Combined Multiple Testing
by Censored Empirical Likelihood

Arne Bathke* Mi-Ok Kim | and Mai Zhou

Abstract

We propose a new procedure for combining multiple tests in samples of right-censored
observations. The new method is based on multiple constrained censored empirical like-
lihood where the constraints are formulated as linear functionals of the cumulative hazard
functions. We prove a version of Wilks’ theorem for the multiple constrained censored em-
pirical likelihood ratio, which provides a simple reference distribution for the test statistic
of our proposed method. A useful application of the proposed method is found in examin-
ing the survival experience of one or more populations by combining different weighted
log-rank tests. A real data example is given using the log-rank and Gehan-Wilcoxon
tests. In a simulation study, we compare the new method to different weighted log-rank
statistics, Renyi-type suprema, and maximin efficiency robust tests. The empirical results
demonstrate that, in addition to its computational simplicity, the proposed combined test-
ing method can also be more powerful than previously developed procedures. Statistical
software is available in an R package ‘emplik’.
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1 Introduction

In studies examining the survival experience of one or more populations, one has a choice
among many different tests that are versions of weighted log-rank statistic, differing only in the
choice of the weight function. If the shape of the hazard ratio under the alternative hypothesis
is known, a test with an optimal weight function can be selected. For example, the log-rank test
is most powerful when the true hazard curve is proportional to the hypothesized one. However,
in general the shape is unknown and the selection of the weights is problematic as the power of
the weighted tests varies depending on where and how the curves depart from the hypothesized
one (see, e.g., Fleming and Harrington, 1991, Chapter 7; Lin and Kosorok, 199® dred
Zuluaga, 2005). A wrong choice may result in a great loss of power. Kosorok and Lin (1999)
observe in the3-Blocker Heart Attack Trial (BHAT) that the beneficial effect of propranolol
hydrochloride in patients with acute myocardial infarction can be detected with an optimally
weighted test at a much earlier calendar time than with the log-rank statistic that was originally
chosen by the investigators-Blocker Heart Attack Trial Research Group, 1982). Naturally, the
differing powers of the tests can lead to disagreement. Klein and Moeschberger (1997, p. 197)
use a kidney dialysis data set to illustrate the situation. We re-analyze the kidney dialysis data,
using our newly proposed method (see Section 3).

Several versatile procedures sensitive to a range of alternatives have been developed. Among
others, these include the maximin efficiency robust tests (MERT; Gastwirth, 1985), the supre-
mum version tests (Fleming, Harrington, and O’Sullivan, 1987), the maximum of a finite cluster
of statistics (Tarone, 1981; Fleming and Harrington, 1984; Lee, 1996), and a test with function
indexed scheme of the weights and time (Kosorok and Lin, 1999). These methods do not yield
asymptotically efficient tests. Lai and Ying (1991) proposed an asymptotically efficient test by
estimating efficient weights. However, their method uses kernel estimates. Therefore, it requires
large sample sizes to perform well, and it is inappropriate for small or moderate samples.

In this paper we take a different approach; we propose increasing the power by combining
different tests. While different versions of weighted log-rank tests are available, practitioners
are most familiar with the log-rank and Mann-Whitney-Wilcoxon test or its modified versions.

The aforementioned versatile procedures that are sensitive to a range of alternatives have the



disadvantage of being complex and computationally intensive as the null distribution of the
test statistics often needs to be simulated. Hence, in practice, a choice is often made between
versions of the log-rank and the Mann-Whitney-Wilcoxon tests. We suggest, instead of making
a choice, to combine the two tests. If there is a simple way of combining the tests, the combined
test will be reasonably sensitive to a broad range of alternatives without being computationally
burdensome. However, standard ways of combining the tests are not trivial. A direct way
of combining the tests requires estimating the covariance matrix of the test statistics of the
individual tests. A simple alternative is adjusting the significance levels of the individual tests
by multiple testing procedures. However, in the latter case the simplicity is achieved at the
expense of the power of the combined test.

