FREENESS AND DISCRETENESS OF ACTIONS ON R-TREES
BY FINITELY GENERATED FREE GROUPS, I

By Li Lee

0. Introduction

In this paper, we investigate minimal actions of a finitely generated group G on an R-tree T We

address the question of whether the action of G on T is free or discrete as suggested by the title.

We study this question inductively by decomposing G as a free product of smaller rank free groups
G’ and G, i.e. G = G' *G". Let T" and T" be the minimal invariant subtrees for the groups G’, G”

respectively.

The idea is to study the intersection T of 7/ and T" and the partial actions defined by G’ and G
on T,. We prove that the action T' X G — T is free (discrete resp.) if and only if the partial action on T
by the set of alternating combinations of £’ and £ is free (dose not have an infinite orbit resp.), where
¥ and £ are the sets of partial isometries on T, defined by the elements of G’ and G” respectively (see
Proposition 4.1 and 4.2).

Let us now introduce the following property for an action on an R-tree by a finitely generated group:
Property (P): The action is discrete provided that it is free.

There is an example (Bestvina-Handel) of a minimal action of F3 on an R-tree, which is free but
not discrete, this implies that Property (P) is not true in general. In the following sections, we will
investigate what actions satisfy Property (P), which is the basic theme that motivates this paper.

In order for the data to be sufficient for our study, we will introduce a hypothesis, Condition A (see
page 8-9). We prove that if Condition A is true, and if the set of end points of domains of all the partial
isometries on T, defined by elements of G is finite, then the action TX G — T satisfies Property (P) (see
Theorem 4.11). Another main result of this paper is that Condition A is a kind of freeness condition (in

the sense of Theorem 7.1).

Section 1 contains some preliminary materials. In Section 2 and 3, we introduce the basic assump-
tions and conditions. The main results of this paper along with their proofs are contained in Section 4.
In Section 5 and 6, we study the relations of Condition A to other conditions. Section 7 is devoted to
the discussions on the “freeness’ (in the sense of Theorem 7.1) of Condition A, and Section 8 shows that
this condition really makes things different. In Section 9 and 10, we provide examples which make it

clear that when we adopt our assumptions, we do not loss the generality.



1. Preliminary
As good references [1], [6], [8] and [10] are highly recommended to the materials in this section.

Throughout this paper, G always represents a finitely generated free group and T always stands for
an R-tree. We use T X G — T for the action of G on T, and u-g for the image of the pair (u,g) under
the action, where u € T and g € G.

By assumption, G = G’ ¥ G”. An alternating word (with respect to G’ and G”) is an ordered
family {a1,as,...a,} of elements of G' UG" — {1}, such that as € G" — {1}, azs41 € G' — {1} or
agx € G' — {1}, azr41 € G’ — {1} for all k. We allow the empty word to be an alternating word. For
every element g € G, there is a unique alternating word {a;,as,... ,a,} such that g is the product of
a;’s,i.e. g = aias---a,. (¢ = 1if and only if the corresponding word is empty.) Call this word as the
alternating word of g (in elements of G’ and G"'), call n as the (alternating ) word length of g and
denote it by L(g). Set g, = a1,9. = a, and

1 if 2 = 0;
gi=9Ya---a;, ifi<nandi>0;
g, if i > n.

Recall that an element g € G of positive translation length r(g) is called a hyperbolic element.
g acts on its axis A, by a translation with length 7(g). If G acts on an R-tree T and G contains a

hyperbolic element, then T contains a unique minimal invariant subtree.

If S is a subset of T', H is a subset of G, set

S.H={s-hl]se S,he H}

The action T X G — T is said to be discrete or Properly discontinious if for every u € T,
there is an open set U containing u such that the set {g € G|U-gn U # 0} is finite. When the action
T x G — T is free, it is discrete if and only if all the G-orbits are discrete. When G is torsion free, the
action T X G — T is discrete implies that it is free. In this paper, we deal only with finitely generated

free groups, so the freeness of an action is always implied by its discreteness.

An R-graph is called finite if it consists of finitely many edges and has a finite total measure; it is
called nondegenerate if it has a positive total measure. The quotient T/G for the action T X G —= T
is a finite R-graph.

A closed subtree F of T is called a fundamental domain of 7' mod G if the following conditions

are satisfied:
(a) F-G=T

(b) If g € G — {1}, then either FNF-g=0,0r FNF-g consists of a single point.
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We use the letter d for the distance between points or sets as usual. Assume p: X — Y is a map, S
is a subset of X, we use p|s for the map p restricted on S. and use (S5)° for the interior of § with respect
to X. When S is the union of a family of R-trees or R-graphs, we denote by Y (S) (E(S) resp.) the set
of branch points (end points resp.) of connected components of S. If S is empty, so also are Y(5) and
E(S).

Lemma 1.1: Assume G is a finitely generated free group, G acts on T' freely, then

(a) If the action T x G — T is discrete and minimal, then for every closed subtree s of T' such that s
is embedded into T /G under the quotient map ¢:T — TG, there is a nondegenerate finite fundamental

domain F of T mod G which contains s in its interior.

(b) If there is a nondegenerate finite fundamental domain F of T mod G, then the actionT X G — T

18 discrete.

Proof: (a) Since G is a finitely generated free group and the action T'x G — T'is minimal, we have
E(Q) = 0 and Q consists of only finitely many subloops I1,13,...,la (by a loop we mean an R-tree which
is homeomorphic to a circle). For each subloop /; of @, we pick up a point v; € l; — #(s) — Y (Q) (this
set is not empty because ¢(s) is a closed subtree of Q). Set L = Q — {w;|i = 1,2,...,n}, then Lisan
open maximum subtree of Q containing ¢(s) in its interior. There is a lift L of L in T containing s in
its interior. The closure F of L is a fundamental domain of T mod G. F is finite and nondegenerate

because @ is so.

Pes)

v,

(b) We want to prove that for every point u € T, there is an open subtree s, of T’ containing u such
that s, N {u}-(G — {1}) = 0. Because if this is true, then the action T x G — T is discrete.

We may assume that u € F. Suppose u € E(F), we choose a point ¢, € F such that u # ¢, and
[u,e,] NY(F) = 0. Also for each u € E(F), define X, = {ve E(F)|lv-g = u for some g € G}, and for
v € X,, denote the unique element g € G satisfying that v-g = u by g(u,v) if it exists. Because F is
finite, we have #E(F) < oo and #X, < oo for every u € E(F). Set sy = U{[u,c, -g(u,v))|lv € Xu},

then s, is an open subtree of T containing u.
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We claim that s, N {u}-(G — {1}) = 0. Suppose there is an element g € G — {1} such that u-g € s,,
then u-g € [u,c, - g(u,v)) for some v € X,, we have u-g € F-gn F.g(u,v) C E(F-g(u,v)), so
u-g € [v,¢,) g(u,v) N E(F-g(u,v)) = {v-g(u,v)} = {u}, i.e. u-g = u, this is impossible because the
action T' X G — T is free.

Assume u € (F)°, take s, = (F)°, then s, N{u}:(G —{1}) = 0 is obviously true also. This completes
the proof of Lemma 1.1 ¢

Now let us look at some simple examples:

We use F,, for the free group of rank n, and denote the free group with a free basis {Z1,%25. 4320}

by F(Il,.’bz,...,.’tn).

If F; = F(z) acts on an R-tree T minimally and freely, then T is isomorphic to R, and F; acts on

T by a translation. This action is discrete and the quotient Q = T/F; is a circle.

Assume F; acts on an R-tree T minimally and freely, then there is a free basis {z,y} of F; such
that |4, N 4,| < min{r(z),7(y)}, (see [6] as a reference). We take closed subsegments F',F"of A;, Ay
respectively, such that

(a) |F'| = 7(z) and |F"| = 7(y).
(b) A,nB(A;,Ay) C F' and AyNB(A;,Ay)) C F"if A,nAy =0,A,NA, C F'nF"if A,nA, #0.

Set F= FFUF",if A,NA, # and F = F'UF"UB(A;,A,y),if A, N Ay = 0. Then Fisa
fundamental domain of T mod F;, and the quotient @ = T/F; is an R-graph with genus 2. By Lemma
1.1 (b), the action T x F; — T is discrete.

Let us list the types of F and Q in all the possible cases as follows:

Case 1, A, NA, =0. F.—

5(Ax :A{j)

F




Case 2, A, N A, is a single point.

’

Case 3, A, N A, is a nondegenerate segment.

\ FaF" /F'
/

F*f

F Q

In Case 1 and Case 3, there are two Fy-equivalence classes (or F-orbits) in Y (T'), and every point
of Y(T) has order 3. In Case 2, Y(T') is a Fy-orbit and every point of Y (T') has order 4.

Therefore actions of free group of rank 1 or 2 on R-trees always satisfy Property (P). But the
example of Bestvina-Handel tells us that Property (P) is not true in general, if the rank of the group G

is greater than 2.

2. General Assumptions
In this paper, we always make the following:
Assumption 1: The actions 7’ x G’ — T and T x G"” — T" are free and discrete.

This assumption is actually an inductive hypothesis for the proof of Property (P) under certain
conditions. Notice that when G = Fj acts freely on an R-tree T, if we take G’ and G” to be F; and F;

respectively, then the action automatically satisfies Assumption 1.

Set
Tu = T' n T”

Every element g € G induces an isometry from Tj - g-'Nn Ty to Ty N Ty - g, we denote this partial
isometry of T, by o,, denote its domain and range by D, and R, respectively, which are closed subtrees
of To.

