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Abstract

It has been shown that (with complete data) empirical likelihood ratios can be used to

form con�dence intervals and test hypothesis about a linear functional of the distribution

function just like the parametric case. We study here the empirical likelihood ratios for right

censored data and with parameters that are linear functionals of the cumulative hazard

function. Martingale techniques make the asymptotic analysis easier, even for random

weighting functions. It is shown that the empirical likelihood ratio in this setting can be

easily obtained by solving a one parameter monotone equation.
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1. Introduction

Based on the likelihood function there are 3 di�erent methods to produce con�dence intervals:

namely Wald's method, Rao's method and Wilks' method. Among the 3, the Wilks likelihood

ratio (LR) method do not need the calculation of information or inverse of that. It automatically

adjust the statistics �2 log LR to a pivotal. This can be a real advantage in the case where the

information (or inverse of it) is di�cult to estimate. Even when all 3 are easy to obtain, the LR

method still holds some unique advantages. For example, the con�dence intervals produced by the

LR method is always range respecting (con�dence bounds inside the parameter space), while the

other two is not. Therefore, transformation on the parameter is often used in connection with the

Wald's and Rao's method to overcome the range problem. However, the choice of the transformation

is ad hoc. For new parameters it is often unclear what transformation to use. In this respect, the

LR method can be described as to achieve the result comparable to the Wald's method with the

best transformation, but without the need to explicitly �nd the best transformation.

Recently, Owen (1988, 1990) and many others showed that the likelihood ratio method can also

be used to produce con�dence intervals in the nonparametric settings after some modi�cation. He

term this empirical likelihood ratio method. The empirical likelihood (EL) of n i.i.d. observations

Xi are just
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EL(F ) =
nY
i=1

�F (Xi) :

Without any restrictions, the empirical distribution function, F = F̂n(t) = 1=n
P
I[Xi�t], will

maximize the EL among all possible distribution functions, therefore it is referred to as nonpara-

metric maximum likelihood estimator or NPMLE. With a linear constraint of the formZ
g(t)dF (t) = � ; (1:1)

Owen (1988, 1990) showed that the distribution function that maximize the EL subject to the con-

straint can be calculated using the Lagrange multiplier method. He showed that such a distribution

function F has jump at Xi equals to

�F (Xi) = �F̂n(Xi)� 1

1 + �(g(Xi)� �)
;

where � is de�ned by the following equation

nX
i=1

�F̂n(Xi)
g(Xi)

1 + �(g(Xi)� �)
= �:

Once the constrained maximum is obtained, it can be shown that the empirical likelihood

ratio statistic, �2 logELR(�), converges in distribution to a chi-square distribution (Owen 1988).

However a generalization of the above to the right censored data case is more complicated.

In the analysis of censored data, it is often more convenient to model the data in terms of the

(cumulative) hazard function �(t) which is de�ned by

�(t) =

Z
[0; t)

dF (s)

1� F (s�) : (1:2)

It gives rise to a martingale formulation of the observations. For example, regression model in

terms of hazard leads to the Cox proportional hazards model, nonparametric estimation in terms

of cumulative hazard leads to the Nelson-Aalen estimator which is much easier to analyze than the

Kaplan-Meier estimator. Also, information in terms of hazard (Efron & Johnston 1990), Hellinger

distance in terms of hazard (Ying 1992) all have been studied and proved to be informative.

Therefore it is natural to look at the Empirical Likelihood in terms of hazard and constraints

in terms of hazard as in (2.6). It turns out that the theory for the EL in terms of hazard is

much simpler for right censored data. Also, martingale formulation makes it easy to handle even

stochastic (predictable) weight functions.

We obtained results for general parameters of the following types: (1) � =
R
g(t)d�(t) for

arbitrary given g(t). (2) �n =
R
gn(t)d�(t) where gn(t) is a random but predictable function and

depend on sample size n. (3) � is de�ned implicitly:
R
g(t; �)d�(t) = C for a constant C.
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Parameters of the �rst type can arise in the context of a time-dependent covariate Cox model.

In such a model the cumulative hazard for a person with a time-dependent multiplicative covariate

g(t) can be computed as �i(�) =
R �
0 g(t)d�b(t), where �b is the baseline cumulative hazard. As

a speci�c example, suppose smoking cigarettes doubles a person's hazard and a person started

smoking at age 15 and quit smoking at age 45. Then his hazard up to age 55 is estimate by

�i(55) =
R 55
0 g(t)d�̂0(t) based on the Nelson-Aalen estimator �̂0(t) computed from a cohort of

non-smokers, where g(t) = 2 for 15 < t � 45 and g(t) = 1 elsewhere.