We propose a simple and powerful alternative method of combining tests that is based on
censored empirical likelihood (EL) with multiple constraints. The test statistics of the individ-
ual tests are formulated as linear functionals of the cumulative hazard functions and serve as
the constraints for the censored EL. We show that Wilks’ theorem holds for the censored EL
with multiple constraints similarly as in an uncensored case. This provides a simple reference
distribution for the test statistic of our proposed method. Clearly, the new method utilizes the
likelihood and hence avoids directly estimating the covariance matrix of the test statistics. The
proposed combined test can be much more powerful than each of its member tests (see Example
2 in Section 3 below), while it can be less powerful if one member is optimal. We discuss the
relative loss of power of the combined test at the end of Section 3.

We note that the multiple testing procedure is only one possible application of the more
general EL approach. It could also be used, e.g., to obtain confidence regions for a collection of
the population quantiles. More specifically, the EL results of this paper are readily applicable
to the two sample quantile testing problems of Kosorok (1999) and to one sample quantile
problems by using the test statistics of the quantile tests as constraints for the censored EL. The
proposed EL approach is simpler than the existing quantile tests as it does not require estimating
the covariance matrix of the test statistics.

The theoretical interest of this paper is filling a gap in the literature for censored empirical

likelihood with multiple parameters. Although empirical likelihood has appeared as a useful



nonparametric statistical inference method since Owen (1988), there are less available results
for censored data and most, if not all, are concerned with just one parameter. Pan and Zhou
(2002) studied the right censored data empirical likelihood with a parameter that is a general
functional of the cumulative hazard. For functionals that are simple indicator functions, results
are in Murphy (1995) and Thomas and Grunkemeier (1975). For the case where the parameter
is a general functional of the distribution function, results can be found in Murphy and Van
der Vaart (1997) and Pan and Zhou (1999). However, no results for the censored empirical
likelihood with multiple parameters have been available.

The rest of the paper is organized as follows. Section 2 describes theoretical aspects of the
proposed method. We present the general results in Sections 2.1 and 2.2, and apply the empirical
likelihood approach to the multiple testing situation in Section 2.3. Section 3 provides empirical
results to confirm Wilks’ theorem for the multiple constrained censored empirical likelihood
ratio, and a simulation study comparing our proposed method to different weighted log-rank
statistics, Renyi-type suprema, and maximin efficiency robust tests (MERT, Gastwirth, 1985).
Application of the proposed method is also illustrated on real data with the log-rank and Gehan-
Wilcoxon tests. The empirical results are obtained by implementing the proposed method with

functions in an R package ‘emplik’. All proofs are deferred to the appendix.

2 Censored Empirical Likelihood with £ (£ > 1) Constraints

We will first explain the underlying theory of the proposed method in the one sample case. The

results extend straightforwardly to the two sample situation.

2.1 One Sample Censored Empirical Likelihood

Forn independent, identically distributed observatiols, - - - , X,,, assume the distribution of
the X; is F,(t) and the cumulative hazard function &f is A, (¢). With right censoring, we
only observe

T; = min(X;,C;) and 6; = Iix,<cy (1)



where theC;’s are the censoring times, assumed to be independent, identically distributed, and
independent of theX;’s. Based on the censored observations, the log empirical likelihood

pertaining to the distributiot’, is

As shown in Pan and Zhou (2002), computations are much easier with the empirical likelihood
reformulated in terms of the (cumulative) hazard function. The equivalent hazard formulation

of (2), denoted byog FL(A,), is given as follows:
log EL(A Z {d;logv; + (R; — d;) log(1 —v;)} (3)

whered; = ZJ =05, Ry = E] 1 Iir;>1,), andt; are the ordered, distinct values ‘6f
See, for example, Thomas and Grunkemeier (1975) and Li (1995) for similar notation. Here,
0 < v; < 1 are the discrete hazardstat The maximization of (3) with respect i@ is known
to be attained at the jumps of the Nelson-Aalen estimatos d,;/R;.
Let us consider a hypothesis testing problem foidémensional parametér= (9y,-- - , ;)"

