γ) are adjusted to ac-

commodate the delayed entries. We use them asgr(t), r = 1, 2. When applied individually, the

log-rank and Gehan tests both reject the null with p-values< 0.001 and0.0432. The combined

test statistic reaches the same conclusion with the p-value 0.00088.

Example 2. Kidney Dialysis Patient Data

We apply the combined test of the log-rank and Gehan-Wilcoxon test to re-analyze the kidney

dialysis data of Klein and Moeschberger (1997, p. 197). The test statistics of the log-rank

and Gehan-Wilcoxon tests correspond to (9) whereW (u) = {R1(t) + R2(t)}/(n + m) and

(ρ, γ) = (0, 0) and(ρ, γ) = (1, 0), respectively. Out of a total of 119 patients, 43 had a catheter

surgically placed and 76 percutaneously (for a detailed description of the data, see Nahmanet

al., 1992). The plot of the estimated survival functions (Figure 3) shows that the curves cross

each other at about 6 months and suggests that the survival experience of the two groups is

different. However, as indicated in the introduction, the log-rank test and its weighted versions
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make different decisions. Both the log-rank and Gehan-Wilcoxon tests, two of the most popular

ones, fail to reject the null hypothesis with p-values 0.112 and 0.964 respectively, while tests of

theGρ,γ family with emphasis on the later time period reject the null. Electing to apply such

Gρ,γ family class test, though, is usually a post hoc decision. When our proposed method of

combining the tests is applied, it rejects the null with a p-value of 0.001. This indicates that the

combined test can be much more powerful than either one of the individual tests.

Simulation 3

We compare the small and moderate sample size behaviors of the proposed test with theGρ,γ

family of weighted log-rank statistics, the associated Renyi-type suprema (GSρ,γ), and their

maximin efficiency robust test (MERT, Gastwirth, 1985) counterparts. Kosorok and Lin (1999)

conducted extensive Monte Carlo simulation studies to compare their function-indexed weighted

log-rank test with theGρ,γ family of weighted log-rank statistics, the associated Renyi-type

suprema and suprema plus infimum, and their MERT counterparts. We have replicated Kosorok

and Lin’s (1999) simulation study design with our proposed method and compared the results

(Tables 2 and 3).M [0,ρ0]×[0,γ0] denotes the MERT test with the statistic taken for theGρ,γ family

for ρ ∈ [0, ρ0] andγ ∈ [0, γ0]. When only0 is considered as a value forγ, it is reduced to

M [0,ρ0]×{0}. Kosorok and Lin (1999) implemented the MERT by taking the test statistics of

M [0,ρ0]×{0} andM [0,ρ0]×[0,γ0] as linear combinations ofG0,0, Gρ0,0 andGρ0,0, G0,γ0, andGρ0,γ0

respectively. Therefore, the proposed EL counterparts areE[0,ρ0]×{0} andE[0,ρ0]×[0,γ0] with the

test statistics of the correspondingGρ,γ family as constraints. We use Theorem 2 to find criti-

cal values for our test from a regularχ2-distribution, while Kosorok and Lin (1999) conducted

1,000 Monte Carlo replications to construct the critical regions for each simulated data. As

Kosorok and Lin’s (1999) function-indexed weighted log-rank test is more computationally in-

tensive than the MERT with slightly better performance, we only present the results for theGρ,γ

family of weighted log-rank statistics, the associatedGSρ,γ, and their MERT counterparts in Ta-

bles 2 and 3. The column labels “N” and “A”-“E” stand for a “null” and 5 different alternative

models indexed similarly in Kosorok and Lin (1999). The number of simulations is 10,000 for

the null distributions and 1,000 for the alternatives (2,000 for the EL alternatives).

The simulation results show that the proposed EL test performs comparably to the MERT
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where the MERT performs well, while it is more reliable where the MERT performs poorly.