The parameter of the second type is prompted by the one sample log-rank type tests. See, for

example, Andersen et. al. (1993) Section V.1 for details. The weight function of the one sample

log-rank type of tests takes the form g(t) = [1�F0(t�)]�Y (t)=n where Y (t) is the size of the risk set
at time t. Usually Wald type normal approximation is used for the log-rank test statistic without

transformation. As a further example for stochastic weight function g, we take the statistic of

mean, which can be obtained from the integration of cumulative hazard with g(t) = t[1� F (t�)].
Since F is unknown, we may use gn(t) = t[1� F̂n(t�)].

The prime example for the implicit type parameters are the quantiles. For example the param-

eter � of median may be de�ned implicitly as
R
I[t��]d�(t) = log 2.

Murphy (1995) also studied the empirical likelihood ratio using counting process formulations.

She obtained the explicit result only when the constraint is the hazard function itself evaluated at

a point, �(t0) = � log[1� F (t0)]. Li (1995), building on earlier work of Thomas and Grunkemeier

(1975), studied the empirical likelihood method for censored data, but only for the parameters of

the form F (t0). Murphy and Van der Vaart (1997) proved a very general result but in each speci�c

case one still need to workout the often non-trivial conditions, also it is not clear how the empirical

likelihood should be computed. Our result gives a more explicit way to compute such intervals. We

need only to �nd the root of a monotone univariate function. Once the root is found the likelihood

ratio is easily obtained (see 3.2 or 4.0). Besides, none of the above papers deals with stochastic

constraints.

Due to the similarity of technical treatment between the three types of constraints we shall

present the detailed proof only for the �rst type of constraint and omit the proofs for the other 2

types of constraints. The rest of the paper is organized as follows: section 2 de�nes the likelihood

in terms of hazard and calculates the maximum of the likelihood under the constraint of type 1.

Section 3 studies the asymptotic behavior of the likelihood ratio and shows that it converges to

a chi-square distribution. Section 4 looks at the di�erence between 2 versions of the likelihood.

Section 5 deals with the stochastic constraint and the implicit constraint. Section 6 contains some

examples. Finally some technical proofs are collected in the appendix.

Obviously, 2 sample and k sample analogs of the results presented here are possible. We shall
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present these and other generalization in a forthcoming paper.

2. Likelihood in terms of hazard and its maximum under a constraint of type 1

Suppose that X1; � � � ; Xn are i.i.d. nonnegative random variables denoting the lifetimes with a con-

tinuous distribution function F0. Independent of the lifetimes there are censoring times C1; � � � ; Cn

which are i.i.d. with a distribution G0. Only the censored observations are available to us:

Ti = min(Xi; Ci) ; �i = I [Xi � Ci] for i = 1; 2; � � � ; n: (2:1)

The empirical likelihood based on censored observations (Ti; �i) pertaining F is

EL(F ) =
nY
i=1

[�F (Ti)]
�i[1� F (Ti)]

1��i : (2:2)

Since the NPMLE of the distribution F and hazard � are both known to be purely discrete

functions (i.e. Kaplan-Meier/Nelson-Aalen estimator), it is reasonable to restrict the analysis of

the likelihood ratio to the purely discrete functions dominated by their NPMLE's. This is similar to

the use of sieves in the likelihood analysis. See Owen (1988) for more discussion on this restriction.

Using the relation between hazard and distribution

1� F (t) =
Y
s�t

(1���(s)) and ��(t) =
�F (t)

1� F (t�) (2:3)

that are valid for purely discrete distributions we can rewrite (2.2) in terms of cumulative hazard

function. The empirical likelihood (2.2) becomes

EL(�) =
nY
i=1

[��(Ti)]
�i[

Y
j:Tj<Ti

(1���(Tj)) ]
�i [

Y
j:Tj�Ti

(1���(Tj)) ]
1��i: (2:4)

The hazard function that maximizes the likelihood EL(�) without any constraint is the Nelson-

Aalen estimator, see e.g. Andersen et. al. (1993). We shall denote the Nelson-Aalen estimator by

�̂NA(t).

On the other hand, a simpler version of the likelihood can be obtained if we merge the second

and third factor in (2.4) and replace it by exp[��(Ti)], which was called a Poisson extension of the

likelihood by Murphy (1994):

AL(�) =
nY
i=1

[��(Ti)]
�i expf��(Ti)g : (2:5)

See also Gill (1989) for a detailed discussion of di�erent extensions of likelihood function for

discrete distributions. Notice we have used a formula that is only valid for continuous distribution

4



in the case of a discrete distribution. But the di�erence is small and negligible for large n as we

shall see later. On the other hand, the maximizer for AL(�) for �nite n is also the Nelson-Aalen

estimator, giving AL some legitimacy. We shall use AL in our analysis �rst due to its simplicity

and examine the di�erence between AL and EL later.

The �rst and crucial step in our analysis is to �nd a (discrete) cumulative hazard function that

maximize AL(�) under the constraint (of type 1)Z
g(t)d�(t) = � (2:6)

where g(t) is a given function that satisfy some moment conditions, � is a given constant.