Let
Y ={o,|lg€ G, D, # 0}



2" = {o,lg € G", D, # 0}
L ={o,lg € G,D,; # 0}

Also let W' = (Y(T') U E(T,)-G') N T, and W" = (Y(T") U E(T,)-G") N Ts.

d 5
T 3
w'. °
5
==
%
(9:h€G')

Lemma 2.1: (a) E(D,) C W', for every g € G’ and E(D;) C W" for every g € G".
(b) If |Ts| < o0, then #X' < oo and #L" < co.

Proof: (a) Suppose g € G, we may assume that D, # 0. Take u € D,, if u W', then u-g ¢ W,
there is a small open segment s C Tp containing u such that u-g € s-g C To. Then s C Dy, so u & E(D,).
Therefore, E(D,) C W'.

(b) If rank(G') = 1, G’ = F(z), then T, is a subsegment of the axis A;. There are only finitely
many integers m satisfying Ty -z™ NTy # 0, or equivalently, D,» # 0, therefore #X' < oo. Assume that
rank(G') > 1. Because |Tp| < oo, #Y(T") N T, < oco. Since for every u € Y(T"), Order(u) in T" < o0
and for every edge e of T, eNTo NY (T") # 0 if To ¢ e, we see that To is contained in finitely many
edges of T', therefore, #E(T;) < oo. As a consequence, W' is a finite set. By (a), for every o, € X',
E(D,)U E(R,) C W', since there are only finitely many partial isometries of T, satisfying this property,
#¥' < o0o. Similarly, #Z" < co. ¢

Remark: Lemma 2.1 (a) is equivalent to the following statment: For every g € G', we have E(D,)U
E(R,) C W', for every g € G", we have E(D,;)U E(R,) cW".

Ifo,r € T, the composition o is defined at a point u € Tp if and only if u belongs to the domain of
and (u)o belongs to the domain of 7. The product of partial isometries ¢,03,...,0, is the composition
of them if exists, which is denoted by 6103 - +- 0. I acts from the right on To. Notice that the identity

map of T is included in X.

Because the examples in Section 9 and 10, there is no loss of generality in making the

following assumptions, as we shall do from now on:



Assumption 2: Tp # 0.

Assumption 3: |T;| < co.

3. Condition A and A’

Set
Y, = (Y(T')UY(T")U E(T,)-(G'UG")) N Ty

It is clear that Y is a finite set.

S ={(u,9)|u € Y5,9 € G,u-g; € Tp Vi > 0}
This is the set of pairs, a point u in Y¥; and an alternating word in elements of G’ — {1} and G" — {1}
whose inductive images keep u belong to Ty.

Now we are in the position to introduce the following two equivalent conditions, which are essential

in this paper. First, let us give some explaination:

Suppose u € Yy, t € C(u,T"), g € G" and u-g € Yy C Ty, then ¢-g is a direction normal to (i.e. not
belong to) Tj.

We do not want ¢-g to belong to T’. For example, G = F(z,y), G' = F(z) and G” = F(y), then
T' = A, and T" = A,.

T ¥
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To = [p, g for some p,q € A, U A,. Denote the only direction in C(p,T") (C(g,T") resp.) by t (¢
resp.). We want to avoid the kind of collapsings that ¢-y = #', Condition A and A’ are designed for this

perpose.

Set
G = {G”, if nis odd;
"~ 1 G", ifniseven.

To=T' T
Tl = T
T3 = T1 'G2 UT”
Define T}, inductively, for every positive integer n,
Tn = Tn— 1 'Gn
To = T' NnT" and T} = T” are connected. By induction on n, we can prove that T,, is connected

for every n > 2, since T,_, is contained in T},_, - g for every g € G,. Therefore T}, is a subtree of T for

every n > 0. Because T is a minimal tree and J"_, T, is invariant under G, we have T = U;"_; Tn.

Condition A’: For every integer n > 1,

T (Cois={IHATa € Ty

Remark: This is equivalent to the following formula:
Tn '(Gn+1 - {1}) nTn =4ip-1

Because by definition, T},_; is contained in 7,, and is invariant under Gp41 = G, _1, it is always contained
in T, - (Gay1 — {1}) NT,.

(9 € Gns1)
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We also have need of local condition which is equivalent to Condition A’. To formulate this, we
introduce the following notation:

Assume T is a subtree of T', u is a point of Ty, define D(u,T') to be the set of directions in T starting
from the point u, and C(u,T) the subset of directions in D(u,T) which are normal to Ty, in other words,
C(u,T) = D(u,T) — D(u,Ty).

Suppose u € Yy, g € G and (u,g) € S, define

_JCcu,T")-g, ifgeG”
Hy(u,9) = {C(H,T”)-g, if g, €G’

_J C(ug,T), ifg.eG”
Belwit) = {C(u-g,T”), if g € G'

Set
H(u’g) = Hb(usg) n He(uag)

Condition A: For every (u,g) € S such that g # 1 and u-g € Yy, we have

H(u,9)=0

This is to say that g does not carry a direction starting from u which is in 7" or 7" (depending on
gs € G or G' ) and is outside T to a direction starting from w-g which is in T or T (depending on
g. € G" or G' ) and is normal to Ty, if (u,g) € S, ¢ # 1 and u-g € Y. For example, g = ab with a € G’
,bEG", u€Y, and u-a € Ty, u-g = u-ab € Yy, then g dose not carry a direction from u in T", which

?

is normal to Tp to a direction from u-g in T", which is outside T.

Condition A and A’ are equivalent to each other, the proof can be fined in Section 5.

4. Main Theorems
Let us first introduce the following notation:

Assume u € Ty, set
F(u)={u-glg € G,u-g: €To Vi 20}

Also, let
o= ED,)

JEG

By = {u-g.-lu eY,, g€ G,u-g; € Ty Vi > 0}
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Assume u is a point of T, n is a nonnegative integer, we define a point u, as follows: if 4 € Ty, then
up = u. If u ¢ T,, there is a unique point v € Tj,, such that the bridge between u and T, is the segment
between u and v, i.e. B(u,T,) = [u,v], then we take v to be our u,.

In this section, Condition A and A’ are assumed without mention everywhere. We work out some

results using Condition A’, among which the most impotant are the following:

Proposition 4.1: (a) If the action T x G — T is not free, then T has fized points both in } C By
and in Yy C By.

(b) If the action T X G — T is free, then ¥ dose not have any fized point in Tp.

Remark: When we say T has a fixed point, we mean that there is a point u € T, an element
o € ¥ — {id} such that o is defined at u and (u)o = u.

Proposition 4.2: Assume the action T x G — T is free, then

(a) If the action T X G — T is not discrete, then #Q = o0 and there is a point u € Yy C By, such
that #F(u) = oo.

(b) If # By = oo, then the action T x G — T is not discrete.
The proofs of the above two propositions can be found later in this section.

According to Proposition 4.1 and Proposition 4.2, to investigate whether the action T X G — T is
free or discrete, we need only look at how ¥ acts on the points of By. We can find examples using this
idea in Part 2.

Before proving Proposition 4.1 and Proposition 4.2, we give the following lemmas, which are direct

consequences of Condition A’
Lemma 4.3: Forn > 2, we have (Tn — Tn_1)9 C Tntree) — Tnsr()-1 if L(g) > 0 and g1 € Gny1.

Proof: First we assume that L(g) = 1,50 ¢ = g1 € Gn41. If 7 > 1, because T._1 is invariant under
Gns1 = Gn_1, this formula is a direct consequence of Condition A'.Forn=1,(Ty - T)- (G, - {1}) =
(Ty = T")+(G" — {1}), since T" is invariant under G, this set does not intersect 7. On the other hand,

by Condition A’, the intersection of this set and T; is contained in T C T, so this intersection must
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be empty. Therefore, (Ty — Tp)-(G2 — {1}) C T; — T.

Assume L(g) > 1, h = gg;*, then L(h) = L(g) — 1. By induction, (T, — Tho1)*h C Tnyrn) —
Tnsrn)-1 204 (Tnszony=Tnsrny-1)9e C Tnprny+1=Tasra) = Tnt ()= TntL(g)-1- 50, (Tn=Tn-1)9 C
(Tasrw) = Tnszmy-1)9e C Tngig) — Tatr(e)-1- ¢

Lemma 4.4: Suppose g is an element of G, k > 0, u is a point of T;.. Suppose there is an integer
i <n = L(g) such that u-g; Ty, thenu-g € T}.

Proof: Assume a;a;---a, is the alternating word of g. Suppose that ¢ is the smallest number such
that u-g; & T.. If K > 1, then a; & Gi, s0 a; € G4, and therefore, u-g; = u-.gi_1a; € Tyyy — T}
Assume k = 0, then u-g; € Ty — Ty if a; € G', and u-g; € T — T} if a; € G”. In every case, there is
an integer [ > k such that u.g; € T}, — T} and a; € Gi41, by Lemma 43, u-g € Ty_iy141 — Tn_i4i, 50
u-g & Ty. ¢

We denote the domain and the range of a partial isometry ¢ € £ by D(o) and R(c) respectively,
thus if o is induced by an element g € G (i.e. if ¢ = 0,), then D(0) = D, and R(¢) = R,.

Lemma 4.5: For any element g € G, if D, # 0 and g = g1g2 -+ gn is the alternating word of g,

then we have 0,,0,, -+ 0, = 0,.

