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Symmetric Location Estimation/Testing by
Empirical Likelihood

Kyoungmi Kim and Mai Zhou*

Department of Statistics, University of Kentucky, Lexington,
Kentucky, USA

ABSTRACT

The problem of estimating the center of a symmetric distribution is

well studied and many nonparametric procedures are available. It
often serves as the test problem for many nonparametric estimation
procedures, and stimulated the development of efficient nonpara-

metric estimation theory. We use this familiar setting to illustrate a
novel use of empirical likelihood method for estimation and testing.
Empirical likelihood is a general nonparametric inference method,

see Owen [Owen, A. (2001). Empirical Likelihood. London: Chap-
man and Hall]. However, for symmetric location problem (and some
other problems) empirical likelihood has difficulties. Owen (2001)

call them ‘‘challenges for the empirical likelihood’’. We propose
and study a way to use the empirical likelihood with such problems
by modifying the parameter space. We illustrate this approach by
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applying it to the symmetric location problem. We show that the
usual asymptotic theory of empirical likelihood still holds and the

asymptotic efficiency of the so obtained empirical NPMLE of
location is studied.

Key Words: Many constraints of symmetry; Asymptotic chi-square
distribution; Nonparametric information bound.

AMS 1991 Subject Classification: Primary 62G10; Secondary
62G05.

1. INTRODUCTION

Empirical likelihood, see Owen (2001), is a general nonparametric
method that provides the advantages of a (parametric) likelihood ratio
based inference without having to assume a parametric family of distribu-
tions. The advantages are more profound for censored=truncated data
analysis where the traditional (Wald) approach becomes more compli-
cated due to the difficulty in the estimation of variance. While the proce-
dure discussed in this paper can clearly be used in the case of censored
data, we shall focus on the non-censored data setting for clarity.

Definition (Owen, 2001). For given n i.i.d. observations X1; . . . ;Xn with
common distribution function FXðtÞ, the nonparametric or empirical
likelihood for the distribution function FXðtÞ is

LðFÞ ¼
Yn
i¼1

wi ð1Þ

where wi ¼ DFXðxiÞ is the probability PFðX ¼ xiÞ. The empirical distribu-

tion function, bFFn, maximizes LðFÞ among all the distribution functions.

However, when we restrict the parameter space to be all the sym-
metric distributions,

Y ¼ fF jF is symmetric wrt y; some y 2 R1g;

the maximization of the above empirical likelihood has problems: the
NPMLE does not exist or there are many NPMLE’s having the same
(empirical) likelihood value. When the true F is continuous, it is easy
to see that PðbFFn is symmetricÞ ¼ 0 where bFFn is the empirical distribution
function.
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Example. Suppose X1 < X2 < X3 are three ordered observations from a
continuous symmetric distribution F0ðtÞ, with an unknown location of
symmetry, y. Without loss of generality, assume X3 � X2 6¼ X2 � X1.

By adding one extra jump point to bFFn, we can make bFFn into F�
nðtÞ

which is symmetric. Unfortunately there are more than one candidate
of F�

nðtÞ’s that can have the same empirical likelihood value. If we believe
that y is located in the middle of X2 and X3, one more jump at the loca-
tion X4 on the right side of X3 is needed to produce an F�

nðtÞ which is sym-
metric about y with the empirical likelihood value LðFÞ ¼ w1 � w2 � w3,
and w1 þ w2 þ w3 þ w4 ¼ 1. Otherwise, if we believe that y is located in
the middle of X1 and X2, then an extra jump at location X0 to the left
of X1 is needed so that F�

nðtÞ is symmetric about y with the empirical
likelihood value LðFÞ ¼ w1 � w2 � w3 with w0 þ w1 þ w2 þ w3 ¼ 1.

It is clear the two different F�
nðtÞ’s can achieve the same likelihood

value. Indeed the local maximum is achieved for the first case at w2 ¼
w3 ¼ 1=3 and w1 ¼ w4 ¼ 1=6 and for the second case at w0 ¼ w3 ¼ 1=6
and w1 ¼ w2 ¼ 1=3.

Both F�
nðtÞ are NPMLE’s having the same empirical likelihood value

but with a very different y and F�
nðtÞ. This implies that NPMLE of y and

F�
nðtÞ is not unique. For larger samples there are even more candidates,

F�
n , that are symmetric and can achieve the same maximum empirical like-

lihood value.

There are many other setups that have the same difficulty, including
two-sample location-shift problem. See Zhou (2001) for a two-sample
location problem, and Kim (2003) for other cases and more discussions.
Roughly speaking, when the knowledge=restriction on the distributions
cannot be achieved by adjusting the jump sizes of the empirical distribu-
tion function, then there often is difficulty. (Here we have to add an extra
jump to the empirical distribution to make it symmetric.)