We point out before proceeding that the last jump of a (proper) discrete cumulative hazard

function must be one. This is evident from the relation (2.3), second equation. This restriction is

similar to the \jumps sum to one" restriction on the discrete distribution functions. The conse-

quence is that any discrete cumulative hazard function dominated by the Nelson-Aalen estimator

must, at the last observation, have the same jump as the Nelson-Aalen estimator.

In light of this we rewrite the constraint (2.6) in terms of jumps. For simplicity we shall

assume there is no tie in the uncensored observations. Without loss of generality we assume

T1 � T2 � � � � � Tn where only possible ties are between censored observations.

Let wi = ��(Ti) for i = 1; 2; � � � ; n, where we notice wn = �n. The constraint (2.6) for any �,

that is dominated by Nelson-Aalen estimator, can be written as

n�1X
i=1

�ig(Ti)wi + g(Tn)�n = � : (2:7)

Similarly, the likelihood AL at this � can be written in term of the jumps

AL =
nY
i=1

[wi]
�i expf�

iX
j=1

wjg : (2:8)

Another important issue is that the constraint equation may not always have a solution for

certain values of �. An obvious example is when g(t) � 0 and � > 0. Thus for each given g(t) and

sample, we shall only study in detail the feasible constraints, those � values that have at least one

set of solution to (2.7). For those that do not have a solution we de�ne the value of the likelihood

under this constraint to be zero. Note that to be quali�ed as a solution, we must have 0 � wi < 1

for i = 1; 2; � � � ; n� 1.

To �nd the maximizer of AL under constraint (2.7), we use Lagrange multiplier method. Once

the constrained maximizer is found by Lagrange multiplier, (recall the un-constrained maximizer

was known to be the Nelson-Aalen estimate), we can proceed to study the empirical likelihood

ratio.
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Theorem 1 The feasible values of � in the constraint (2.7) is given by the interval: V de�ned

at the end of the proof.

If the constraint (2.7) is feasible, then the maximum of AL under the constraint is obtained

when

wi = Wi =
�i

(n� i+ 1) + n�g(Ti)�i
=

�i
n � i+ 1

� 1

1 + � �ig(Ti)
n�i+1

n

; (2:9)

where � in turn, is the solution of the following equation

l(�) = � where l(�) �
n�1X
i=1

g(Ti)
�i

n� i+ 1
� 1

1 + �
�ig(Ti)
n� i+ 1

n

+ g(Tn)�n: (2:10)

Proof: To use Lagrange multiplier, we form the target function

G =
nX
i=1

�i logwi �
nX
i=1

iX
j=1

wj + n�

"
� �

n�1X
i=1

�ig(Ti)wi � �ng(Tn)

#
:

Taking partial derivative with respect to wi, for i = 1; � � � ; n� 1, and letting them equal to zero,

we obtain
@G

@wi
=

�i
wi
� (n� i+ 1)� n�g(Ti)�i = 0; i = 1; 2; � � � ; n� 1:

By solving this equation we get the explicit expression for wi

Wi =
�i

(n� i+ 1) + n�g(Ti)�i

=
�i

n � i+ 1
� 1

1 + �
�ig(Ti)
n� i+ 1

n

= ��̂NA(Ti)
1

1 + �
�ig(Ti)
n� i+ 1

n

for i = 1; 2; � � � ; n� 1

where � has to be chosen to satisfy the constraint (2.7). By plug Wi into (2.7) we see that � can

be obtained as a solution to the following equation

l(�) �
n�1X
i=1

g(Ti)
�i

n � i+ 1

1

1 + �
�ig(Ti)
n� i+ 1

n

+ g(Tn)�n = �:

The function l(�) above is monotone decreasing and continuous in �, a fact that can be veri�ed by

taking a derivative of l(�) with respect to �. On the other hand, any choice of legitimate value �
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must result in wi through (2.9) that are bona �de jumps of a discrete cumulative hazard function,

which must be bounded between zero and one. This restriction leads to the following legitimate �

range J :

All max and min in the following de�nitions are taken in the domain fi : 1 � i �
n � 1; �i = 1; and g(Ti) 6= 0g, if there is any additional restriction then we specify

in each individual case.

Case 1: when min g(Ti) > 0

J =

�
max

i� n

ng(Ti)
; 1

�
:= (�; 1);

Case 2: when max g(Ti) < 0

J =

�
�1; min

i� n

ng(Ti)

�
:= (�1; �);

Case 3: when max g(Ti) > 0 > min g(Ti)

J =

 
max

g(Ti)>0

i� n

ng(Ti)
; min

g(Ti)<0

i� n

ng(Ti)

!
:= (�; �):

Since the function l(�) is continuous and monotone, the corresponding range of �

value that make the equation (2.10) feasible (has a set of solution that is bona �de

cumulative hazard function) are as follows. Notice these � values also make the

constraint (2.7) feasible.