with respect to the cumulative hazard function such that

Hy:0=p vs. Hy:0#p for GT:/g,n(zf)log(l—d/\x(t)),r:17...7/€

where theg, () are some nonnegative functions gnd= (i, - -, ux)” is a vector ofk con-
stants. We note that tlfe are functionals of the cumulative hazard function. The constraints we
shallimpose on the hazardsare: for given functiong, (-), - - - , gx(-) and constantg,, - - - , pu,

we have

Zgl Jlog(l —wvi) =, - ng )log(1 — v;) = ik . 4)

whereN is the total number of distinct observation values. We need to exclude the last value
as we always havey = 1 for discrete hazards. Let us abbreviate the maximum likelihood es-
timators ofAA,(¢;) under constraints (4) as. Application of the Lagrange multiplier method

shows
d;
R; + n\TG(t;)

vi(A) =

5



whereG(t;) = {g1(t:), -, gx(t;)}T and\ is the solution to the maximization of (3) under the

constraints in (4) (Lemma 1 in the appendix). Then, the test statistic in terms of hazards is given
by
Wy = —2{logmax EL(A,)(with constraint (4) — log max EL(A,)(without constraint} .

We have the following result that proves a version of Wilks’ theoreniifeunder some regular-
ity conditions which include the standard conditions on censoring that allow the Nelson-Aalen

estimators to have an asymptotic normal distribution (see Andetsan 1993, for details).

Theorem 1. Suppose that the null hypothesgis holds, i.e.., = [ g.(t) log{1 —dA,(t)}, r =
1,..., k. Then, the test statistid’; has asymptotically a chi-square distribution witldegrees

of freedom.

Remark 1 The integration constraints are originally giverdas= [ g, (¢)dlog{1 — F,(t)},
r =1,---, k. The above formulations are found by using the suggestive notatieq F..(t)} =
log{dA,(t)}. These two formulations are identical for both continuous and disétgte.

Remark 2: If the functionsg,(¢) are random but predictable with respect to the filtration
(see Gill, 1980), Theorem 1 is still valid.

2.2 Two Sample Censored Empirical Likelihood

Suppose in addition to the censored sampleXebbservations, we have a second sample
Y1, .-+, Y, coming from a distribution functio),(¢) with a cumulative hazard functiaf, (¢).

Assume that thé’;’'s are independent of th&,’s. With censoring, we can only observe
Uj = min(Y;,55)  and  7; = liy,<g;) (5)

whereS; are the censoring variables for the second sample. Denote the ordered, distinct values
of theU; by s;.

Similar to (3), the log empirical likelihood function based on the two censored samples
pertaining to the cumulative hazard functiofis and A, is simply EL(A,,A,) = Ly + Lo

where

L= Z dy; log v; + Z<R” —dy;)log(1 —v;) and

6



Ly =) dojlogw; + Y (R — dy;) log(1 — wy), (6)
j j
with dy;, Ry;, do; andR,; defined analogous to the one sample situation (see p.5). Accordingly,
let us consider a hypothesis testing problem fardimensional parametér= (6, - -+ ,6;)"

with respect to the cumulative hazard functionsandA, such that
Hy:0=p vs. Hy:0#p,

whered, = [ g1,(t)log{1 — dA.(t)} — [ g2(t)1og{l — dA,(t)}, r = 1,--- , k, for some
predictable functiong,,. () andg,,(¢). Then, the constraints imposed arandw, are

M-1

Zglr logl_vz ZQQT 3] log ) T':l,...,k, (7)

where N and M are the total number of distinct observation values from the two samples. As
in the one sample case, we need to exclude the last values.

Let us abbreviate the maximum likelihood estimatorsiof, (¢;) and AA,(s;) under the
constraints (7) as; andw;, respectively, wheré=1,--- N andj = 1,--- , M. Application
of the Lagrange multiplier method shows

dy;
Ry; + min(n, m)ATG4(t;)

Ul()‘) = jo — min(n7m))\TGg(8j) ’

wi(A) =

WhereGl(ti) = {gll(ti)a SR ,g1k<ti>}T, GQ(Sj) = {921(5j), cee ,ggk(Sj)}T, and )\ is the solu-
tion to maximizingEL(A,, A,) = L, + L, under the constraints in (7). Then, the two-sample

test statistic is given as follows:
W3 = —2{log max EL(A,, A,)(with constraint (7)—log max EL(A,, A,)(without constraint}

analogous to the one-sample case. The following theorem provides the asymptotic distribution
result forivy.