For example, with the alternative model A where the hazards are proportional and the log-

rank test (G0,0) is optimal, both the MERT and EL have comparable powers to the power of

G0,0: the ranges of loss of power are (0.003, 0.033) and (0.0095, 0.0285) for the MERT and

EL in a moderate sample, respectively, and (0.013, 0.087) and (0.125, 0.3) in a small sample.

However, with the alternative model D where the hazards differ at the beginning and their

difference disappears later,GS4,0 has the highest power among those considered in Kosorok

and Lin (1999)’s original simulation and the MERT performs poorly, while the EL performs

reasonably: the ranges of loss of power are (0.373, 0.658) and (0.0145, 0.2445) for the MERT

and EL in a moderate sample and (0.291, 0.431) and (0.0575, 0.266) in a small sample. Similar

results are observed for alternative model E where the hazard functions cross andG0,1 has the

highest power: the ranges of loss of power are (0.466, 0.8577) and (0.1815, 0.685) in a moderate

sample and (0.266, 0.700) and (0.1275, 0.699) in a small sample. The reliable performance of

the proposed EL test is even more distinct in the censored case.

In addition, we would like to point out the computational advantage of our proposed test

whose critical values can easily be obtained from aχ2-distribution.

APPENDIX

Mathematical Derivations and Proofs

Recall the column vectorsG(t) = {g1(t), · · · , gk(t)}T and λ = {λ1, · · · , λk}T .

Lemma 1. The hazards that maximize the log likelihood function (3) under the constraints (4)

are given by

vi(λ) =
di

Ri + nλT G(ti)
. (11)

where theλ value is obtained as the solution of the followingk equations

N−1∑
i

g1(ti) log{1− vi(λ)} = µ1 , · · · ,
N−1∑

i

gk(ti) log{1− vi(λ)} = µk . (12)
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PROOF OFLEMMA 1. The result follows from a standard Lagrange multiplier argument applied

to (3) and (4). See Fang and Zhou (2000) for some similar calculations.♦.

We denote the solution of (12) byλx.

Lemma 2. Assume the data are such that the Nelson-Aalen estimator is asymptotically normal

and the variance-covariance matrixΣ defined in the appendix (p. 14) is invertible. Then, for the

solutionλx of the constrained problem (12), corresponding to the null hypothesisH0 : µr =∫
gr(t) log{1−dΛx(t)}, r = 1, . . . , k, we have thatn1/2λx converges in distribution toN(0, Σ).

PREPARATION FOR THE PROOFS OFLEMMA 2 AND THEOREM 1.

Let

f(λ) =
∑

[di log vi(λ) + (Ri − di) log{1− vi(λ)}] . (13)

In order to show thatf ′(0) = 0, we compute

∂

∂λr

f(λ) =
∑

i

di

vi(λ)

∂vi(λ)

∂λr

− (Ri − di)

vi(λ)

∂(1− vi(λ))

∂λr

, r = 1, . . . , k.

Lettingλ = 0 and after some simplification we have

∂

∂λr

f(λ)|λ=0 = −
∑

i

(Ri −Ri)
dingr(ti)

R2
i

≡ 0 .

We now computef ′′(0) =
∑

. Therlth element of thek × k matrix
∑

is

Drl =
∂2

∂λr∂λl

f(λ)|λ=0 .

After straightforward but tedious calculations, we obtain

Drl = −

{∑
i

n2grgl

Ri

di

Ri − di

}
.

By a now standard counting process martingale argument, we see

−Drl

n
→ D∗

rl .

PROOF OF LEMMA 2. We derive the asymptotic distribution ofλ. The argument is similar

to, for example, Owen (1990) and Pan and Zhou (2002). Define a vector functionh(s) =

{h1(s), · · · , hk(s)} by

h1(s) =
∑

i

g1(ti) log{1− vi(s)} − µ1 , · · · , hk(s) =
∑

i

gk(ti) log{1− vi(s)} − µk . (14)

13



Then,λ is the solution ofh(s) = 0. Thus we have

0 = h(λ) = h(0) + h′(0)λ + op(n
−1/2) , (15)

whereh′(0) is ak × k matrix.