Case 1:

V =

 
g(Tn)�n;

n�1X
i=1

�ig(Ti)

n� i+ 1+ n�g(Ti)
+ g(Tn)�n

!
;

Case 2:

V =

 
n�1X
i=1

�ig(Ti)

n� i+ 1 + n�g(Ti)
+ g(Tn)�n; g(Tn)�n

!
;

Case 3:

V =

 
n�1X
i=1

�ig(Ti)

n� i+ 1+ n�g(Ti)
+ g(Tn)�n;

n�1X
i=1

�ig(Ti)

n� i+ 1 + n�g(Ti)
+ g(Tn)�n

!
:

2
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3. Asymptotic properties

Now we study the large sample behavior of the empirical likelihood under constraint (2.6). First,

we present a lemma about the large sample behavior of the solution � of (2.10).

Lemma 2 Suppose g(t) is a left continuous function and

0 <

Z jg(x)jmd�0(x)

(1� F0(x))(1�G0(x))
<1; m = 1; 2:

Then �0 =
R
g(t)d�0(t), is feasible with probability approaching 1 as n!1, and the solution � of

(2.10) with � = �0 satisfy

n�2
D�! �2(1)

 Z
g2(x)d�0(x)

(1� F0(x))(1� G0(x))

!�1
as n!1 :

Proof: See appendix. 2

Next we de�ne the empirical likelihood ratio in terms of hazard for the constraint (2.7) as

ALR(�) = supfAL(�)j�� �̂NA; and � satisfy (2.7)g
AL(�̂NA)

:

By Theorem 1, ALR(�) can be computed, when the constraint is feasible, by using Wi de�ned

there and the known property of �̂NA: ��̂NA(Ti) = �i=(n� i+ 1) .

Theorem 2 Let (T1; �1); � � � ; (Tn; �n) be n pairs of random variables as de�ned in (2.1). Suppose

g is a left continuous function and

0 <
Z jg(x)jm

(1� F0(x))(1� G0(x))
d�0(x) <1; m = 1; 2:

Then, �0 =
R
g(t)d�0(t) will be a feasible value with probability approaching one as n!1 and

�2 logALR(�0) D�! �2(1) as n!1 :

Proof: In view of Lemma 2, we need only to proof the last claim: �2 logALR(�0) D�!
�2(1) as n!1 . To this end, de�ne

Zi = �ig(Ti)
1

n� i+ 1
n

for i = 1; 2; � � � ; n; (3.1)

and consider

�2 logALR(�0)

= 2

"
nX
i=1

�i log��NA(Ti)�
nX
i=1

(n� i+ 1)��NA(Ti)

#
� 2

"
nX
i=1

�i log��NA(Ti)

#
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+2

"
n�1X
i=1

�i log(1 + �Zi) +
n�1X
i=1

(n� i+ 1)��NA(Ti)

1 + �Zi
+ ��NA(Tn)

#

= �2
nX
i=1

�i + 2
n�1X
i=1

�i log(1 + �Zi) + 2
n�1X
i=1

�i
1 + �Zi

+ 2�n

= �2
nX
i=1

�i + 2
n�1X
i=1

�i log(1 + �Zi) + 2
n�1X
i=1

�i � 2
n�1X
i=1

�i�Zi
1 + �Zi

+ 2�n

= 2
n�1X
i=1

�i log(1 + �Zi)� 2
n�1X
i=1

�i�Zi + 2
n�1X
i=1

�i�
2Z2

i

1 + �Zi
: (3.2)

Notice max1�i�n j�Zij = Op(n
�1=2)max1�i�n jZij by Lemma 2. Now use Lemma A2 with

h = g=
p
(1� F )(1�G) and Zhou (1991) we have

max
1�i�n

jZij � max
1�i�n

�ijg(Ti)j
(1� F0(Ti))(1�G0(Ti))

max
1�i�n

(1� F0(Ti))(1�G0(Ti))

(n� i+ 1)=n

= op(n
1=2)Op(1) = op(n

1=2) : (3.3)

Thus max1�i�n�1 j�Zij = Op(n�1=2)op(n1=2) = op(1) and we may expand

log(1 + �Zi) = �Zi � 1

2
�2Z2

i + Op(�
3)Z3

i : (3.4)

Substituting (3.4) in the expression of �2 logALR(�0), we have

�2 logALR(�0)

= 2
n�1X
i=1

�i�Zi �
n�1X
i=1

�i�
2Z2

i +Op(�
3)

n�1X
i=1

Z3
i � 2

n�1X
i=1

�i�Zi + 2
n�1X
i=1

�i�
2Z2

i � 2
n�1X
i=1

�i�
3Z3

i

1 + �Zi

= �2
n�1X
i=1

�iZ
2
i +Op(�

3)
n�1X
i=1

Z3
i � 2�3

n�1X
i=1

�iZ
3
i

1 + �Zi
(3.5)

where, as n!1 �����Op(�
3)

n�1X
i=1

Z3
i

����� � jOp(n
�1=2)jjop(n1=2)j � 1

n

nX
i=1

Z2
i ;

and, notice �iZ
3
i = Z3

i ,

2�3
n�1X
i=1

�iZ
3
i

1 + �Zi
� jOp(n

�1=2)jjop(n1=2)j � 1

n

nX
i=1

Z2
i :