One of the purpose of this paper is to illustrate the use of the ‘‘enve-
lope empirical likelihood’’ method of Zhou (2001) to overcome this
difficulty. The idea is to apply the empirical likelihood on a carefully
constructed sequence of shrinking parameter spaces Yk, that converge
to the Y ¼ fall symmetric CDFg.

On each of the Yk, the NPMLE uniquely exists and the (regular)
empirical likelihood theory works beautifully. This sequence of shrinking
parameter spaces is called the envelope parameter space.

This approach is quite general. First, it can easily work with censored
data. Second, this approach also works for other challenging situations
like location-scale problems where the parameter space is not all the pos-
sible distributions but is still infinite dimensional and requires the CDF to

Symmetric Location Estimation/Testing 3

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

200026602_LSTA33_09_R1_072404



have jump points other than the observed data points. Finally we point
out that the method proposed can easily be generalized to handle higher
dimensional data. We, however, will stick to the one sample symmetric
location problem with uncensored data in this paper for the clarity of
the presentation.

The semi-parametric problem of estimating symmetric location has
been studied by many people, see many examples in the book by Bickel
et al. (1993).

Our approach is closer to the Empirical Process Approach of Hsieh
(1996). The advantage of the method proposed here is the simplicity of
the procedure, we have a chi-square null distribution to set the P-value
and there is no need to estimate the variance–covariance matrix when
construct confidence interval=region. In the empirical process approach
of Hsieh (and many other adaptive estimation procedures) you need
to first estimate a variance–covariance matrix of the empirical process
involved and then use the estimated matrix to do a weighted least squa-
res to produce the estimator. For doubly censored data, the variance–
covariance can be difficult to estimate. The advantages of our procedure
are of course inherited from the (empirical) likelihood ratio method.

2. ENVELOPE EMPIRICAL LIKELIHOOD FOR
SYMMETRIC DISTRIBUTIONS

Suppose X1; . . . ;Xn are i.i.d. observations from a symmetric distribu-
tion F with an arbitrary location parameter y (i.e., the center of symmetry
of F is y).

Maximizing the log empirical likelihood,

logL ¼
Xn
i¼1

logwi ¼
Xn
i¼1

logDFðXiÞ; ð2Þ

over all symmetric distributions is not well defined as seen in the example
of section one.

We enlarge the parameter space to Y1. It will be shown later that the
NPMLE is well defined on this space. The enlarged parameter space is
defined as

Y1 ¼ F : all distributions satisfy ð4Þf g: ð3Þ
For given ti, i ¼ 1; 2; . . . ; k

for some y; Fðy� tiÞ ¼ 1� Fðyþ tiÞ: ð4Þ
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We may rewrite the above as integrations:

for some y;
Z y�ti

�1
dFðtÞ ¼

Z 1

yþti

dFðtÞ; i ¼ 1; 2; . . . ; k: ð5Þ

If we take the functions

giðy� tÞ ¼ I½0�y�t�ti� ¼ I½t�y�ti� and g�i ðy� tÞ ¼ I½0�y�tþti� ¼ I½t�yþti�

in the above, the integration equations can take the form ofZ 1

�1
giðy� tÞdFðtÞ ¼

Z 1

�1
g�i ðy� tÞdFðtÞ; i ¼ 1; 2; . . . ; k: ð6Þ

We can in fact use gi and g�i that are smooth and define the symmetry
similarly.

It turns out that maximizing the log empirical likelihood logL
defined above among distributions in the parameter space Y1 is well
defined and thus yields both the (envelope) empirical NPMLE, ŷy andbFFðtÞ. The estimate bFFðtÞ is symmetric at least on k points: ti. We shall only
focus on the study of the estimator ŷy in this paper.

We note that the newly defined parameter space actually is dependent
on the choice and number of the functions gi and g�i , or the ti points.
When the points ti in (4) becomes dense then the space Y1 becomes the
space of all symmetric distributions. The many choices of the space Y1

is similar to the choices of bandwidth in the histogram estimation of a
density function. However, as sample size grows, we do not have to adap-
tively chose the ti points like choosing the bandwidth in density estima-
tion. If we use a fixed choice of Y1, (not changing with sample size) we
still obtain a root n consistent estimator of y and a Wilks theorem in like-
lihood ratio test. If we do adaptively change the space Y1, we may
improve efficiency. In the following we only work with a fixed Y1.