Theorem 2. Suppose that the null hypothes# : 6, = yu, holds. i.e.i, = [ gi,(t)log{1 —
)} — [ g2 (t) log{1l — dA,(t)}, r =1,... k. Then, asnin(n,m) — oo, W; has asymp-

totlcally a chi-square distribution witlk degrees of freedom.



2.3 Combined Multiple Testing Based on Censored Empirical Likelihood

The basic idea of combining a family of tests by the multiple constrained censored EL is to
formulate the test statistics of the individual tests as linear functionals of the cumulative hazard
functions and using them as the constraints of the multiple constrained empirical likelihood. To
be more specific, let us consider a hypothésis: A, = Ay vs. H; : A, # Ay and consider
combining the log rank test and one of its weighted versions for the one sample problem. We can
formulate the test statistics of tli¢”"” family of Harrington and Fleming (1982) with respect to

the hazard a8 " h(t;, p,7) log(1 — v;), where

h(t,p,y) = R(OS(E) (1= S(t7)) forp,y >0, (8)
whereR(t) = > Iir,>q andS(t) denotes the Kaplan-Meier estimator. The test statistics of the
log rank and Wilcoxon tests correspond to (8) with~y) = (0,0) and(p,~) = (1,0) respec-
tively. Note that the function(t, p, v) is a nonnegative, random yet predictable function. In the
combined test, the null hypothesis in Theorem 1 becomes [ g, (t)log(1 — dAo(t)), r =
1,..., k, where different functiong, correspond ta(¢, p, ) with different choices op and~y
in display (8). Then, the test statistit, is obtained under the constraints in (4) witft, p, )
with appropriate choices gfand~ serving agj,.

In a two-sample problem, the test statistics of individual tests can be formulated as

St Bt p, ) log(1 — v;) — Y000 (s, p,7) log(1 — w;), where

o) = (W ()1~ W(u))”ﬁﬁf%%

forp >0, (9)

and whereR, (u) = 3 Iz, and Ry(u) = 3 iy, >y If W(u) = S(u~) andS is the pooled
sample Kaplan-Meier estimator, then the test corresponds Gthéamily of Harrington and
Fleming (1982). IfiW (u) = {Ri(t) + R2(t)}/(n +m) andy = 0, then it corresponds to the
Tarone-Ware (1977) class of statistics. The valpey) = (0,0) corresponds to the log-rank
statistic in both cases, while, v) = (1, 0) corresponds to the Prentice-Wilcoxon statistic in the
Harrington and Fleming (1982) class and the Gehan-Wilcoxon statistics (Gehan, 1965) in the
Tarone-Ware (1977) class. Also note thatu, p, ) are predictable functions. In the combined

test, we choosg,, andgs, to be the functiorh*(u, p, v) with some appropriate and~. Hence,
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the null hypothesis in Theorem 2 becomes= [ g,(t)log{1 — dA,(t)} — [ ¢.(¢)log{1l —
dA,(t)}, m = 1,...,k, where different functiong, correspond td:*(u, p, v) with different
choices ofp and~ in display (9). If we are concerned with testing whethe(t) is equal to
Ay(t), thenp, = 0forr = 1,..., k. The test statisti¢V; is obtained under the constraints in

(7) whereh*(u, p, ) with appropriate choices gfand~ serves ag, = g1, = ga-

3 Examples and Simulations

We provide Monte Carlo simulation results for one- and two-sample cases to empirically con-
firm the chi-square limit distribution of the -2 log empirical likelihood ratio with multiple con-
straints. The proposed methods are illustrated with real data sets where we combine the log-rank
and Wilcoxon tests for one sample and the log-rank and Gehan-Wilcoxon tests for two sam-
ples. Furthermore, we show results from an extensive comparative simulation study including
members of th&*” family of weighted log-rank statistics, the associated Renyi-type suprema
(G:SP7), and their maximin efficiency robust test (MERT, Gastwirth, 1985) counterparts. All
the computations have been carried out using version 0.9-1 of the emplik package in R.
Simulation 1

This simulation study examines the distribution of the -2 log empirical likelihood ratio in the
one sample case with multiple constraints where the constraints are the non-random functions
g1(t) = exp(—t), g2(t) = %t - Ijp<1y, @andgs(t) = Ip<o.9. We use the following distributions to

generate the random variables.
X ~exp(l), C ~exp(0.5), (10)

and the censored observations are created via (1). The Q-Q plot (Figure 1) is based on 5,000
runs. It agrees well with the theoretically derivgﬁ) distribution.