By Lemma A3 and (3.3) we have

Plim
1

n

nX
i=1

Z2
i = Plim

1

n

n�1X
i=1

�iZ
2
i = Plim

1

n

n�1X
i=1

Z2
i =

Z
g2(x) d�0(x)

(1� F0(x))(1�G0(x))
<1;
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where Plim denotes the limit in probability as n ! 1. Therefore the last two terms in (3.5) are

negligible. As for the �rst term there, we see that it converges to a �2(1) distribution in view of

Lemma 2, Lemma A.3 and Slutsky theorem. Thus we have as n!1

�2 logALR(�0) D�! �2(1): 2

4. Comparison of two versions of likelihood

In this section we examine the di�erence between the 2 versions of the likelihood EL and AL as

de�ned in (2.4) and (2.5). We shall proof that if we replace AL in the Theorem 2 by EL and

everything else remain the same, the likelihood ratio statistic �2 log ELR(�0), still converges to
�2(1) as n! 1.

De�ne

ELR(�) = EL(�?)

EL(�̂NA)

where �? is given by the jumps Wi de�ned in Theorem 1.

Theorem 3 Suppose all the conditions of Theorem 2 holds, then

�2 log ELR(�0) D�! �2(1) as n!1:

Proof: We shall proof that the 2 likelihood ratio statistics are asymptotically equivalent in

the sense that their di�erence goes to zero in probability.

By (3.2) we have

�2 logALR(�0) = 2
n�1X
i=1

�i log(1 + �Zi)� 2
n�1X
i=1

�i�Zi
1 + �Zi

;

where Zi is de�ned as in (3.1). On the other hand, we also have

�2 log ELR(�0) = 2
n�1X
i=1

�i log(1 + �Zi) + 2
n�1X
i=1

(n� i+ 1� �i) log(1���̂NA(Ti))

�2
n�1X
i=1

(n � i+ 1� �i) log

�
1���̂NA(Ti)

1

1 + �Zi

�
:

Observe

log

�
1���̂NA(Ti)

1

1 + �Zi

�
= log

�
1���̂NA(Ti) + ��̂NA(Ti)

�Zi
1 + �Zi

�
:

By the same reason as in (3.3), (3.4) we may expand

log

�
1���̂NA(Ti)

1

1 + �Zi

�
= log

�
1���̂NA(Ti) + ��̂NA(Ti)

�Zi
1 + �Zi

�
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= log(1���̂NA(Ti)) +
��̂NA(Ti)

1���̂NA(Ti)
� �Zi
1 + �Zi

�
 

��̂NA(Ti)

1���̂NA(Ti)

!2

�2i

= log(1���̂NA(Ti)) +
�i

n � i+ 1� �i
� �Zi
1 + �Zi

�
�

�i
n � i+ 1� �i

�2
�2i (4.1)

where j�ij � j �Zi
1 + �Zi

j.
Substituting (4.1) in the expression of �2 log ELR(�0), we obtain

�2 log ELR(�0) = 2
n�1X
i=1

�i log(1 + �Zi)� 2
n�1X
i=1

�i�Zi
1 + �Zi

+ 2
n�1X
i=1

�2i
1

n� i+ 1� �i
:

Therefore

�2 log ELR(�0) + 2 logALR(�0) = 2
n�1X
i=1

�2i
1

n � i+ 1� �i
;

where

0 �
n�1X
i=1

�2i
1

n� i+ 1� �i
� �2

n�1X
i=1

Z2
i

n � i+ 1� �i
:

By Lemma 2 and Lemma A3 we have

n�2
1

n

n�1X
i=1

Z2
i

n� i+ 1� �i
= Op(1)op(1) = op(1):

Therefore

�2 log ELR(�0) + 2 logALR(�0) P�! 0 as n!1:

In view of Theorem 2, we have

�2 log ELR(�0) D�! �2(1) as n!1:

2

5. Stochastic constraints and implicit constraints

5.1 Stochastic constraints

Some applications, speci�cally one sample log rank type tests, (cf. Andersen et. al. 1993 p. 334),

mandate a random weight function g(t) = gn(t) in the constraint. Also, in order to obtain mean

from the integration of cumulative hazard, we need to let g(t) = gn(t) = t[1 � F̂n(t�)], again a

random function. To accommodate this, we allow the function g to depend on the sample (of size n)

but require that it is a predictable function with respect to the �ltration that makes �̂NA(t)��(t)

a martingale. For example the �ltration

Ft = �
n
TkI[Tk�t]; �kI[Tk�t]; k = 1; 2; : : : ; n

o
: (5:1)

11



Furthermore we require that for some nonrandom left continuous function g(t), we have

sup
t�Tn

jgn(t)� g(t)j = op(1) and sup
1�i�n

����gn(Ti)g(Ti)

���� = Op(1) as n! 1 : (5:2)

The weight functions for the one sample log rank test and mean can be shown to satisfy these

requirements. The stochastic version of the constraint is thereforeZ
gn(t)d�(t) = �n : (5:3)

The � value may also depend on n. For example if we are testing the hypothesis H0 : � � �0 then

we should take �n =
R
gn(t)d�0(t).