Indeed,

0 = |h(λ)| = |
∑

i

G(ti) log{1− vi(s)} − µ| = |
∑

i

G(ti) log{1− di

Ri + nλT G(ti)
} − µ|

≥ |
∑

i

G(ti) log(1− di

Ri

)− µ| − |
∑

i

G(ti) log
[1− di/{Ri + nλT G(ti)}

1− di/Ri

]
|

= A−B ,

where the first expressionA is of the orderOp(n
−1/2). Considering the second expression,

B = |
∑

i

G(ti) log
[1− di/{Ri + nλT G(ti)}

1− di/Ri

]
|

≥ |
∑

i

G(ti)
nG(ti)

T λdi

(Ri − di)(Ri + nλT G(ti)
|

≥ | |λ|
1 + n|λT |maxi G(ti)/Ri

∑
i

nG(ti)G(ti)
T di

(Ri − di)Ri

|

The sum converges to|D∗| and is therefore of orderOp(1), so it follows that|λ| is of order

Op(n
−1/2), and hence the expansion (15) is valid.

Therefore,

n1/2λ = {h′(0)}−1{−n1/2h(0)}+ op(1) .

The elements ofh′(0) are easily computed:

h′rl =
∑

i

ngrgldi

Ri(Ri − di)
.

Notice we have verifiednh′rl = −Drl. By the counting process martingale central limit theorem

(see, for example, Gill, 1980; Andersenet al., 1993; or Fang and Zhou, 2000), we can show

thatn1/2h(0) converges in distribution toN(0, Σh) with Σh = lim h′(0).

Finally, putting it together, we have thatn1/2λ(0) = {h′(0)}−1{−n1/2h(0)} + op(1) con-

verges in distribution toN(0, Σ) with Σ = lim{h′(0)}−1. Recallingnh′rl = −Drl, we see that

Σ−1 = D∗. ♦

14



PROOF OFTHEOREM 1. Let f(λ) be defined as in (13). Then, we haveW2 = −2{f(λx) −

f(0)} . By Taylor expansion, we obtain

W2 = 2{f(0)− f(0)− f ′(0)λx −
1

2
λT

x Dλx + op(1)}, (16)

where we useD to denote the matrix of second derivatives off(·) with respect toλ. The

expansion is valid in view of Lemma 2 (λx is close to zero).

Notice that we havef ′(0) = 0 (see above), so the expression above is reduced to

W2 = −λT
x Dλx + op(1) . (17)

Notice that−D is symmetric and positive definite for large enoughn because−D/n con-

verges to a positive definite matrix, see below. Therefore, we may write

W2 = λT
x (−D)1/2(−D)1/2λx + op(1) . (18)

Recalling the distributional result forλx in Lemma 2 and noticing that

−D

n
→ D∗ ,

andD∗ = Σ−1 (see above in the proof of Lemma 2), it is not hard to show thatn1/2λT
x (D1/2n−1/2)

converges in distribution toN(0, I) . This together with (17) implies thatW2 converges in dis-

tribution toχ2
k . ♦

The proof of Theorem 2 is analogous to the one for the one-sample situation and is therefore

omitted.
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A Tables and Figures

Figure 1: Q-Q plot of−2log-lik Ratios vs.χ2
(3) percentiles for sample size= 200 (one sample).

n α

0.01 0.05 0.1 0.15 0.2

30 0.0144 0.0550 0.1032 0.1511 0.1981

50 0.0103 0.0524 0.1057 0.156 0.2052

100 0.0102 0.0476 0.1 0.1508 0.19993

Table 1: Estimated type I errors at various significance levelsα
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Figure 2: Q-Q plot of−2log-lik Ratios vs.χ2
(2) percentiles for sample sizen = 30, 50, 100

Figure 3: Estimated survival functions for kidney dialysis patients with percutaneously (dashed

line) and surgically (solid line) placed catheters.
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Table 2: Moderate sample results withn = 100.