Proof: We proceed by induction on L(g). Set h = gg7' = ¢1g2*++gn-1, then L(h) = L(g) - 1.
By inductive hypotheses, 0,,0,, -+-0,,_, = 0y, it is enough to prove that o,0,, = 0,. Since obviously
on0,, is 0, limited on a subset of its domain, we only have to prove D, C D(ox0,, ). Suppose there is a
point u € D, — D(ox0,,), if u € Dy, then (u)o, & Dy, , therefore u-g = u-hg, = ((4)os) - gn & To, this
implies that u ¢ D,, contradicting the assumption. Assume that u ¢ Dj, then u-gp ;)1 = u-h € To, by
Lemma 4.4, u-g € Tp, this is impossible. &

Proposition 4.6: ¥ — {id} consists of alternating combinations of elements of &' — {id} and
" — {id}.

Proof: This is implied by Lemma 4.5. O
Corollary 4.7: (a) For every point u € T, we have F(u) = (u)Z.

(b) We have By = (Y,)Z.

(¢) By and F(u) for all u € Ty are ¥ invariant.

Proof: (a), (b) are deduced from the definitions of By and F(u) for « € To and from Proposition
4.6.

(c) If o,,04 € T with g,h € G, then o404 is o, h restricted to a subset of its domain. Therefore for
every point u € Ty, we have {u}-EZE = {u}-Z. Then (c) comes from (a) and (b) easily. o

Lemma 4.8: ) C By.
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Proof: Assume that ¢ € G and D, # ), we want to prove that E(D,) C Bo.

By Lemma 2.4, if g € G’ UG”, then E(R,;) = E(D,-:) CY, C By. For the general cases, we prove
the lemma by induction on L(g). Assume aja;---a, is the alternating word of g, set A = a;'g, then
L(h) = L(g) — 1. By inductive hypotheses, E(D;), E(R4), E(D,,) and E(R,,) are all contained in By.
According to Lemma 4.5, 0, = 04,05, 80 D; = (R,, N Dy)o;}, and then E(D,) = (E(Ra, N Dy))o;! C
(Bo)o; ! C (Bo)X C By. This proves the lemma. $

Lemma 4.9: If the action T x G — T has a fized point v € T, then there is a point u € Ty, an
element o, € T for some g € G such that u € D,; and (v)o, = u. Furthermore, u is conjugate to v, i.e.
they are in the same G-orbit.

Proof: Assume v € T, for some n > 0, by the definition of T; for 0 £ ¢ < n, there is a point
u € T'UT", an element h € G such that v = u-h. Since u is conjugate to v, u is fixed by a nontrivial
element g € G.

Assume that u € 7" - T5-G" C T, — Ty. If g; € G’, by Lemma 4.8, u-g € T (5)+2 — Tp(4)+1, since
L(g) 2 1, T, C Tr(yy41, 80 u = u-g & Ty, this is a contradiction. Assume g, € G”, if L(g) = 1, then
g € G”, but we assumed that the action 7" X G — T" is free, u can not be fixed by g, so L(g) > 1.
Because u € Ty -G", u-g, & Ty, therefore u-g, € T — T}, then by Lemma 4.8, u-g € T (4y41 — T (y), 80
u = u-g ¢ Ty, impossible. Similarly we can prove u g T' — Ty-G’, hence u € To-(G' UG"), or equivalently,
there is an element s € G’ U G" such that u-s € T;. By taking u-s for u, we may assume that u € Tp.

Since u is fixed by g and u € T,, we have u € D,; and (u)o, = u. o

Lemma 4.10: Ifv € T is such that the orbit {v}-G is indiscrete, then there is a point u € Ty, such
that d(u, F(u) — {u}) = 0 and u is conjugate to v.

Proof: As in the proof of Lemma 4.9, there is a point w € T U T", an element g € G such that

v=w-g.

Suppose that w € T — T, -G", Since the action T" x G — T" is discrete and Tj is compact, the
set Tp-G" is closed in T, we have d(w,Ty-G") > 0 or equivalently, d({w}-G",T) > 0.

Claim 1: dis(w, {w}-(G - G")) 2 p = d({w}-G",To).

Proof of Claim 1: Take any element ¢ € G — G”, assume that g; € G' = Gj, since [w,wg) C
T" Ty C T,—T;, by Lemma 4.8, [w, w)g C Tay ()= T1+L(s)> DUt wo:g € Ti4L(g), 80 [, wo]gNT141(y) =
{wo-g}, ie. wo-g = (W-g)141(s)- Then wo-g € B(w-g,T"). We have d(w-g,T") 2 dis(w-g,wo-g) =
dis(w,wo) > p. Assume that g; € G”, since g ¢ G, g2 € G’ — {1}, take w' = w-g;, h = gr ‘g, then by
the above argument, d(w-g,T") = d(w'-h,T") > p. As a consequence, dis(w-g,w) > p, the claim is true.
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Because w is conjugate to v, {w} .G is indiscrete, so d(w,{w}-(G - {1})) = 0. From claim 1 we
deduce that d(w, {w}-(G"” — {1})) = 0, but we assumed that the action T" x G" — T" is discrete, this

is impossible.

Similarly, w can not belong to T' — T, -G’, hence w € Tp+(G' UG"). As in the proof of Lemma 4.9,

we may assume that w € Tj.

Assume that #F(w) < oo, then F(w)-(G' U G"”) — T; is a discrete set, because T; is compact,
A=d(F(w)-(G'UG") - T,,T,) > 0.

Claim 2: d({w}-G - Tp,w) = A

Proof of Claim 2: Suppose g € G is such that w-g ¢ Tj, assume 1 is the smallest integer such that
w-g; & To, then w-g;_; € F(w),so w-g; € F(w)-(G'UG") — Ty, therefore, d(w-g;,(w-gi)o) > A. As
in the proof of Claim 1 (take w-.g; for the w there), by applying Lemma 4.8, we can find a nonnegative
integer m such that (w-g:)o-9;7'9 = (v -4:) 97 '9)m = (W-g)m, then (w-g:)o-g;7'g € B(w-g,Tv), so
d(w-g,w) > d(w-9,Tp) > d(w-g,(w-gi)o-g:'g)= d(w-gi,(w-gi)o) 2 A. | s proves the Claim 2.

Because d(w,{w}-(G - {1})) = 0, by Claim 2, d(w,{w}-(G - {1}) N Tp) = 0. By Lemma 4.4,
{wh(G-{1})NT = {w-glg € G—{1},w-gi € To,Vi 2 0}= {(w)o,lg € G—{1},w € D, } = F(w)—{w},
so d(w, F(w) — {w}) = 0, contradicting our assumption that #F(w) < oo, therefore, #F(w) = oo.

Because |T| < oo, there is a point u € F\(w) such that d(u, F(w)—{u}) = 0, i.e. d(u, F(u)—{u}) = 0.
The lemma is thus proved. O

Now, let us proceed the proofs of Proposition 4.1 and Proposition 4.2.
Proof of Proposition 4.1:

(a) Suppose the action T X G — T is not free then according to Lemma 4.9, there is a point
v € To, an element o) € L for some h € G, such that (v)o, = v. We may assume tLat v ¢ §2, then
v¢ R = E(Dy)U E(R,). Since #R < oo, we have d(v,R) > 0.

Set s = {u € To|d(v,u) < d(R,v)}, then s C Dy N Ry and E(s) = {u € To|d(u,v) = d(R,v)}.
It is clear that E(s)N R # 0. Because (v)o, = v, we have (s)o, = s and (E(s))on = E(s). Since
|s| < |To| < o0, #E(s) < 00, 04|g(s) is a permutation. Then for every u € E(s)N R C {, there is a
positive integer k such that (u)(ox)* = u, we take g = h*, then u € D, and (u)o; = (u)(on P o=
Therefore, ¥ has a fixed point in (! C By.

Assume u = (v)o, € (Yo)E = By is fixed by o, € T — {id}, where v € Y, 0 € I, then v is fixed by
010,01, according to the proof of Corollary 4.7 (c), v is fixed by op,4-2 € T — {id}. Hence T has a
fixed point in Yy C Bo.

(b) If u € T, if fixed by o, € T — {id}, then u is fixed by g € G — {1}, so the action is not free. ¢
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Proof of Proposition 4.2:

(a) Assume #Q < oo, then #X < 00, for any point v € Ty, #F(v) < #X < co. But since the action
T x G — T is free and not discrete, there are indiscrete G-orbits, according to Lemma 4.10, there is a
point v € T, such that #F(v) = oo, this is a contradiction.

Therefore, #Q = oco. According to Lemma 4.4, @ C By, so, #B, = 0. By definition, By =
Usey, F(v), since #Y; < oo, there is a point v € Yo C By, such that #F(v) = cc.

This also proves (b). ¢
Now, we introduce the following
Condition B: # < 0.

Theorem 4.11: Assume Condition A (or equivalently, A'), and the action T x G — T is free, then

Condition B is true if and only if the action is discrete.
Proof: It follows directly from Proposition 4.2 and its proof. &

To conclude this section, we give the following remark: Property (P) is implied by Condition A and
B. We think that Condition A is an essential one. The example of a free indiscrete action by the free
group of rank 3 on an R-tree given by Bestvina-Handel violates Condition A. While we feel Condition
B could be true for all actions which are free and satisfy Condition A. This needs further study.

Examples using the theorems in this section can be find in Part 2 of this paper.

5. The equivalence of A and A’
Before proving the equivalence of Condition A and A’, let us see a couple of lemmas as follows.
Lemma 5.1: Ifue T"UT" - Ty, then uy € Yp.

Proof: We may assume that u € T’ — T,. Suppose ug € Y (T"), then #D(uo,T’) = 2 (T" has no end
point). Because ty,(u) € D(uo,T") — D(uo,To) = C(uo,T"), #D(uo,To) < 1. Since ug € Tp and T is
nondegenerate, D(u,To) can not be empty. So #D(uo,To) = 1, hence uy € E(Tp) C Yo. ¢

Lemma 5.2: Assume Ty,_1 NTn_1+(Gn — {1}) C Ty—2 for an integer n > 2, suppose u € Ty, — T, 1,

u=v-g for somev€ T,_1, g€ G, — {1}, then up_y = Un_23 =0a_2-9 € T_>.

