FREENESS AND DISCRETENESS OF ACTIONS ON R-TREES
BY FINITELY GENERATED FREE GROUPS, II

Li Lee

Abstract

Suppose G = F(z,y, z) is the free group generated by z,y and z, G = G'+*G", where G' = F(z,y)
and G"" = F(z) are subgroups of G. G acts on an R-tree T' freely and minimally, with T',T" be the
minimal invariant subtrees of G',G" in T respectively and To = T' NT".

We prove that the action is discrete under the following conditions:
(a) If I is any nondegenerate subsegment of Ty, then #{g € G'|I-g C To} < 2.
(b) |Ts| < 27(%), where 7( ) is the translation length function for the action of G on T.

(¢) Condition A (see Part 1 page 9) is satisfied.

AMS (MOS) Subj. class.: 57M60, 05C05.
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In part 1, we investigated the freeness and the discreteness of minimal actions on an R-tree T
by a finitely generated free group G. We decomposed G as a free product of smaller rank free groups
G' and G", ie. G =G % G". Let T' and T" be the minimal invariant subtrees for the groups G,
G"' respectively. Set Ty = T' N T". We proved that if the action T x G — T satisfies Condition A
(see Part 1 page 9), then it is free (discrete resp.) if and only if the partial action on T; by the set
of alternating combinations of elements of £’ and £” is free (has no infinite orbit resp.), where ¥’
and ¥ are the sets of partial isometries on T; defined by elements of G’ and G respectively. (see
Proposition 4.2 and 4.3 of Part 1). We showed (Part 1, Theorem 4.11) that if an action satisfies
Condition A and B (see Part 1 page 14), then it satisfies the following

Property (DF): The action is discrete provided it is free.

We predict that, under Condition A, Property (DF) is satisfied by all actions on R-trees of

finitely generated free groups.
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As applications of the theorems in Part 1, we here concentrate ourselves on the action of free
group of rank 3, prove, in some certain cases, that Property (DF) is true for such actions when
condition A is assumed, leaving the proof of this property in general cases as an open problem. The
results in Part 2 are examples where the action is free and discrete or it is not free, so that Property
(DF) is true.

Before giving the theorems, we need to refresh ourselves with notation and definitions introduced

in Part 1 as follows:

1. Preliminary

Throughout of this paper, we assume Condition A, and keep notation G, T, T’, 7( ) etc.
introduced in the abstract. We use T' x G — T for the action of G on T, and u-g for the image of
the pair (u,g) under the action, where v € T' and g € G.

Without loss of the generality, as in Part 1, we make the following assumptions:
Assumption 1: The actions 7/ x G’ — T" and T" x G" — T" are free and discrete.
Assumption 2: Ty # 0.

Assumption 3: |Tg| # co.

An alternating word (with respect to G’ and G") is an ordered family {a;,@s,...a,} of
elements of G’ U G" — {1}, such that as € G” — {1}, ase41 € G' — {1} or ax € G' — {1},
aap41 € G" — {1} for all k. We allow the empty word to be an alternating word. For every element
g € G, there is a unique alternating word {a;,as,...,a,} such that g is the product of a;’s, i.e.
g = aias---a,. (g = 1 if and only if the corresponding word is empty.) Call this word as the
alternating word of g (in elements of G’ and G”), call n as the (alternating ) word length of g
and denote it by L(g). Set g, = a1,9. = a, and

1, ifi=0;

g,—:{al---a.-, ifi<nandi>0;
g, ifi > n.

If S is a subset of T, H is a subset of G, set

S.-H=1{s-hl]se S,he H}

We use the letter d for the distance between points or sets as usual.

Assume p: X — Y is a map, § is a subset of X, we use p|s for the map p restricted on §, and
use (§)° for the interior of S with respect to X. When § is the union of a family of R-trees or
R-graphs, we denote by Y (S) (E(S) resp.) the set of branch points (end points resp.) of connected

components of §.
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Every element g € G induces an isometry from Ty-g~* N Ty to Ty N Ty - g, we denote this partial
isometry of Ty by o,, denote its domain and range by D, and R, respectively, which are closed
subtrees of Tj.

Let
= {‘7:|g €EG',D, # 0}

=" = {o,lg € G", D, # 0}
T = {o,lg € G,D, # 0}
Also let W' = (Y(T') U E(T)-G') N Ty and W" = (Y(T") U E(Tp)-G") N T.
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Fig. 1.

¥ acts from the right on T;, the product of elements of ¥ is the composition of them in the
usual sense if this composition exists and is an elements of X. Notice that the identity map of T} is
included in X.

Set
Yo = (Y(T)UY(T")U E(To)-(G'UG"))NTy = W UW"

It is clear that Yj is a finite set.
S = {(u,9)|u € Yo,9 € G,u-g; € Ty Vi > 0}

This is the set of pairs, a point u in ¥ and an alternating word in elements of G' — {1} and G" — {1}

whose inductive images keep u belong to Tj.

By assumption, G = F(z,y,2) and G' = F(z,y), G" = F(z). Then if 7(2) # 0, T' is the axis
of z. Since Ty C T' and |Ty| < o0, there are p,q € T’ such that Ty = [p, q].

Example 1: If there is an element g € G’ such that |D,| > r(z) then the action T x G — T is

not free.
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Proof: We know that o, is a translation or a reflection restricted to D,. If |Dy| > 7(z), then

there is a point u € D, such that u-z € D;. We have (u-2)a, = (u)o,-z € Ry, if 0, is a translation,

and (u-2)o,-z = (u)o, € Ry, if 0, is a reflection. So we have either u-zgz~lg~! = uoru-zgzg~! = u,
i.e. u is a fixed point. Q¢
iy Wz wgergs) 4

Dj R 9

Fig. 2.