Simulation 2

This simulation study examines the distribution of the -2 log empirical likelihood ratio with
multiple constraints where the constraints are random functions. We choose random functions
to correspond to the test statistics of the log rank and Gehan-Wilcoxon tests in order to confirm

the chi-square limit distribution of the proposed test statistic and the level of the combined test.

9



The test statistics of the log rank and Gehan-Wilcoxon tests belong to the Tarone-Ware (1977)
class of statistics and correspond to (9) Withfu) = { Ry (u) + R2(u)}/(n+m), (p,v) = (0,0)
and(p,y) = (1,0) respectively. In each of 10,000 runs, two identically distributed equal sized
random samples are generated from the simulation setup in (10), and the test $igtistic
calculated under the constraints in (7) whétéu, p, v) with the prescribedV (u) serve agy;..

andg,,. Table 1 shows that the proposed combined test attains the type | error at the nominal
levels. Figure 2 shows that the distribution 16, agrees well withxé). The distribution
deviates in the tail area with the sample size- 30, but the deviation is in the extreme end of

the tail.

Example 1. lowa Psychiatric Patient Data

We apply the combined test of the log-rank and Wilcoxon tests to a sample of survival times
of 26 psychiatric inpatients to compare with the survival time distribution of the general pop-
ulation in lowa. The data is part of a larger study of psychiatric inpatients admitted to the
University of lowa hospital during the years 1935-1948 (for more information on the data, see
Tsuang and Woolson, 1977). Klein and Moeschberger (1997, p. 189) use the data to illustrate
the one-sample log-rank test. The test statistics of the log rank and Wilcoxon tekts, arey)

in (8) with (p,v) = (0,0) and(p,v) = (1,0), respectively. Thé(t, p,~) are adjusted to ac-
commodate the delayed entries. We use them @3, » = 1, 2. When applied individually, the
log-rank and Gehan tests both reject the null with p-vakaés001 and0.0432. The combined

test statistic reaches the same conclusion with the p-value 0.00088.

Example 2. Kidney Dialysis Patient Data

We apply the combined test of the log-rank and Gehan-Wilcoxon test to re-analyze the kidney
dialysis data of Klein and Moeschberger (1997, p. 197). The test statistics of the log-rank
and Gehan-Wilcoxon tests correspond to (9) whéteu) = {R;(t) + R2(¢)}/(n + m) and

(p,v) = (0,0) and(p,v) = (1,0), respectively. Out of a total of 119 patients, 43 had a catheter
surgically placed and 76 percutaneously (for a detailed description of the data, see Nghman
al., 1992). The plot of the estimated survival functions (Figure 3) shows that the curves cross
each other at about 6 months and suggests that the survival experience of the two groups is

different. However, as indicated in the introduction, the log-rank test and its weighted versions
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make different decisions. Both the log-rank and Gehan-Wilcoxon tests, two of the most popular
ones, fail to reject the null hypothesis with p-values 0.112 and 0.964 respectively, while tests of
the G family with emphasis on the later time period reject the null. Electing to apply such
GP7 family class test, though, is usually a post hoc decision. When our proposed method of
combining the tests is applied, it rejects the null with a p-value of 0.001. This indicates that the
combined test can be much more powerful than either one of the individual tests.