Proof: Because T),_, is invariant under G, = Gn_2, we have (T,,_; —Tn_2)(Gn = {1})NT,_, = 0.
Assume n = 2 and u € T", then uy = u; € Tp. Now suppose u = v-g for some v € Tno1 — Th-s,
g € Gn — {1} with n > 2. Since [v,v5_2) C Th_1 — T, -2, we have [y Vp_2:9INTh1 = [0,002]:gNTHy =

{vn-2-9}, 50 Up_1 = Up_3g. Because v,_3-g € Tn_2, Un_1 = Un_2 € Tn_2. ¢
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From now on until Proposition 5.7, Condition A is assumed, we intend to show that A = A’.
Lemma 5.3 We have T; N T, -(G"” - {1}) C T,.

Proof: Suppose this is not true, then there are points u € T} —Tp, v € T} and an element g € G’ — {1}
such that u = v.g.

Ifve Ty, thenu =v-g € T"NT' = Ty, which contradicts the assumption. So, v € T; — T;. Because
[u,v-9) N Ty = [v,v]-gN Ty = {vo-9}, B(u,Tp) = [u,v0-g], 50, ug = v9-g. Then, t,,(u) = t,,(v)-g. By
Lemma 5.1, ug, v € Yg, so (v,g) € S. Since t,,(u) € C(uo,T") N C(v,T")-g = H(v,g), this contradicts
Condition A. O

Suppose u is any point in the tree 7', then u"” € T is such a point that B(u,T") = [u,u"], or
equivalently, [u,v”]NT" = {u"}.

Lemma 5.4: Assume u € Ty — Ty. If u” € Ty, then uy € Yo, ty,(u) € C(uo,T"); if u” € Ty, then
there is a point v’ € Y, and an element g € G" such that wy = v" = v'-g and t,,(u) € C(«/,T").g =
Hy(v',g).

Proof: First assume that u € T — T, then by Lemma 5.1 and Lemma 5.2, u; = 4, € Yy and
obviously, t,,(z) € C(uo,T").

Now assume that u ¢ T, then v = v-g for some v € T} — T, and g € G”. Because T" is invariant
under g, [u,v9-g]NT" = [v,v0]-gNT" = {vy-g}, 50 u” = vo-g. Because Ty C T", up = (u")o. By Lemma
5.3, [4,v0-9)NTy = [v,v0)-g NTy = 0, it is clear that u; = (vo-g)1 = (') = (u”)o = uo. Assume
u" & Ty, by Lemma 5.1, (u")o € Yo, tu,(u) = tu,(u") € C(uo,T"). Suppose u” € Ty, take u’ = vy, then

u = u = v’ =u'-g, and t,,(u) = ty,(v)-g € C(v,T")-g = Hs(', g). ¢
ull E TH' uH g TH
w
W
w”

Lemma 5.5: T2+ (G' = {1})nT, C T.

Proof: Suppose this is not true, there are points u,v € T, — T}, element g € G’ — {1}, such that

u = v-g. Since T" is invariant under g, it is easy to see that u; = v, -g and t,, (u) = t,,(v)-g. According



16
to Lemma 53, U = U; € YD and Vo =1 E Yg.

Case 1: u”,v" € Ty. Then ug, vy € Yy, 50 (vg,g) € 5. ty, (%) = tyo(v)-g € Clug,T")NC (00, T")-g =
H(vp, g), contradicting Condition A.

Case 2: v’ € Ty, v"' € Ty. By Lemma 5.3, there is a point ' € Y;, an element h € G such that
ug = u'-h and t,,(u) € C(u',T')-h. Take ¢’ = h-g~?, then (v/,¢') € S, and t,,(v) € C(vo, T")NC(w',T")-
g = H(v,g¢'), which violates Condition A.

Case 3: v" € Ty, v’ € Ty. Similar to Case 2, this is impossible.

Case 4: u”,v" € T,. There are u’',v" € Yo, h1,hy € G” such that ug = w'+hy , vo = v'-hy and
tu,(u) € C(W,T"), ty,(v) € C(v',T"). Take h = hy-g-h7", then (v',h) € S. ty,(u)-hi* = t,,(v)-g-hT' €
Cw,T")YnC(v',T")-h = H(v',h), this contradicts Condition A.

Lemma 5.5 is thus proved. ¢

Lemma 5.6: If u € Ty — Ty and uy € Ty, then there is a point u' € Yy, an element h € G such that
(u',h) €S, up =u'-h, h, € G' and t,,(u) € Hy(v',h).

Proof: There is a point v € 75— T}, g € G’ such that v = v-g. By Lemma 5.2, we have u; = u; = v;-¢
and vy = v; € Tp. Assume that v" ¢ Ty, then vy € Y and t,,(v) € C(vo,T"). Take v’ = vy, h = g, then
ty,(u) =ty (v)-g € C(w',T")-h = Hy(«', h).

Suppose v € Ty, by Lemma 5.4, there are v' € Yy, ¢’ € G”, such that vy = v'- ¢’ and #,,(v) €
C(v',T")-g'. Takew' = v/, h = g'-g, then w'-h = vo-g = Uy, ty,(v) = t,,(v)-g € C(v',T')-h = Hy(v', h).
Then u' and h satisfy all the desired properties. &

Proposition 5.7: For n > 1, we have:
(a) T, NT, (Gny1 — {1]’) CTn-s.

(b) If u € Thyy — Ty, then either u, € Ty, or there is an integer k suchthat0 <k <nandk=n
mod 2 such that u, € Tj,-+1 -T:.

(¢) If u € Tny1 — T and u, € To, then there are u' € Yo, h € G, such that (u',h) € S, un = u'-h,
h. € Gny1 and t,, (u) € Hy(v', h).

Proof: We assume that n = 1, then Lemma 5.3 = (a), Lemma 5.4 ==(c) and (b) is trivial.
If n = 2, then Lemma 5.5 =>(a), Lemma 5.6 => (c) and (b) is trivial.
Assume n > 3, let us prove (a), (b) and (c) by induction on n.

(a) Suppose this is not true, then there are u,» € T, —Tn_1, g € Gp41 — {1} such that u = v-g.

Because T,,_; is invariant under g, we have u,_; = vo_1-g, and t,,_,(u) = ty,_,(v)-9
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By induction hypotheses, either
A: there is an nonnegative integer k < n — 1, k = n — 1 mod 2 such that v,_; € T} — T} _;.
or B: v,_, € Ty.
and either C: there is an nonnegative integer ¥’ < n—1, k¥’ = n—1mod 2such that u,_; € Ty =T/ ;.
or D:u,_, € Ty.

Assume A is true, by induction , T} g N T C T_, therefore u,_, = vy_1:9 € Tpy1 — Tk, 80 C is
true and k' = k+ 1, but k = k' mod 2, this can not happen. Hence A is impossible, and similarly, C is

also impossible. Therefore, u,_; € Ty and v,_; € Tp.

By induction, there are uv'v' € Yy, h,f € G such that u,_y = o' +h, v,y = V- f, he, fo € G,
(u',h),(v',f) € S and t,,_,(u) € Hy(v',h), t,,_,(v) € Hy(?', f). Take s = f-g-h~!, since h., f. € G,
g € Gpy1, there is no cancellation when we multiply f,g and h together, so s, = f, and s, = h;‘. Then
Hy(v',8)-s7' = Hy(v', f)-f~! and H,.(v',s) = Hy(v',h)-h~1,

We can check easily that v’ = v’ .s, (v',8) € S, ty,_,(u)-h~! € Hy(v',h)h~! = H.(v',s) and
tu,_,(u)-h~r =1, _ (v)-g-h~' € Hy(v',f) - f~1 s = Hy(V',s),80 ty,_,(u)-h=! € Hy(v',8)N H.(v',8) =
H(v',s), this contradicts Condition A.

(b) Assume that u € Ty 41 — Ty, there is a point v € T},, an element g € G,4; such that u = v-g.
By (a) T (Gn41 — {1}) N T, C T,_,, then by Lemma 5.2 4, = %n_3 = v5_;-g. By induction, either
¥n_1 € Tp or there is a nonnegative integer k < n, ¥ = n mod 2, such that v,_; € T} — Tx_,. Assume
the later case is true, then 4, = v,_;-g € Tiy1 — T and (b) is true. Suppose that v,_, € T, if
Up = V19 & To, when n is even, g € G', so u, € T} — Ty, we take k = 0; when n is odd, g € G”, so
U, €Ty — Ty, take k = 1. Then k = n mod 2 and u, € Ti41 — T}

(c) Assume u € T4y — T, and u, € To. Suppose v € T, — T,,_; and g € Gpnyi are as in (b). We
have v,_, € Ty, otherwise by the proof of (b), 4, = v_1-9 & T, this is impossible. By induction, there
is a point v’ € Y, an element f € G such that v,_; = ¢'- f, f. € G, and t,,_,(v) € Hy(V, f).

Take u' = v/, h = f-g, then u, = ¢ -h, (v',h) € 5, he = g € Gpy; and t,,(u) =1,,_,(v)-g €
Hy(v', f)-g = Hy(v', h), violating Condition A.

This complete the proof of Proposition 5.7. &
Theorem 5.8: Condition A and Condition A’ are equivalent to each other.
Proof: Proposition 5.7 implies that Condition A = Condition A'. Let us prove the converse now.