The empirical likelihood ratio statistics for the stochastic constraint is de�ned as

�2 logALRs(�n) =
supfAL(�)j�� �̂NA and � satisfy (5.3)g

AL(�̂NA)

where the numerator of the ratio can be computed similarly as in Theorem 1 with gn(t) and �n

replacing g(t) and � there.

Theorem 4 Let (T1; �1); � � � ; (Tn; �n) be n pairs of random variables as de�ned in (2.1). Suppose

gn(t) is a sequence of predictable functions with respect to the �ltration (5.1) and satisfy (5.2). Also

assume

0 <
Z jg(x)jm

(1� F0(x))(1� G0(x))
d�0(x) <1; m = 1; 2:

Then, �0n =
R
gn(t)d�0(t) will be a feasible value with probability approaching one as n!1 and

�2 logALRs(�
0
n)

D�! �2(1) as n!1 :

5.2 Implicit constraints

For the implicit functional constraint, we require that (i)Z
g(t; �)d�(t) (5:4)

is monotone in � for any given cumulative hazard function �, and (ii)Z
g(t; �)d�0(t) = C (5:5)

uniquely de�nes the parameter �0.

The likelihood ratio in this case is formed similarly. For given � we �rst solve the the following

equation to get �.

n�1X
i=1

g(Ti; �)
�i

n� i+ 1
� 1

1 + � �ig(Ti;�)
(n�i+1)=n

+ g(Tn; �)�n = C (5:6)

12



where C is a given constant. Then ALRi(�) is de�ned as the ratio of two AL's with the numerator

computed as (2.8) with

wi =
�i

n� i+ 1
� 1

1 + � �ig(Ti;�)
(n�i+1)=n

and the denominator computed via (2.8) with wi = �i=(n� i+ 1) as before.

Theorem 5 Let (T1; �1); � � � ; (Tn; �n) be n pairs of random variables as de�ned in (2.1). Suppose

g(t; �) is a function satisfy (5.4) and (5.5). Also assume

0 <
Z jg(x; �)jm

(1� F0(x))(1� G0(x))
d�0(x) <1; m = 1; 2:

Then,

�2 logALRi(�0)
D�! �2(1) as n!1 :

6. Simulations and examples

Notice our results in section 2 reduces the computation of the maximization to a single parameter

�. All we need to solve is the constraint equation for � and it is monotone decreasing in �. An

Splus function that computes the empirical likelihood ratio described in this paper is available from

the second author.

Example 1: For a small sample simulation, we generate the censored survival data from the

following setting:

Survival Time Distribution: F0(t) = 1� e�t

Censoring Distribution: G0(t) = 1� e�0:35t

Cumulative Hazard Function: �0(t) = t
Sample Size: n = 20
g : g(t) = e�t

parameter �0 : �0 =
R1
0 g(t)d�0(t) = 1

The 95% con�dence interval for �0 can be constructed as

f�j � 2 logALR(�) � 3:84g :

Each time we compute �2 logALR(� = 1) and check to see if it is less then 3.84 (inside the

interval). In 1000 independent such runs we recorded 947 coverage for intervals that suppose to

have an asymptotical nominal coverage probability of 95%. For the same data the Wald con�dence

interval based on Nelson-Aalen type estimator results 920 coverage out of the 1000 runs.
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Example 2: For a concrete example we took the data of Remission Times for Solid Tumor

Patients (n = 10). These are slightly modi�ed (break tie) version of Lee (1992, example 4.2): 3,

6.5, 6.51, 10, 12, 15, 8.4+, 4+, 5.7+, and 10+ .

Suppose we are interested in getting a 95% con�dence interval for the cumulative hazard at the

time t = 9:8, �0(9:8). Hence �0 = �0(9:8). In this case the function g is an indicator function:

g(t) = I[t�9:8].

The 95% con�dence interval using empirical likelihood ratio, �2 logALR, for �0(9:8) is

(0:10024; 1:0917). On the other hand, the Wald con�dence interval based on the Nelson-Aalen

estimator and Greenwood's formula is (�0:063; 0:882). Since the cumulative hazard function is

nonnegative, this shows that the empirical likelihood ratio based con�dence interval inherit some

of the advantage from its parametric cousin.

Example 3: For the implicit function example we shall look at the data of Australian AIDS

patients. The description of the data and some analysis can be found in Venables and Ripley (1994).

We shall took the 1780 cases from the State of New South Wales and ignore other covariates, i.e.

treat the 1780 cases as i.i.d. observations from one population.