Simulation 3

We compare the small and moderate sample size behaviors of the proposed test withi the
family of weighted log-rank statistics, the associated Renyi-type suprérSa™), and their
maximin efficiency robust test (MERT, Gastwirth, 1985) counterparts. Kosorok and Lin (1999)
conducted extensive Monte Carlo simulation studies to compare their function-indexed weighted
log-rank test with the>”7 family of weighted log-rank statistics, the associated Renyi-type
suprema and suprema plus infimum, and their MERT counterparts. We have replicated Kosorok
and Lin’s (1999) simulation study design with our proposed method and compared the results
(Tables 2 and 3)170»01% 0] denotes the MERT test with the statistic taken for@He family

for p € [0, p0] @andy € [0,70]. When only0 is considered as a value fot it is reduced to
M0ro]x{0} - Kosorok and Lin (1999) implemented the MERT by taking the test statistics of
M0:polx{0} and A7l x[00] as linear combinations @i®°, G0 and G0, G®°, andGroo
respectively. Therefore, the proposed EL counterpartgares!* {0} and E0-»0lx[010] with the

test statistics of the correspondiayy” family as constraints. We use Theorem 2 to find criti-

cal values for our test from a regulgf-distribution, while Kosorok and Lin (1999) conducted
1,000 Monte Carlo replications to construct the critical regions for each simulated data. As
Kosorok and Lin’s (1999) function-indexed weighted log-rank test is more computationally in-
tensive than the MERT with slightly better performance, we only present the results féf-the
family of weighted log-rank statistics, the associatgs”, and their MERT counterparts in Ta-

bles 2 and 3. The column labels “N” and “A’-“E” stand for a “null” and 5 different alternative
models indexed similarly in Kosorok and Lin (1999). The number of simulations is 10,000 for
the null distributions and 1,000 for the alternatives (2,000 for the EL alternatives).

The simulation results show that the proposed EL test performs comparably to the MERT

11



where the MERT performs well, while it is more reliable where the MERT performs poorly.
For example, with the alternative model A where the hazards are proportional and the log-
rank test G°V) is optimal, both the MERT and EL have comparable powers to the power of
GY: the ranges of loss of power are (0.003, 0.033) and (0.0095, 0.0285) for the MERT and
EL in a moderate sample, respectively, and (0.013, 0.087) and (0.125, 0.3) in a small sample.
However, with the alternative model D where the hazards differ at the beginning and their
difference disappears later,S*° has the highest power among those considered in Kosorok
and Lin (1999)’s original simulation and the MERT performs poorly, while the EL performs
reasonably: the ranges of loss of power are (0.373, 0.658) and (0.0145, 0.2445) for the MERT
and EL in a moderate sample and (0.291, 0.431) and (0.0575, 0.266) in a small sample. Similar
results are observed for alternative model E where the hazard functions cro§$-ahds the
highest power: the ranges of loss of power are (0.466, 0.8577) and (0.1815, 0.685) in a moderate
sample and (0.266, 0.700) and (0.1275, 0.699) in a small sample. The reliable performance of
the proposed EL test is even more distinct in the censored case.

In addition, we would like to point out the computational advantage of our proposed test

whose critical values can easily be obtained frogtalistribution.

APPENDIX

Mathematical Derivations and Proofs
Recall the column vector&: (t) = {gi(t), -+ ,gx(t)}T and A= {\;,- -, A\e}T .

Lemma 1. The hazards that maximize the log likelihood function (3) under the constraints (4)

are given by
e pupm— (11)
U R+ nATG(t)
where the\ value is obtained as the solution of the followilhgquations
N—-1 N—-1
Y ogt)log{l—v;(N}=m, - > ge(ti)log{l —oi(N} =p . (12)

7 %
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PROOF OFLEMMA 1. The result follows from a standard Lagrange multiplier argument applied
to (3) and (4). See Fang and Zhou (2000) for some similar calculat{pns.
We denote the solution of (12) by,.

Lemma 2. Assume the data are such that the Nelson-Aalen estimator is asymptotically normal
and the variance-covariance matnixdefined in the appendix (p. 14) is invertible. Then, for the
solution )\, of the constrained problem (12), corresponding to the null hypothégis u, =

[ g-(t)log{1—dA,(t)}, r =1,..., k, we have that'/2)\, converges in distribution t&/ (0, %).