Assume Condition A’ is true and A is not true. There is a point u € Yo, an element g € G — {1},
such that u-g € Yy, u-g; € T, for every i > 0 and H(u,g) = Hi(u,9) N H(u,9) # 0. Assume v is such a
point that t,,(v) € H(u,g), then t,4(v) € C(u-g,7'UT") and tu(v-g~?) = (tug(v))-g~"! € Hy(u,9)97' C
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C(u,T' UT"). We may choose v so close to u-g that v and v-g~! both belong to T" UT" — Tp.

fveT cT, then H,(u,9) = C(u-9,T"),50 g. € G", (g7*)1 = (g7')s = (9c)"' € G" = Gy;
similarly,if v € T" C T3, (¢7*)1 € G’ = Gs.

We may apply Lemma 4.3 to see that for k = lor 2, v € Ty —=T_, whilev-g~! € Lisr()—TesrL(g)-1>
(notice that the proof of Lemma 4.3 of only needs Condition A’). If L(g) > 2,0r k = 2, then k+L(g)-1 >
2,50 v € T, and therefore, v § 7' UT", contradicting our assumption. Assume that L(g) =1and k=1,
thenve T and g7 = (¢7%). = (97')s € G",s0v.g7* €T’ C T1, but v € Thyyy) = Tiyr(g)-1 = T = Th,

this is a contradiction.

The equivalence of the two basic conditions is thus proved. &

6. A simpler condition for actions of the free group of rank 3

When we focus on minimal actions of G = Fj3 (the free group of rank 3) on an R-tree 7', Condition

A is implied by the following Condition D, which is simpler.

Assume that G = F(z,y,2). Take G' = F(z,y), G” = F(z). We may assume |4, N 4,| <
min{7(z),7(y)}, (cf. Section 1, page 4).

Since Ty C A,, we have T, = [p,g] for some p.g € A,. We assume further that the direction 1,(q)
from p to ¢ is the direction of A,, which can be presented as t,(p-z).

Assume K is a fundamental domain of 7’ mod G’. Then there are points p',¢’ € K , elements

9p19q € G’ such that p.g, = p/ and ¢-g, = ¢'. Set
X=Y(T)nKu{p,q¢}
Then #X < 4. We can choose K so that
XNEK)=0
Since T" is an axis, C(p,T") (C(g,T") resp.) consists of one direction, which is presented as

t,(p-2~1) (t,(g-2) resp.). Set t, = to(p-2=1)-gp, tg = tp(q-2)-g;. Then t, € D(p',T)- D(p',K) and
t, € D(¢,T) - D(¢, K).
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Denote the the union of the set of directions in K starting from points of X with the two directions
{tp,t;} by ®. Then #& < 12.

Assume u € X, g € G — {1}, then R(u,g) is the following fact: u.g€ X, 9, € G' if u g T, g. € G’
ifu-g ¢ Tp and u-g; € T, if 0 < @ < L(g).

Condition D: (a) In case p' = ¢/, we have t, # t,.

(b) Ifu € X, g € G— {1} are such that g carries a directiont € ® starting from u to a direction in
&, then R(u,g) is not true.

Proposition 6.1: When G = F3, Condition D = Condition A.
Proof: Assume that Condition D is satisfied.

Suppose Condition A is not true, then there is a pair (u,g) € S, ¢ # 1 such that u-¢g € ¥, and
H(u,g) = Hy(u,g) N H,(u,g) # 0. There is a direction t € Hy(u,g)-g~* such that t-g € H.(u,g).
There are elements h,! € G’ such that u-h € K and u-gl € K. Because u,u-g € Yy C Y(T") U {p, ¢},
u-h,u-gl € X.

It is clear that C(u,T")-h C D(u-h,K) C ®. C(u,T") # @ if and only if u = p and C(u,T") =
{ts(p-2=1)} or w = ¢ and C(u,T") = {t,(q-2)}, so C(u,T")-h C {t,,t,} C ®. Therefore, t-h € &,
symmetrically, we have t-gl € ®. Take f = h~!gl, then t-hf =t-gl, so f carries a direction of @ into ®.
Assume f = 1. Then because h,l € G, g € G'. Since g = g. € G', t € C(u,T") and t-g € C(u-g,T"),
therefore {t,t-g} = {t,(p-271),t,(q-2)}, it follows that {t-h,t-gl} = {t,,t,}. Then we have t, = 1,
contradicting Condition D (a). If f # 1, then either f; € G’ or u-h € Ty, and either f, € G’ or u-gl € To.
We have {(u-h)-£;|0 < i < L(f)} C {u-gi|i > 0} C To, therefore R(uh, f) is true, contradicting Condition
D. This proves the proposition. &

7. The ‘freeness’ of Condition A
Condition A is a kind of freeness condition in the following sense:

Theorem 7.1: Given any minimal actions of G' on T' and G" on T", and any nonempty connected
intersection Ty C T', Ty C T", there is an extended tree T of T'UT", and a minimal action p:TXG — T
containing these data and satisfying Condition A, where G = G'*G". The action p satisfies the following
property: For any minimal action p of G on a tree T containing these data, there is a unique G-equivariant
dominating map from T to T which is the identity on T' UT". Furthermore, such T and p are unique

up to a unique G-equivariant isomorphism.

Proof: Assume z € T'UT", g€ G. fz € T', g€ G' orz € T", g € G”, then z g is defined.
Suppose g = @,a; -+ a, be the alternating word of g, if z-g; is deﬁned for some 1 < i < n-—1,and if
z-g; € Ty, then 2 -gi11 = T-giGi41 is defined. Soif z € T, a; €EG' or z € T, a; € G" and if z-g; are
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defined and belong to Ty for all i such that 1 < i < n—1, then z-g is defined by the actions 7" x G’ — T
and 7" x G" = T" ,itis a point of T UT".

Set
T ={(z,9)lz € T'UT",g € G}

Define a equivalence relation ~ on elements of T' in the following manner: (z,g) ~ (y, h) if there are
i>0and j > 0 such that z-g; and y-h; are defined by the actions 7" x G’ — T" and 7" x G" = T" ,
2.g; = y-h; and g7 'g = hj'h. It can be checked that ~ is a equivalent relation. The equivalent class
of (z,g) is denoted by {(z,9)}.

Set T' = T/ ~ the space of all the equivalent classes in T'. Define a map p:T X G — T such that
p({(z,9)}, k) = {(z,gh)} for all {(z,9)} € T and h € G. p is well defined, because if (z,g) ~ (y,!), then
(z,gh) ~ (y,lh) for all h € G.

Define ®: 7' UT"” — T such that ®(z) = {(z,1)} if z € T'UT". ® is an injective map, so we regard
T'UT" as a subspace of T'.

Define G,, T, for all n in the same way as we did before introducing Condition A’ (see page 8).

Lemma 7.2:

(G

T= T

n=0

Proof: Take any {(z,g)} from T, let us prove by induction on L(g) that {(z,9)} € U;_, Ta-
If L(g)=0,g=1and {(2,9)} e T"UT" C T>.

Assume g = a1a3 - @y be the word of g. By induction, {(z,gm-1)} € T, for some nonnegative
integer n, then {(z,9)} = {(2,9m-1)} @m € T -(G' UG") C Ty 41. So the claim is true. &

Lemma 7.3: For every n > 1, we have:

(a) If u € T, — Ty_, then u= {(z,g)} for some z € T' UT" and g € G such that g, € Gy.
(b) If u = {(z,9)} € T, and g. € Gn41 — {1}, thenu € T, _;.

(¢) Tn+(Gns1 = {1} NT, C They.

Proof: (a) Because T, — T,y C (Tn-1 — T,.-2)-Gp, this can be proved by induction on n.

(b) Suppose u = {(z,9)} € T and g. € Gny1 — {1}. If u & T, then by (a), there is a point
y € T' UT", an element h € G such that h, € G, and u = {(y,h)}. Then (z,9) ~ (v,h), by the
definition of the equivalent relation ~, we see that z-g and y-h are defined by the actions T" X G —-T
and T x G" — T" ,and z-g = y-h. Assume h =1 and y € T, then u € T, since u ¢ T,_1, we have
n=1. Then g. € Gy — {1} = G” — {1} and therefore z-g € T",s0 2:g =y €T'NT" = To. Similarly, if
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h=1and y € T", we have z.g € T;. Now assume h # 1, then h, € G, — {1}. Because one of g, and
h. belongs to G' and the other belongs to G, z.g = y-h e T'NT" = T;,. Then u = z-g,1 € T,_1,

impossible.

(c) Assume u € T, - (Gn41 — {1}) N T, — T,_1, then there is a point v € T,, — T,_; and element
h € G,41 — {1}, such that u = v-h. By (a), v = {(z,9)}, withz € T'"UT", g € G and g. € G,, then
v = {(z,gh)} € T, — T,,_1 and (gh). € Gn4+1 — {1}, by (b), u € T,,_1, impossible. This proves that
Tn(Gns1 —{11)NT, C Ty ¢

We have metrics on T’ and T" which coincide on Ty, = T N T", there is a unique metric dy on
T' UT", which agrees with the metrics on 77 and T, and under which, 7" U T" is a tree. Now, let us
define a metric d on T such that when restricted to 79 U T", d is dp.

For any u € T} = T", there is a unique point v € T, such that B(u,Tp) = [u,v] if u € Ty, and u = v
if u € Ty, denote this point v by uy. Forany u € T, g € G", uo-g € T".