3. ENVELOPE EMPIRICAL LIKELIHOOD
RATIO TEST

Suppose Fð�Þ is symmetric about y. Consider testing the hypothesis:

H0 : y ¼ y0; vs. HA : y 6¼ y0:

The test statistic we propose is the likelihood ratio statistics

T ¼ �2
n

max
Y1with y¼y0

logL� max
Y1with y2R1

logL
o
: ð7Þ

Symmetric Location Estimation/Testing 5

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

200026602_LSTA33_09_R1_072404



We show below that this empirical likelihood ratio test statistics will
have an approximate chi-square distribution with one degree of freedom
under the null hypothesis. We reject H0 for larger values of T . Confidence
intervals for y can be obtained by inverting the chi-square test.

The y value that achieve the maximum in the second term of (7) will
be our (envelope) NPMLE of the location, ŷy.

Denote the column vectors

gðy� tÞ ¼ fg1ðy� tÞ; . . . ; gkðy� tÞgT ;
g�ðy� tÞ ¼ fg�1ðy� tÞ; . . . ; g�kðy� tÞgT ; and

l ¼ fl1; . . . ; lkgT :

Lemma 1. Suppose X1; . . . ;Xn are n i.i.d. observations from a symmetric
distribution F with an arbitrary location parameter y0.

Then for any fixed y, the probability wi that maximizes the log like-
lihood function (2) satisfying the constraints of (6) is given by

wiðl; yÞ ¼ 1

n� nlT � ðgðy� xiÞ � g�ðy� xiÞÞ
; ð8Þ

where lT � gðy� xiÞ denotes the inner product
Pk

j¼1 ljgjðy� xiÞ. The l
value in (8) is obtained as the solution of the following k equations,
respectively,

hrðl; yÞ ¼
Xn
i¼1

½grðy� xiÞ � g�r ðy� xiÞ�
n� nlT � ðgðy� xiÞ � g�ðy� xiÞÞ

¼ 0; r ¼ 1; . . . ; k:

ð9Þ

Clearly the so determined l value depends on the y given, so in the
subsequent discussions we shall write l as lðyÞ.

Proof. Standard Lagrange multiplier calculation similar to Owen
(2001). &

4. LARGE SAMPLE RESULTS

Lemma 2. Under mild regularity conditions, the solution l of the con-
straint equation in (9) under the null hypothesis has the following
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asymptotic representations:

(i) Let y0 be the true parameter, and assume

h0ð0; y0Þ ¼
�
@hrðl; y0Þ

@ls

���
l¼0

�
is an invertible k� k matrix, then we have

ffiffiffi
n

p
lðy0Þ�!D Nð0;SÞ; as n ! 1

where the variance–covariance matrix is

S ¼ lim
n!1 h0ð0; y0Þ½ ��1

:

(ii) In addition, assume that gð�Þ and g�ð�Þ are smooth and
jy� y0j ¼ Oð1= ffiffiffi

n
p Þ, we have

lðyÞ ¼ lðy0Þ � h0ð0; y0Þ�1
Gðy� y0Þ þ opðjy� y0jÞ

where G is a k� 1 matrix with its column defined as

G¼
Xn
i¼1

g01ðy0�xiÞ�g0�1 ðy0�xiÞ
n

; . . . ;
Xn
i¼1

g0kðy0�xiÞ�g0�k ðy0�xiÞ
n

( )T

:

Proof. Use Taylor expansion on h with respect to l in Eq. (9). &

Remark 1. The k� k matrix

h0ð0; y0Þ ¼ @hr

@ls

� �
l¼0

¼
Xn
i¼1

½gr � g�r �½gs � g�s �
n

" #

is easy to verify to be symmetric and at least non-negative definite. Proper
choice of the g, g� function will guarantee it to be positive definite.

Remark 2. As n ! 1, the limit of G is easily seen to be

�
E½g01ðy0 � XÞ � g0�1 ðy0 � XÞ�; . . . ;E½g0kðy0 � XÞ � g0�k ðy0 � XÞ��:
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Notice that we have assumed the smoothness of the g function in the
above. However, even if g is an indicator function as in (6), we may
use Dirac’s delta function to obtain that

E½g01ðy0 � XÞ� ¼
Z

g01ðy0 � xÞfðxÞdx ¼ fðy0 � t1Þ

and

E½g0�1 ðy0 � XÞ� ¼
Z

g0�1 ðy0 � xÞfðxÞdx ¼ �fðy0 þ t1Þ

and the limit of G in this case will be

½fðy0 � t1Þ þ fðy0 þ t1Þ�; . . . ; ½fðy0 � tkÞ þ fðy0 þ tkÞ�f g:

Now the main theorems.

Theorem 1. Under the same conditions as in Lemma 2, the empirical
likelihood ratio statistic T defined in (7) has asymptotically a chi-square
distribution with one degree of freedom:

T �!D w2ð1Þ; as n ! 1:

Proof. See Appendix.

Theorem 2. Let ŷy be the location parameter that maximizes the second
term in (7).