PREPARATION FOR THE PROOFS OEEMMA 2 AND THEOREM 1.
Let

FO) = [dilogvi(A) + (R; — d;) log{1 — vi(\)}] . (13)

In order to show that’(0) = 0, we compute

axrfm B Z vi(A) O\, v;(\) a0 Lok
Letting A = 0 and after some simplification we have

We now compute”(0) = >_. Theri™ element of thé: x k matrix y_ is
82
Dy = ——=—f(\)|r=0-
L= oo Wb

After straightforward but tedious calculations, we obtain

n2grgl dz
Drl:_{zi: Rz _—Rz—dz .

By a now standard counting process martingale argument, we see

Drl
n

— Dy

PROOF OFLEMMA 2. We derive the asymptotic distribution af The argument is similar
to, for example, Owen (1990) and Pan and Zhou (2002). Define a vector furidtion=

{hl(s)v T 7hk(3)} by

hi(s) = Zgl(tz‘)log{l —vi(8)} =, Tu(s) = ng(ti) log{1 —vi(s)} — px - (14)

13



Then,\ is the solution ofi(s) = 0. Thus we have
0= h(\) = h(0) + W (0)A 4 0,(n~'/?) | (15)
whereh’(0) is ak x k matrix.
Indeed,

1= 3 6l og{1 = ()~ =1 356 os{1 - 3

R; + n\G(L:)

b= ul

—A-B,

where the first expressiat is of the ordeiO, (n~'/2). Considering the second expression,

B=|§:G@0bgF_dM??;Z%GWDW|

nG(t:)"\d;
>|§:G )uz+nvC(ﬂ

> \)\] Z nG(t;)G(t;)Td |
~ 1+ n|AT|max; G(t;)/R; - (R; — d;)R;

The sum converges td*| and is therefore of orded,(1), so it follows that|)\| is of order
0, (n~1/?), and hence the expansion (15) is valid.

Therefore,
n'2X = {1 (0)} " H{—n"2h(0)} + 0,(1) .
The elements of’(0) are easily computed:
d.
W ngrgiti
" th&—@

Notice we have verifiedh!, = —D,;. By the counting process martingale central limit theorem
(see, for example, Gill, 1980; Andersenal., 1993; or Fang and Zhou, 2000), we can show
thatn!/2h(0) converges in distribution t&/ (0, ¥,) with 3, = lim /'(0).

Finally, putting it together, we have that/2)\(0) = {A’(0)}~*{—n'/2h(0)} + 0,(1) con-

verges in distribution tav (0, X) with ¥ = lim{~/(0)}~'. Recallingnh’, = —D,;, we see that
Y l=D*¢

14



PROOF OFTHEOREM 1. Let f()\) be defined as in (13). Then, we haié = —2{f(\,) —

f(0)} . By Taylor expansion, we obtain
Wy =2(/(0) ~ £(0) ~ F(OA ~ X DA, + 0,1} (16)

where we useD to denote the matrix of second derivatives fdf) with respect to\. The
expansion is valid in view of Lemma 2( is close to zero).

Notice that we havg’(0) = 0 (see above), so the expression above is reduced to
Wy = -AIDX, +0,(1) . (17)

Notice that— D is symmetric and positive definite for large enoughecause-D/n con-

verges to a positive definite matrix, see below. Therefore, we may write
Wy = A (=D)Y2(=D)'2\, + 0,(1) . (18)

Recalling the distributional result for, in Lemma 2 and noticing that

n

andD* = ©.~! (see above in the proof of Lemma 2), itis not hard to showith&\’ (D'/2n~1/2)
converges in distribution t&/ (0, I) . This together with (17) implies th&t’, converges in dis-
tribution tox? . ¢

The proof of Theorem 2 is analogous to the one for the one-sample situation and is therefore

omitted.
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A Tables and Figures

15

3 hazard constraints
sample size n=200

iteration = 5000

=3)
10

qchisq((1:5000 - 0.5)/5000, df

glt=exp(-t)

92()=0.5"t*I[t<1]

g3(t)=I[t<0.9]

T T T T
0 5 10 15

sort(result)

Figure 1: Q-Q plot of-2log-lik Ratios vs.Xé) percentiles for sample size 200 (one sample).

n o

0.01 | 0.05 0.1 0.15 0.2
30 | 0.0144| 0.0550| 0.1032| 0.1511| 0.1981
50 | 0.0103| 0.0524| 0.1057| 0.156 | 0.2052
100| 0.0102| 0.0476| 0.1 | 0.1508| 0.19993

Table 1: Estimated type | errors at various significance levels
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Table 2: Moderate sample results with= 100.