Assume u,v € Ty, u # v. If u,v € T'UT", define d(u,v) = do(u,v). fu g T'UT", then u € T} -G,
by Lemma 7.3 (c), u = u'-g for a unique v’ € T and a unique element g € G, = G". v e T"UT",
define d(u,v) = do(v',u}) + do(up-g,v). Hu € T'UT", v g T UT", d(u,v) is defined similarly. Finally
assume u,v & 7' UT", then uniquely there are v/,v' € T, g,h € G” such that u = 4'-g and v = v/ -h, if
g = h, then define d(u,v) = do(v',v'), if g # h, define d(u,v) = do(v', up) + do(v',v5) + do(ug - g, v+ ).
Thus d is defined on Ty X T3.

If u,v,w € Ty, we can easily verify the following:
(a) d(u,u) = 0.

(b) d(u,v) = d(v,u).

(c) d(u,w) < d(u,v)+ d(v,w).

So (T3,d) is a metric space.
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Lemma 7.4: (a) (Ty — Tp)-g is open in T, for any g € G".
(b) T' UT" is closed in T5.

(c) If J is any subsegment of T, — (T" UT"), then there is an element g € G — {1} such that
JC (T1 = Tg)-g.

(d) Assume J = [u,v] C T, is a segment, J N (T' UT") = {v}, then if ' € T' - T, g € G - {1}

are such that u = - g, then v = ug-g.

Proof: (a) Fix u € (T — Ty)+g, u = v’ - g for some o' € (T} — Ty). For any v € T, — (T1 — Tp)-g, we
have d(u,v) > do(v',u}) > 0, so u is not a limit point of Ty — (T} — Tp)-g, therefore (T — Tp)-g is an

open set.
b)) T'uT"=T; - (U#l(’ﬂ —Ty)-g) is closed.

(c) According to (a), for each g € G — {1}, J N (T} — Tp)-g is open in J. Because by lemma 7.3
(¢c), J is a disjoint union of {J N (T; — Ty)-g|lg € G” — {1}}, and J is connected, all of these open sets
except one must be empty, so J C (T3 — Tp)-g for some g € G — {1}.

(d) By (c), J = {v} C (Ty = To)-g. So (J —{v})-¢g~" is a segment in T} — Ty with one end open, whose
endpoint is denoted by w. Suppose w ¢ Ty, since ¢: Ty — Ty — (Ty — To)- g preserves distance, we have
that v = w-g € (T} — Tp)-g, then v € T' UT", which is impossible. Therefore, w € Tp, so w = (a-g=1)o
for every a € J — {v}. By the definition of the distance d, we have d(a,w-g) = d(a-g~*,w) = d(a,v) if
a € J — {v}, then it is clear that v = w-g = uf-g, with ' = u-g~*. ¢ .

Assume u,v € Ty, by a path between u and v, we mean a closed segment whose two end points are

u© and v.
Lemma 7.5: There is a path between any two points of Ty.

Proof: We know that 7/ UT" is a tree, if u,v € T' UT", thep there is a unique path po(u,v) inside
T' UT" between these two points.
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Suppose u € T, — (T UT"), u = u'-g as before, then by the definition of d, g:po(v',up) —
po(',up) - g is a isomorphism, so po(u’,ug) - g is a path between u and ug - g. Assume v is any point in
T'UT", define [u,v] = po(u',up)-g N po(up-g,v). Assume w € po(u',uf) - g and q € po(uf - g,v), since
w =w-.g~! € po(v,uy) and wy = ugy, by the definition we have d(w,q) = do(w',wp) + do(wg - 9,9)=
d(w,u} - g) + d(uj - g,¢). This proves that [u,v] is a path. If v € T, — (T" UT"), v’ and h are as before,
define [u,v] = po(u, uh)-g U po(uf-g,vf-h) U po(v',vh)-h, we can prove, similar to the above, that [u,v]
is a path from u to v. This proves that (T%,d) is path connected. ¢

Lemma 7.6: Assume I and J are two segments in T,, then if I N J is a single point, which is the
end point of both, then I U J is a segment in T.

Proof: Assume I NJ = {w}, u is the other end of I and v is the other end of J, we only have to

prove that
(7.1) d(u,v) = d(u,w) + d(w,v)

Assume w € T UT", we take the case where v ¢ TV UT", v € T UT" for example to prove (7.1).
Assume v’ € T — Ty, g € G" — {1} are such that v = u’-g, d(u,v) = d(u',u}) + d(uy - g,v). Suppose
b € [u,w] be such that b € 7V UT" and d(u,a) > d(u,b) for any a € T UT" N [u, w] (such point b exists
since 7" U T" is closed in T3). According to Lemma 7.4 (d), we can prove that [b,w] C 7" U T" and
b = uf - g. Therefore, [u} + g,w] N [w,v] C [u,w] N [v,w] = {w}. Because T UT" is a tree, we have
d(uh - g,w) + d(w,v) = d(uj - g,v), then d(u,v) = d(v',uy) + d(ug - g, w) + d(w,v) = d(u,w) + d(w,v).

Assume w € Ty — (T' UT"), suppose w' € Ty — Ty, g € G” — {1} be such that w = w'-g.

Case 1, PN(T'UT")=J°Nn(T"UT") =@, then JUJ)N(T"UT") C {u,v}, by Lemma 7.4
(c) and (d), TUJ C Ty g, because [-g~'nJ.g7! = {w-g='} and T; is a tree, d(u-g~*,v.g7*) =
d(u-g~',w-g~')+d(w-g~',v-g~1), this implies (7.1).

Case 2, IN(T'UT") # 0, there is a point a € I such that [w,a]N(T'UT") = {a}, by Lemma 7.4 (d),
a = w)-g. We claim that J N (7' UT") = 0, otherwise a = w;-g € J, impossible. As in Case 1, we can
prove that d(a,w) + d(w,v) = d(a,v), and [a,v] = [a,w] U [w,] is a segment. Because a € T UT" and
[a,v] N [a,u] = {a}, we have d(u,v) = d(a,u) + d(a,v) = d(a,u) + d(a,w) + d(w,v)= d(u,w) + d(w, ?).
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Case 3, JN(T'UT") # 0. (7.1) is proved similar to Case 2. ¢
Lemma 7.7: Between any two points of T, there is a unique path.

Proof: Suppose there are two paths p;, p, between a pair of points of 7;. Assume p; # p,, then there
are subsegments p; C p; and p; C p, such that p; and p, share the same endpoints, (p,)° N (pz)° = 0
and at least one of p; and p, is nondegenerate. According to Lemma 7.6, §; U p; is homeomorphic to a
circle, it is called a loop.

To prove the lemma, it is enough to show that there is no loop in T;. Suppose we have a loop [ in
T

Case 1: [ C T' UT", this is impossible because T UT" is a tree.

Case 2: IN(T"uUT”)=0. Then ! C (T} — Tp)-(G” - {1}). By Lemma 7.4 (c), ! C (T; — Tp)-g for
some g € G"” — {1}, then [-g~! is a loop in T} — T, which is impossible.

Case 3: I ¢ T"UT” but IN(T'UT") # @. Take any component J of | — (I UT"), J is an open
subsegment of [, whose two end points u,v belong to 7' UT". Pick any point a € J, consider J; = [u,a]
and J; = [v,a], by Lemma 7.4 (d), if ' € T} — Ty, g € G” — {1} are such that a = a’-g, then u = a}-g = v,
INT"UT” = {u} = {af,-g}. It is clear that I-g~! is a loop in 7", this is impossible.

This proves the uniqueness of the path. ¢
Then according to Proposition II. 1.13 of [8], T} is a tree.

We have extended the metric dy of T/ UT" to d of T;, and made T; a tree, we adopt the above
process repeatedly to extend d further. Now suppose d has been extended to T, for an integer n > 2,
such that (T,,d) is a tree containing 7' UT", T3,Ts,...Ta-1 as subtrees. Assume w € T, — T,,_1, since
Tn-1 is a subtree of Ty, there is a point v € T,,_; such that [w,v] (the path between w and v in T},) is
the bridge between w and T),_1, we denote this point v by w,_;. Suppose  is a point of Ty, +; — T}, then
%€ (Tp —Tn_1) Gns1, by Lemma 7.3 (c), there is a unique point 4’ € T, — T, and a unique element
g € G4, such that u = v'-g. The point u],_, -g belong to T,_,. In the process of extending d to T}, 4,
we do similarly as we extend it from 7" UT" to T3, taking T, — T, for Ty — To, T, for T" UT", Gp 4
for G, = G and for each u € T, — T,, taking u),_, for uy. Lemma 7.4, 7.5 and 7.6 remain valid, so

T, 4+ is a tree.

In this way, we extend d to T and make T a tree. Next we prove that for any g € G, the map
g:T — T induced by p preserves distance.

Lemma 7.8: Assume g € G' UG", n is a nonnegative integer, u,v € T,, then ifu-g,v-g € T,,, we

have

(7'2) d(u'g$v'g) = d(us v)
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Proof: We prove this lemma by induction on n. As before, in the induction process, for n = 1, we
use 7" UT" instead of T} = T".

(7.2) is obviously true for u,v,u-g,v-g in T or in T UT"” because the actions of G, G" on T', T”

preserve distance, so the lemma is true when n =0orn = 1.
Assume n > 2, u,v,u-g,v-g € T,, without loss of generality, we assume that g € G' — {1}.

First assume that n is even. If u € T, — T,,_,, since g € G’ — {1} = G,4+1 — {1}, by Condition A’,
4 € Tp41 — T, contradicting the assumption, therefore, v € T,,_,. Similarly, v € T,_,. Because T,,_, is
invariant under g, u-g,v-g € T,,_1, then by induction, (7.2) is true.