Uncensored Censored

N A B C D E N A B C D E

G0,0 .0525 .996 .809 .654 .105 .711 .0512 .965 .846 .299 .155 .131

GS0,0 .0506 .994 .935 .567 .392 .649 .0518 .955 .939 .240 .592 .166

G1,0 .0518 .974 .979 .130 .324 .130 .0524 .935 .965 .091 .386 .049

GS1,0 .0520 .955 .992 .105 .810 .243 .0488 .900 .980 .084 .820 .202

G4,0 .0470 .780 .995 .056 .756 .197 .0474 .738 .990 .056 .759 .215

GS4,0 .0482 .706 .995 .054 .855 .324 .0474 .668 .988 .059 .849 .304

G0,1 .0566 .979 .180 .959 .079 .980 .0520 .890 .223 .677 .086 .572

GS0,1 .0512 .983 .202 .940 .087 .974 .0574 .900 .280 .622 .097 .555

G4,1 .0502 .917 .942 .053 .280 .079 .0496 .878 .893 .057 .320 .055

GS4,1 .0516 .889 .960 .054 .784 .144 .0498 .830 .921 .059 .778 .125

M [0,1]×{0} .0526 .993 .943 .349 .197 .400 .0514 .959 .959 .164 .253 .067

E[0,1]×{0} .0386 .9840 .9750 .8325 .6105 .2950.0544 .9275 .9610 .5975 .7810 .2915

M [0,4]×{0} .0492 .979 .986 .239 .442 .123 .0524 .932 .932 .126 .476 .055

E[0,4]×{0} .0440 .9865 .9870 .6590 .8405 .5470.0518 .9255 .9730 .3810 .8345 .3905

M [0,4]×[0,1] .0536 .993 .939 .608 .286 .446 .0504 .957 .957 .329 .273 .106

E[0,4]×[0,1] .0452 .9645 .9845 .7930 .7830 .4585.0558 .9005 .9560 .5505 .8205 .3320
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Table 3: Small sample results withn = 20 for a null andn = 50 for the alternatives.

Uncensored Censored

N A B C D E N A B C D E

G0,0 .0632 .902 .532 .384 .091 .422 .0612 .759 .601 .176 .102 .094

GS0,0 .0564 .881 .670 .308 .150 .349 .0568 .728 .710 .128 .279 .114

G1,0 .0522 .801 .801 .099 .193 .101 .0494 .687 .777 .061 .218 .060

GS1,0 .0476 .740 .860 .074 .463 .142 .0500 .625 .813 .059 .481 .129

G4,0 .0456 .497 .889 .049 .477 .122 .0456 .447 .837 .047 .464 .138

GS4,0 .0470 .409 .881 .047 .564 .181 .0464 .376 .822 .044 .539 .183

G0,1 .0958 .832 .141 .745 .090 .789 .0818 .643 .170 .407 .091 .349

GS0,1 .0814 .827 .147 .688 .083 .769 .0826 .653 .199 .364 .097 .335

G4,1 .0500 .674 .706 .057 .168 .098 .0500 .607 .629 .053 .194 .068

GS4,1 .0538 .603 .740 .049 .436 .109 .0528 .549 .665 .054 .436 .103

M [0,1]×{0} .0546 .877 .702 .211 .133 .218 .0540 .738 .704 .108 .160 .067

E[0,1]×{0} .0222 .7180 .7585 .2435 .2980 .0900.0496 .6270 .7165 .2185 .4590 .1725

M [0,4]×{0} .0538 .819 .823 .148 .259 .089 .0496 .672 .784 .084 .280 .060

E[0,4]×{0} .0352 .7395 .8120 .2400 .4885 .2350.0592 .6340 .7465 .1680 .5065 .2215

M [0,4]×[0,1] .0662 .887 .694 .371 .173 .262 .0626 .746 .660 .194 .161 .083

E[0,4]×[0,1] .0614 .6020 .7650 .2275 .4320 .1985.1062 .5680 .7070 .2170 .4810 .2025
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