Uncensored Censored
N A B C D E N A B C E
G0 0525 .996 .809 .654 .105 .711 .0512 .965 .846 .299 .155 .131
GS%0 | 0506 .994 935 567 .392 .649 .0518 .955 .939 .240 592 .166
G0 0518 .974 979 130 .324 .130.0524 935 .965 .091 .386 .049
GS'Y | .0520 .955 .992 .105 .810 .243.0488 .900 .980 .084 .820 .202
G40 0470 .780 .995 .056 .756 .197 .0474 .738 .990 .056 .759 .215
GS*Y | .0482 .706 .995 .054 .855 .324 .0474 .668 .988 .059 .849 .304
GO 0566 .979 .180 .959 .079 .980.0520 .890 .223 .677 .086 .572
GSO' | 0512 983 .202 .940 .087 .974 .0574 .900 .280 .622 .097 .555
G4l 0502 .917 942 .053 .280 .079.0496 .878 .893 .057 .320 .055
GSH! 0516 .889 .960 .054 .784 .144 .0498 .830 .921 .059 .778 .125
MOIx{0} | 0526 .993 .943 349 .197 .400 .0514 959 959 .164 .253 .067
EOAx{0} | 0386 .9840 .9750 .8325 .6105 .29500544 .9275 .9610 .5975 .7810 .2915
MOAX{0} | 0492 979 986 .239 .442 123 .0524 .932 932 .126 .476 .055
E0Ax{0} | 0440 .9865 .9870 .6590 .8405 .54700518 .9255 .9730 .3810 .8345 .3905
MOAX0I | 0536 .993 939 .608 .286  .446 .0504 957 .957 .329 273 .106
EOAXDI | 0452 9645 .9845 .7930 .7830 .45850558 .9005 .9560 .5505 .8205 .3320
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Table 3: Small sample results with= 20 for a null andn = 50 for the alternatives.

Uncensored Censored
N A B D E N A B C E
GO0 0632 902 532 .384 .091 .422.0612 .759 .601 .176 .102 .094
GSso0 .0564 .881 .670 .308 .150 .349 .0568 .728 .710 .128 .279 .114
Gto .0522 .801 .801 .099 .193 .101 .0494 .687 .777 .061 .218 .060
GS'Y | .0476 .740 .860 .074 .463 .142 .0500 .625 .813 .059 .481 .129
G40 0456 .497 .889 .049 477 122 .0456 .447 .837 .047 464 .138
GS*Y | .0470 .409 .881 .047 564 .181 .0464 .376 .822 .044 539 .183
GO 0958 .832 .141 .745 090 .789 .0818 .643 .170 .407 .091  .349
GSO' | 0814 .827 147 688 .083 .769.0826 .653 .199 .364 .097 .335
Gh1 0500 .674 .706 .057 .168 .098 .0500 .607 .629 .053 .194 .068
GS*! 0538 .603 .740 .049 436 .109 .0528 .549 .665 .054 .436 .103
MOx{0} | o546 .877 .702 211 .133 .218 .0540 .738 .704 .108 .160 .067
EOAx{0} | 0222 7180 .7585 .2435 .2980 .09000496 .6270 .7165 .2185 .4590 .1725
MOAX{0} | 0538 .819 .823 .148 259 .089 .0496 .672 .784 .084 .280 .060
EOAX{0} | 0352 7395 .8120 .2400 .4885 .23500592 .6340 .7465 .1680 .5065 .2215
MOAX0I | 0662 .887 694 371 .173 .262 .0626 .746 .660 .194 .161 .083
EOAXDI | 0614 .6020 .7650 .2275 .4320 .19851062 .5680 .7070 .2170 .4810 .2025
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