Assume n is odd, we take the following case as an example to prove (7.2) that v € T, — T,,_1,

v € T,_1 — T,_3. In all the other cases, the proof is easier, similar and is omited here.

There is a point v’ € T,,_; — Tn_2, an element h € G,, — {1} = G’ — {1}, such that u = u'-h and
hg # 1, then u-g = u'-hg. Since v € T,_; — Ty_3, v-g € T,, — T,_,, by the way we extend the metric d
from T, _, to T,, we get d(u-g,v-g) = d(v',(v' )p_2) + d((¥')n-2hg,vn_2-9) + d(v,v,_2), by induction,
d((¥)n-2-hgyVn_2-9) = d((%)n_2h,v,_2). Since (¢ )p_2-h € Tp_2, d((4')n-2+h,vn_2) +d(vh_2,v) =
d((')n-2 - hyv),s0 d(u-g,v-g) = d(v,(u)n-2) + d((¥')n-2 - h,v) = d(u,v), this proves (7.2). &

Corollary 7.9: For every g € G, the map g:T — T induced by p preserves distance.

Proof: Using Lemma 7.8, we can easily prove this by induction on L(g), which is the alternating
word length of g. ¢

This proves that the map p: TXG — T is an action of G on T'. It is clear that the action p: TXG — T
is minimal, T”, T" are the minimal invariant subtrees of G’, G" respectively under p and T}, is a closed
subtree of T for all » > 0. By Lemma 7.3 (c), the action p satisfies Condition A’, therefore, satisfies
Condition A.

Assume p:T X G — T is an action of G on a tree T, which contains 7" and 7" as the minimal

invariant subtrees of G’ , G" respectively.
We extend the identity map on T/ UT" to a map ¢ from T to T in the following way:

Assume u = {(z,9)} € T, where 2 € T' UT" and g € G, define ¢(u) = ¢(z)-g. #(u) is well
defined, since (z,9) ~ (y,h), there are i < L(g), j < L(h), such that z-g; and y-h; are defined by
the actions 7' X G’ —» T'and T" x G" — T" ,z.g; = y-h; € T"UT" and g;'g = hj'h, then
¢(z)-g=d(z-9:)-97 9= d(y-h;)-h; h = ¢(y)-h.

Then ¢ is defined on T, it is clearly an G-equivariant map and is the only G-equivariant extension
of the identity on TV UT" from T to T'.
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Define Tl = T’, Tz =M UT]_ 'Gg and for n 2 3, Tn = Tn—l 'Gn.
Inductively we see that ¢(T,) = T, for all n > 0.

Lemma 7.10: For any two points u,v € T, we have that
(7.3) d(¢(u), $(v)) < d(u,v)

Furtheremore, if the action p:T x G — T satisfies Condition A, then the map ¢ preserves distances.

Proof: It is enough to prove that for every n > 2, (7.3) is true if u,» € T,,. We prove this by

induction on n.
We know that if u,v € 7' UT", then d(¢(u), ¢(v)) = d(u,v).

Assume u € T, — (T" UT") then u = u' - g for some v’ € T} — Ty and g € G” — {1}, for any
v € TV UT", d(g(u), §(v)) < d(d(w), &(uh)-g) + d(@(uh) g, &(v))= d(S(w'), $(us)) + d((uh - 9), S(v))=
d(v',up) +d(uh-g,v) = d(u,v). fv € T, —(T'UT"), then v = v'-h for some v’ € Ty —To, h € G"—{1}. If
g = h, we can easily prove that d(é(u), #(v)) = d(u,v). Assume g # h, then d(@(u), ¢(v)) < d(P(u), #(up)-
9) + d(9(u) -9, $(vh) -b) + d(B(vh) - h, S(v))= d(G(w'), $(up)) + d(B(uh - 9), (v - b)) + d(B(vh), $(v'))=
d(w',uf) + d(up - g,vh-h) + d(vy,v') = d(u,v). This proves that (7.3) is true for every pair of elements
u, v € Ts.

Assume that (7.3) is true for every points in T}, to prove this inequality for any pair of points in
T, +1, the inductive process is very similar to the above. Take T,, — T,_; for T} — Tp, T, for " UT",
Gpny1 for G; = G and for each point u € Ty 41 — Ty, take u),_, for uj, as we did when extending the

metric d from T}, to T, 4, then the proof proceeds similarly.

If the action p:T x G — T satisfies Condition A, then all the ‘<’ signs in the above equations can

be changed to ‘=", so ¢ preserves distance. &

Lemma 7.10 proves that the map ¢ is a contraction, so it is an G-equivariant dominating map.
When the action p:T X G — T is minimal and satisfies Condition A, according to Lemma 7.10, ¢ is a
G-equivariant isomorphism, this implies the uniqueness of T and p, and completes the proof of Theorem
7.1 ¢

8. Condition A makes things different
We show this by giving the following example:

Example 8.1: (a) Assume that G’ = F(z,y), G” = F(2), so that G = G' +G" = F(z,y,z). Suppose
that 4, N A, = 0, and Ty = B(A:,4,) = [u,v] with u € A, and v € 4,, 0 < A = 7(y) — 7(z) <
7(z) = |B(As, A, )| = dis(u,v), and w € [u,v] is such a point that dis(u,w) = A. Assume further that

the direction of A, is t,(u), i.e. v-z = u and w-yz = v-Z, then the action T X G — T is not free.
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(b) Assume Condition A is satisfied, then if Tp is embedded into @' = T"/G’ or is embedded into
Q" =T"/G", then the action T'X G — T is free and discrete.

Proof: (a) It is clear that [v, w-y]-z = [u,v-z]. Since v-y € [v, w-y], we have v-yz € [u, w-yz] = [u,v-z].
Because d(v-yz,u) = d(v-y,v) = 7(y) and d(uv,w-z) = d(u,u-z) + d(u-z,w-z) = 7(z) + d(v,w) =
7(z)+7(y) — 7(z) = 7(y), we have v-yz = w-z. Then w-yzz~! = w-zz~'y~! or w-(yzz~!)* = 1. Hence

the action T x G — T is not free.

Y.X=IU¢HZ
A twx=V. Yz
N AX
- u u.x
~—T5F
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(b) Assume that Ty is embedded into Q’, then X' = {id}, where id is the identity map of Ty, so
¥ = 2", According to Proposition 4.1 (a), if the action 7' X G — T is not free, then £" = X has a fixed
point in © C Ty. This is impossible since the action 7" x G"” — T" is free. Because #T = #I" < o0,
any Z-orbit is finite. Then by Proposition 4.2 (a), this action is discrete also. The other case is proved

symmetrically. ¢

In (a), Condition A is not satisfied, because (v,2) € S and v-z = u € Yj, but t,(u-z) = t,(v-y)-2 €
H(v,z), so H(v,z) # 0. Although we have that T; is embedded into the quotient @’ = T"/G" by the

quotient map from 7" to @', the action T' X G — T is not free. From this example, we can see the power

of Condition A.

Recall in Section 2, we made the following assumptions:
Assumption 2: T, # 0.

Assumption 3: |Tp| # oo.

The examples in the following Section 9 and Section 10 need no extra condition (for example, they
do not need Condition A), they show us that Assumption 2 and 3 are reasonable when we consider the
question of whether the freeness implies the discreteness for a minimal action of finitely generated free

group on an R-tree.
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9. The case when T, is empty
Example 9.1: Assume Ty = 7" NT" = 0, then the action T x G — T is free and discrete.

Proof: We know the bridge B(T',T") is a segment, B(T',T") = [u/,u"] for some v’ € T’ and
u"” € T". Because the actions 7" X G’ — T" and T" X G"” — T" are free and discrete, by Lemma 1.1 (a),
there are fundamental domains F’ and F" of 7' and 7" mod G’ and G” containing u’ and u" respectively

in their interiors. Set
F=F uB(T',T")UF"

T=F.GCT

For every element g € G set

Alg) = {B(F-g,F)UF-g, if F.gn F = 0;
9 =\F.g, if F-gn F # 0.

We shall prove that T is connected. To this end, let us denote the component of T' containing F by
C. It is easy to see that 7' C C and T” C C.

Lemma 9.2: For every g € G — {1}

(a) F-gCC.

(b) If g. € G', then A(g)N F C F', and if g. € G”, then A(g)N F C F".

(c) (F-g°NnF°=0. If F-gnF #0, then it consists of a single point and g € G' UG".

Proof: Without lose of generality, let us assume that g, € G’. We prove this lemma by induction on
L(g)-

Suppose L(g) = 1, then g € G' — {1}, F-gNT' D F'-g # 0, therefore F-g C C because 7" C C. It is
clear that F-gnF = F'.gn F', if this set is not empty, then FNA(g) = FNF-g = F'NF'-g C F'. Assume
F'NF'.g#0, then clearly B(F',F'.g) = B(F,F-g),s0 A(g)nF = B(F,F-g)nF = B(F',F'-g)nF C
T' A F = F'. Because F’ is a fundamental domain of 7¥ mod G, (F)° N (F-g)° = (F')° n(F'-g)° =0
and FnF.g = F'nF'.gis at most a single point set.
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Now, assume L(g) > 1. Set h = gg;', then L(h) = L(g) — 1. By induction hypotheses, F-h C C,
therefore A(h) C C.

(a) Because (A(h)U F)-g, is connected and its intersection with 7" contains the nonempty set F’-g.,
it is contained in C,s0 F'.g = (F+h).g. C (A(h)U F).g. C C.