The implicit function we illustrate here is the median. Since the median may not be uniquely

de�ned for discrete distribution like the empirical distributions, some smoothing or other modi�ca-

tion may be needed, particularly for small sample sizes. However, those modi�cation will become

negaligible for large samples. We shall discuss the discrete distribution in another paper and ignore

the discreteness here in this example in view of its sample size.

Another aspect of the AIDS data is that it has a lot of ties in the observations. Since our

formular developed in this paper assumes no ties in the data, we shall break the ties by subtracting

a small amount (0.00001) to the successive observations. This is equivalent to assume that the

survival time of AIDS patient is a continuous random variable, and ties in the data are due to

rounding (to the nearest day). We therefore suppose the distribution F0 is continuous and median

is uniquely de�ned for F0. We shall took g(t; �) = I[t��] and constraint
R
g(t; �)d�(t) = log 2.

The 95% con�dence interval (434.8, 492.8) for the median of AIDS survival data is obtained as

f�j � 2 logALRi(�) < 3:84g

with the constraint
R
g(t; �)d�(t) = log 2. The .8 in the con�dence interval is due to the addition

of 0.9 to the original data by Venables and Ripley and my subtraction of a small amount to break

ties.

7. Appendix

Lemma A1: For any random variable Y , if EjY jk < 1 then for an i.i.d. sample Y1; Y2; � � � ; Yn
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that have same distribution as Y , we have

max
1�i�n

jYij = o(n1=k) a:s:

Proof: See Chow and Teicher 1980 p131, problem # 8. 2

Lemma A2: Let (T1; �1); � � � ; (Tn; �n) be n i.i.d. pairs of random variables, where each (Ti; �i)

is de�ned by (2.1). Let also T ?
n = max

1�i�n
Ti. If

R
h2(x)d�0(x) <1, then

max
1�i�n

�ijh(Ti)jq
(1� F0(Ti))(1� G0(Ti))

= o(n1=2) a:s: and �?nh(T
?
n) = op(1);

where �?n is the indicator function corresponding to T ?
n .

Proof: Since
R
h2(x)d�0(x) <1, we have

EF0;G0

�ih
2(Ti)

(1� F0(Ti))(1�G0(Ti))
=
Z
h2(x)d�0(x) <1:

Therefore, by Lemma A1, we have

max
1�i�n

�ijh(Ti)jq
(1� F0(Ti))(1� G0(Ti))

= o(n1=2); (A.1)

with probability 1 as n!1.

The fact that

�?njh(T ?
n)jq

(1� F0(T ?
n))(1� G0(T ?

n))
� max

1�i�n

�ijh(Ti)jq
(1� F0(Ti))(1�G0(Ti))

implies
�?njh(T ?

n)jq
(1� F0(T ?

n))(1�G0(T ?
n))

= o(n1=2); (A.2)

with probability 1 as n!1.

Let H0(t) be the distribution function of Ti, where Ti = min(Xi; Ci) , then 1 � H0(t) =

(1� F0(t))(1�G0(t)). If we can show

1�H0(T
?
n) = Op(n

�1); (A.3)

or q
(1� F0(T ?

n))(1�G0(T ?
n)) = Op(n

�1=2);

then it follows from (A.2) that �?nh(T
?
n) = op(1).
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Now we show 1�H0(T ?
n) = Op(n�1). For any � > 0, there existsM0 > 0 such that exp(�M0) <

�. For M > M0 consider

P

�
1�H0(T

?
n)

n�1
> M

�
= P

0
@1� max

1�i�n
H0(Ti)

n�1
> M

1
A

= P

�
max
1�i�n

H0(Ti) < (1� n�1 �M)

�

=

�
1� M

n

�n
� exp(�M) < �:

Therefore 1�H0(T
?
n) = Op(n

�1). 2

Lemma A3 Under the assumptions of Theorem 2, we have, for Zi de�ned in (3.1),

1

n

nX
i=1

Z2
i =

nX
i=1

�ig
2(Ti)n

(n� i+ 1)2
=

Z
g2(t)

Y (t)=n
d�̂NA(t)

P�!
Z

g2d�(t)

(1� F )(1�G)
(A.4)

and
1

n

n�1X
i=1

Z2
i

n� i
=
Z

I[Y (t)>1]g
2(t)

(Y (t)� 1)Y (t)=n
d�̂NA(t)

P�! 0 as n!1 ; (A.5)

where Y (t) =
P
I[Ti�t].

Proof: For (A.5), use Lenglart's inequality on the integral to switch to a similar integral

except with respect to �(t), and then use uniform convergence of empirical distributions to �nish

the proof. The proof of (A.4) is similar. 2

Lemma A4 Under the assumptions of Theorem 2, we have, for Zi de�ned in (3.1),

p
n

 
1

n

nX
i=1

Zi � �0

!
=
p
n

 
nX
i=1

g(Ti)��̂NA(Ti)� �0

!
D�! N(0; �2�(g)) ;

where �2�(g) =

Z
g2(x)d�0(x)

(1� F0(x))(1�G0(x))
and �0 =

Z
g(t)d�0(t).