The asymptotic distribution of the (envelope) maximum empirical
likelihood estimator, ŷy, is given by

ffiffiffi
n

p ðŷy� y0Þ�!D Nð0; s2Þ;

where

s2 lim
n!1fG

T ½h0ð0; y0Þ��1
Gg�1:

Proof. See Appendix.
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5. EFFICIENCY

We now take a closer look at the asymptotic variance of the (envel-
ope) NPMLE obtained in Theorem 2 above. By noticing the special
structure of the matrix, h0ð0; y0Þ, we can show (see Kim, 2003 for details),
that the quadratic form appeared in the variance above, GT ½h0ð0; y0��1

G,
can be explicitly computed as

GT ½h0ð0; y0Þ��1
G ¼

X
r

ðGr �Gr�1Þ2
hr � hr�1

where Gr is the rth component of the vector G, and hr is the rth diagonal
element of the matrix h0ð0; y0Þ. (G0 ¼ 0 and h0 ¼ 0 by convention.)

In view of Remark 2, the numerators in each term of the above sum-
mation has limit as n ! 1. Similar calculation is available for the
denominator. Putting them together we see that the above summation
have a limit

Xk
r¼1

ð½fðy0 � trÞ þ fðy0 þ trÞ� � ½fðy0 � tr�1Þ þ fðy0 þ tr�1Þ�Þ2
½Fðy0 � trÞ þ 1� Fðy0 þ trÞ� � ½Fðy0 � tr�1Þ þ 1� Fðy0 þ tr�1Þ� :

ð10Þ
It is worth pointing out that (under mild regularity conditions on f) (10)
is a finite sum approximation (from below) to the integralZ y0

�1
2
½f 0ðtÞ�2
fðtÞ dt ¼

Z 1

�1

½f 0ðtÞ�2
fðtÞ dt; ð11Þ

which is the information bound of the semiparametric model for estimat-
ing y, see Bickel et al. (1993).

This shows that the (envelope) NPMLE obtained in Theorem 2 on
the space Y1 is close to be fully asymptotically efficient, because the
asymptotic variance obtained in Theorem 2 equals to the inverse of the
finite sum, (10), which in turn is approximately the semiparametric infor-
mation bound, (11).

APPENDIX

Proof of Theorem 1. Define a function of y by

fðlðyÞ; yÞ ¼
Xn
i¼1

logwiðlðyÞ; yÞ:
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The log empirical likelihood ratio statistic, T , is then

T ¼ �2ffðlðy0Þ; y0Þg þ 2min
y
ffðlðyÞ; yÞg:

By the Taylor expansion on the second term above, we have

T ¼ �2ffðlðy0Þ; y0Þg

þ 2min
y

fðlðy0Þ; y0Þ þ ðy� y0Þ @f
@y

þ 1

2
ðy� y0Þ2 @

2f

@y2
þ opð1Þ

� �
ð12Þ

¼ min
y

f2ðy� y0ÞAþ ðy� y0Þ2Bþ opð1Þg ðsayÞ: ð13Þ

Aside from the small term, we immediately get that the minimum value
achieved by T is �A2=B, and the ŷy that achieves this minimum satisfy
ŷy� y ¼ �A=B.

The rest of the proof is just calculating the derivatives and checking
that �A2=B has the correct asymptotic distribution. Notice that the deri-
vative @f=@l at (l ¼ lðy0Þ; y ¼ y0) is zero. And from Lemma 2(ii), we
have the derivative of lðyÞ:

l0ðyÞjy¼y0 ¼ �½h0ð0; y0Þ��1
G:

After tedious but straight forward calculations, we have

T ¼ �A2

B
þ opð1Þ

¼ � ð ffiffiffi
n

p
lðy0ÞGÞ2
B=n

þ opð1Þ:

On the other hand, we can show that as n ! 1

P limB=n ¼ P limGT ½h0��1
G

where P lim denote the limit in probability.
Applying the asymptotic distribution of lðy0Þ shown in Lemma 2(i):

ffiffiffi
n

p
lðy0Þ�!D Nð0;SÞ; as n ! 1;

and the Slutsky theorem, the log empirical likelihood ratio statistic T is
seen to have the limit of chi-square with one degree of freedom. &
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Proof of Theorem 2. From the proof of Theorem 1 we already noticed
that (aside from a negligible term) the y value that achieves the minimum
is

ŷy� y0 ¼ �A

B
þ opð1Þ ¼ � nlðy0ÞG

B
þ opð1Þ

and, therefore, by Lemma 2

ffiffiffi
n

p ðŷy� y0Þ ¼ �
ffiffiffi
n

p
lðy0ÞG
B=n

þ opð1Þ

�!D Nð0; ðGTh0ð0; y0Þ�1
GÞ�1Þ:
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