(b) Because g, € G, h, € G". Since A(h)N F C F”, [v',v"] = B(T',T") C B(T",A(h)) and then
[, w"]-9. C B(T',A(h))-g. = B(T', A(h)-g.), 50 T'NB(T", A(h)-g.) = {u"-g.} and u'"g, € E(B(T", A(h):
g.)). Since u’ € (F')°, u'-g. & F', because B(F',v'-g.) C T', B(F',u'-g.) N B(T",A(h)-g.) = {v'-g.},
then B(F',u'+g.) U B(T",A(h)-g.) is a segment, it is clearly the bridge between F’ and A(h)-g., but
F.g C A(h)-g., therefore B(F',u'-g,) C B(F,F-g) C A(g). Then FnA(g)= B(¥',v'-g.)NnF' C F'.

F)f L u" B(Tl’ A‘."l)ﬂe)

D

(c) From the proof of (b), we see that A(h)-g.NF = @, in particular, F-gnF = @ since F-g C A(h)-g..

¢

According to Lemma 9.2 (a), C = T, so T is connected, it is an G invariant subtree of 7. But we
assumed that T is minimal, so T = T = F.G. Then according to Lemma 9.2 (c), F is a fundamental
domain of T mod G, so the action T x G — T is discrete if it is free by Lemma 9.2 (b).

Suppose u € T, g € G — {I} be such that u-g = u, we may assume that 4 € F. Thenu € FNF.g,
by lemma 9.2 (c) and its proof, g € G'UG"” and u € T" if g € G', u € T" if g € G". Because the actions
T'x G — T and T"” X G" — T" are free, this is impossible. So the action T' X G — T is free. ¢

Now, let us consider a slightly more complicated case, but again, where the extra conditions are

unnecessary.

Example 9.3: If Ty # 0 and for every element k € G' UG" — {1}, Ty - RN Ty = @, then the action
T x G — T is free and discrete.

Proof: By the condition of this example, Tp is embedded into 7'/G’ and into T"/G" respectively
under the quotient maps. According to Lemma 1.1 (a), there are fundamental domains F' of 7" mod G’
and F" of T" mod G", which contain Tp in their interiors. Set F = F' U F"’, Define T, C and A(g) for
every ¢ € G just as we did in Example 9.1. The arguments used above in Lemma 9.2 work as well in
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this case with the following slight changes in (b): We want A(g) N F to belong to F' — Ty or F" — T,
depending on whether g belongs to G’ or G"”. We prove that T/ n B(T",A(h)-g.) = {u} for some point
u € Ty-g., we use u instead of u'- g, in Example 9.1. u ¢ F’ since Ty -g. N F' = . It follows that F'is a
fundamental domain of T mod G, so the action T x G — T is free and discrete. o

10. The case when T, has infinite total measure

Define
¢’ = {[a,b]|a # b,[a,b] C To,[a,b)n W' = {a,b}}

e = {[a,b]|a # b, [a,b] C To, [a,b] N W" = {a,b}}

Ty is covered by segments in ¢’ and by segments in &” respectively. Since W’ is ¥’ invariant, ¥’ acts
on €. Define an equivalence relation among segments in &' as follows: If I,J € ¢/, I ~ J if and only if T
and J are in the same ¥’-orbit. Symmetrically, we define such an equivalence relation among segments

in €”, using the T"-orbits. If J € ¢’ or J € ", we denote by e(J) the equivalence class containing J.

Example 10.1: If the rank of G’ or the rank of G is 1, then there is a positive number A, which
only depends on the actions 7/ x G — T" w.d T" x G — T", such that if |[Tp| > A, then the action
T x G — T is not free.

Proof: Without loss of generality, assume that rank(G"”) = 1, then G = F(z), the cyclic group
generated by a letter 2. Since 7" is a minimal tree under the action of G”, T" = A,.

If n is the number of edges of Q', M is the maximum length of these edges, since Q' is a finite
R-graph, we have n < 0o and M < co. Set A = 2(n+ 2)(7(2) + M), where 7(z) is the translation length
of z.

Suppose |Ty| > A. We may assume that A < |To| < oo (If |To| = oo, we choose a subsegment T of
To such that A < |T'| < oo and work with T instead of Ty). Then Ty = [p, g], for some p,g € A, their
images in Q' under the quotient map ¢':T* — Q' are denoted by p’ and ¢’ respectively.

Let
& = {[a,b]|a # b,[a,b] C Q',[a,b] N (Y(Q)U{p',¢'}) = {a,b}}
Because n is the number of edges of Q' and |Tp| > 2(n + 2)M, we have the following inequalities:

(10.1) #& <n+2

(10.2) #e' > 2(n+2)

We have ¢/(¢') C & and the preimage of each segment of & under ¢ is an equivalence class if it is
not empty, by (10.1) and (10.2), there are at most n + 2 equivalence classes and at least one equivalence

class which has cardinality greater than 2.
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Define

R=J{J|J e, #e(J) <2}

Lemma 10.2: For every point u € Ty, there is an integer m # 0 such that u-z™ € Ty — R. i.e.
(w)Z" N (T, — R) # 0.

Proof: From the above remark, there are at most n + 1 equivalence classes of segments in ¢’ whose
cardinality less than 3, so |R| < 2(n + 1)M, and R has at most 2(n + 1) components. Then T, — R has
at most 2n + 3 components, and |Tp — R| > A — |R| > 2(n + 2)7(2), so there is a component I of Ty — R
such that |I| > 27(z) or there are two components I, J of it such that |I| > 7(2) and |J| > 7(2). Hence
for every u € Ty, there is an integer m # 0 such that u-2™ € TUJ C T — R. ¢

Suppose that F is the set of all finite alternating words in elements of £’ and £". If w € F, the
associated composition of partial isometries on T} is denoted by o, if it exists, its domain and the range
are denoted by D(w) and R(w). We see that there is an element g € G, such that o, = o, for every
alternating word w in elements of £’ and ¥”. Suppose w and w' are two words, o, = 0,, 0,/ = 0, for

some g,h € G, if w # w’, then we have g # h.

Fix a point u € T, — R, for every positive integer n, we denote by F, the set of words w in F
such that the alternating word length of w is n, the first letter of w belong to X', and u € D(w). Set
N, (F) = #Fa.

Lemma 10.3: N,(F) grows ezponentially with n. Actually for all k > 0 we have Nox(F) >
Nai_1(F) > 2.

Proof: We proof the formula by induction on k. Assume N3i_;(F) > 2*, Suppose w € Fzj-1, then
the last letter of w belongs to £’. By Lemma 10.2, there is an element o € £" such that (u)o € To — R.
Suppose (u)o is is contained in a segment J € ¢’, then #e(J) > 3, so there are different nonidentity
T, , Ta € ¥, such that J C D(m) N D(rz). Set w; = w-0.7, w; = w+0-7;. Then w-0 € Fy and
wy,wy € Fapq1. In this way, different words in F5;_; correspond to different words in F3; and in Far 41,
therefore, Noj (F) > Nax_1(F) and Nagy1(F) > 2Ngi_1(F) 2 2541,

This formula implies that N,(F) grows exponentially with n. ¢

Finally, apply Proposition 1.1 of [7], we get two different words w,w’ € F such that u € D(w)NnD(w')
and (u)o, = (u)oy:. Suppose o, = g, 0+ = o, for some g,h € G, then we have u-g = u-h, or
equivalently, u-gh~! = u. Since w # w', gh~! # 1. Therefore the action T x G — T is not free.

This completes the study of Example 10.1. $
Example 10.4: If |Ty| = oo, then the action T'x G — T is not free.

Proof: Case 1: #Y(Tp) = o0.



32

Y (T') and Y (T") are divided into finitely many equivalence classes mod G’ and G" respectively.
Since Y (T,) C Y(T"), there is an infinite subset S of Y (T,) such that the points of S are equivalent to
each other mod G’. Because § C Y(Ty) C Y(T"), there are two points u,v € S which are equivalent
to each other mod G”. There are g € G', h € G” such that u = v.g = v-h, then v-gh~! = v, since
gh=! # 1, the action T' X G — T is not free.

Case 2: Y(T;) < oo. There is an edge e of T, whose length is co. e contains a subset R which is
homeomorphic to the half line [0,00). Let us take R as [0,00). There is a number ¢ > 0 such that if J is
a segment of &’ or ", #{J' € e(J)|J' N R # B} < 00, then J N [e,00) = . There is a number d > ¢ such
that if J € e’ Ue” and J N [c,d] # 0, then #{J" € e(J)|J’' C [e,d]} > 3. Then for every point u € [¢,d],
there are at least two points in [c,d] which are equivalent to u mod G’ but not equal to u, and there are
at least two points in [e,d] which are equivalent to u mod G” but not equal to it.

Suppose T’ is the set of partial isometries on [¢,d] induced by elements of G', T" is defined sym-
metrically. As in Lemma 2.1 (b) of Part 1, we can prove that #T’ < oo and #T" < o0.

Fix a point u € [c,d], define F to be the set of all forward orbits starting from u of the form

{u,uy,us,...}, such that u; € [c,d] for each i and u, 4+, = (u,)o where

s { T, if nis odd;
T", if nis even.

Assume for each n > 0, F,, is the set of all the arrays {u,u1,...,uy, } of the first n 4+ 1 entries of the

forward orbits in F.

Assume that {u,u;,...,u,} € F,, from the above arguments, there are two different points %,
and wu, ., which are equivalent to v mod G’ or G” (according to n is even or odd), and which make
{uy 81,000y Uny Ungr }, {8, Us,.0 ., %a, 0y, } belong to Fryy. Then it is easy to see that #F,.; > 2#F,.
Therefore #F, > 2" for every n > 0. Applying Proposition 1.1 of [7], we can fined a fixed point as we
did in Example 10.1, so the action T X G — T is not free. O
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