Proof: Notice the summation can be written as an integral

nX
i=1

g(Ti)��̂NA(Ti)� �0 =

Z
g(t)d[�̂NA(t)� �0(t)] :

Now counting process and martingale argument similar to Andersen et. al. (1993) chapter 4 can

be used to analyze the integral (since g(�) is left continuous, it is predictable). An application of

martingale central limit theorem will �nish the proof. 2

Proof of Lemma 2: First we notice that if we set � = 0 in the constraint equation (2.10),

the jumps Wi reduce to those of Nelson-Aalen estimator, implying that � = �̂n =
R
g(t)d�̂NA(t) is

always a feasible value, i.e. �̂n 2 V .
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On the other hand, notice that the derivative

@l(�)

@�
= �

n�1X
i=1

�ig(Ti)

n� i+ 1
� Zi
[1 + �Zi]2

;

when evaluated at � = 0 we have

@l(�)

@�

???
�=0

= � 1

n

n�1X
i=1

Z2
i :

By Lemma A2 and A3 it converges (in fact almost surely) to

�
Z

g2(x)d�0(x)

(1� F0(x))(1� G0(x))
:

The integral is positive by assumption. Therefore the derivative of l(�) at � = 0 will be bounded

away from zero, in fact l0(0) � � < 0 at least for large n.

This implies that if the legitimate value of �, J , covers at least an open interval of length 1
op(n1=2)

for all large n centered at 0, then the feasible value of �, V , will also contain an open interval of

length 1
op(n1=2)

centered at �̂n. Since �̂n � �0 = Op(n
�1=2), this will ensure that �0 will be in V , i.e.

a feasible value, for large n .

The fact that the legitimate value of �, J , covers at least an open interval of length 1
op(n1=2)

for

all large n centered at zero can easily be seen from the de�nition of J by noticing that

1

j�j = op(n
1=2)

which can be proved similar to (3.3). The argument for � is the same.

Now we turn to the asymptotic distribution of the solution � when � = �0. The �rst step is to

show that � = Op(n�1=2) where � is the solution of (2.10) so that we can use expansion later.

Recall the de�nition of Zi in (3.1) and its bound (3.3)

max jZij = max
1�i�n

jZij = op(n
1=2) :

We rewrite (2.10) in terms of Zi's as follows

0 = jl(�)j

=

������0 � 1

n

n�1X
i=1

Zi
1 + �Zi

� 1

n
Zn

�����
=

������0 � 1

n

n�1X
i=1

Zi +
�

n

n�1X
i=1

Z2
i

1 + �Zi
� 1

n
Zn

�����
=

�����(�0 � 1

n

nX
i=1

Zi) +
�

n

n�1X
i=1

Z2
i

1 + �Zi

�����
� j�j

1 + j�jmax jZij
1

n

n�1X
i=1

Z2
i �

������0 � 1

n

nX
i=1

Zi

����� : (A.6)
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The second term of (A.6) is Op(n�1=2) by Lemma A4. Now we consider the �rst term of (A.6).

Since

1

n

n�1X
i=1

Z2
i =

1

n

nX
i=1

Z2
i �

1

n
Z2
n ;

and by (3.3) we have 1
nZ

2
n = op(1). Hence by Lemma A3

1

n

n�1X
i=1

Z2
i

P�!
Z

g2(x)

(1� F0(x))(1�G0(x))
d�0(x); (A.7)

and it follows that
j�j

1 + j�jmax jZij = Op(n
�1=2);

which implies that

� = Op(n
�1=2): (A.8)

Expanding (2.10), we obtain

0 =
1

n

nX
i=1

Zi � �0 � �

n

n�1X
i=1

Z2
i

1 + �Zi

=
1

n

nX
i=1

Zi � �0 � �

n

n�1X
i=1

Z2
i +

�2

n

n�1X
i=1

Z3
i

1 + �Zi
: (A.9)

The last term in (A.9) is bounded by (Lemma 2, (3.3) and Lemma A3)

�2
1

n

n�1X
i=1

jZ3
i j � �2max jZij 1

n

n�1X
i=1

Z2
i = Op(n

�1)op(n
1=2)Op(1) = op(n

�1=2):

Therefore we get an expression of � as follows

� =

1

n

nX
i=1

Zi � �0

1

n

n�1X
i=1

Z2
i

+ op(n
�1=2): (A.10)

By Lemma A4, as n!1
1

n

nX
i=1

Zi � �0 =
p
n

 
nX
i=1

g(Ti)��̂NA(Ti)� �0

!
D�! N(0; �2�(g)) :

Thus by Slutsky theorem and (A.7), as n!1

n�2
D�! �2(1)

 Z
g2(x)d�0(x)

(1� F0(x))(1�G0(x))

!�1
: (A.11)

2
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