According to the Example 8.1 of Part 1, if |To| < 7(2), then the action T X G — T is free and

discrete. In view of this and Example 1, we can make the following assumptions without

loss of the generality:
Assumption 4: [Tp| > 7(2).
Assumption 5: For each g € G, we have |D,| < 7(2).
From Assumption 5, D,, R, are embedded into G" by ¢ for each g € G’ then
" = {7,lg € G', D, # 0}

which is a finite set since |Tp| < o0.

2. Theorems and proofs

Define
¢ = {[a,b]|a # b,[a,b] C To,[a,b]n W' = {a,b}}

¢" = {[a,b]|a # b,[a,b] C To,[a,b]n W = {a,b}}
T, is covered by segments in ¢’ and by segments in " respectively. Since W' is I’ invariant,
Y/ acts on ¢’. Define an equivalence relation among segments in ¢’ as follows: If I,J € &', I ~ J if
and only if I and J are in the same ¥'-orbit. Symmetrically, we define such an equivalence relation

among segments in ¢”, using the X"-orbits. If J € ¢’ or J € ", we denote by e(J) the equivalence

class containing J.

Theorem 2: The action T x G — T is not free, if we assume the following conditions:
(A) #e(J) > 2 for each J € €'.

(B) |To| 2 27(2)



(C) |Ty| > 27(2) or there is a segment J € ' such that #e(J) > 3.
Proof: The proof of this theorem is an application of Theorem 7.3 and Proposition 1.1 of [6].

Define a map m' from T, — W' to the set of positive integers as follows: For any u € T, — W',
there is a unique segment J € &' containing u, then m/(u) = #e(J) — 1. Symmetrically, we can

define a map m" from T, — W" to the set of positive integers.

The conditions of this theorem tell us the following information: m'(u) > 1if u € To — W',
m"(u) > 1if u € Ty — W" and there is a nondegenerate subsegment of T, — W' — W" on which

either m’ or m” has value greater than 1.

Suppose the action T x G — T is free. Let F be the set of alternating words w = ;7 +++ 05+
Ta,n > 1 with oy € £ — {id} and 7; € &' — {id}. Every w € F corresponds to a partial isometry
o, on Ty, if its domain is not empty, it belongs to .

Applying Theorem 7.3 of [6], we have constants a,b > 0 and a point z € T, such that for all
n sufficiently large, the number of w € F of alternating length 2n with o, defined at z is at least
a(exp(bn)). (Note that here Tp is A in [6], although Tp is not a circle, the proofs go through equally
well, also m/, m” are my,mq respectively in that paper.) Then according to Proposition 1.1 of [6],
there are distinct words w, w’ € F such that (z)o, = (z)o,. Because the natural map from F to G
is injective, there are different elements g,g’ € G such that z-g = z-g¢’, so z is fixed by the nontrivial

element g(¢’)~'. Hence the action is not free. ¢
Set
A=J{J e |#e()) = 2}
Ao = {u € A|((w)Z" - {u}) N A # 0}
A, is the set of points in A whose T”-orbits intersect A at points other than themselves.
Let W = (W')2" = W'-G"” NT,. It is easy to see that #W < oo and W'uw' cw.

Theorem 3: Assume Condition A is satisfied, then the action T x G — T is discrete if it is

free when we assume the following conditions:
(A) #e(J) <2 for every J € €'.
(B) For every u € A — W, there is at most one integer n # 0 such that (u)o,» € A —W.

Note: This two conditions are equivalent to or implied by the conditions (a) and (b) in the

abstract respectively.
Proof: Assume the action T' X G — T is free.

Set € = {[a, b]|a # b, [a,b] C Ty, [a,8] N W = {a,b}}.
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Assume J = [a,b] € e, 7 € " and D(7) N (J)° # O, then J C D(7) since E(D(r)) C W" C W.
Because W is £” invariant, (J)r N W' C (J)r N W = {(a)7,(b)T} = E((J)T), so there is a segment
I € ¢, such that (J)r C I. It is easy to see that if A N (J)° # 0, then J C Ay. Therefore, any

nondegenerate component of A, is the union of a subset of segments of ¢ with disjoint interiors.

Because W is ¥”-invariant, £" acts on £. A; is the union of segments of ¢ whose £-orbit has

at least two segments, including its self, which are contained in A.

For each segment J € & which is included in Aq, according to (B) and the above arguments,
there is a unique 7y € £ — {id} such that J C D(r) and (J)ry C I for some segment I € &’ with
I C A, by (A), there is a unique 7y € £’ — {id} such that I C D(7y). Define p; to be the composition

of ry and 7.

Define a map p: Ag — A as follows: p|; = p; for every segment J € ¢ such that J C A,.
Define W = W N Ao, then p is well defined (has a single value) on Ay — (W — E(A,)). Each point
of W — E(A) is an end point of two segments in ¢, so p has two values on it. By deleting some
points from W if necessary, we may assume that the two values of p on each point of W — E(Ao)

are different from each other.

If w € Ag, v € A, by v = (u)p we mean that v is one value of p on u. If § is a subset of Tp,
define p~1(S) to be the set of points in Ay which has at least one p-value in 5.

Define Iy = To — Ao — {p,q}, Ins1 = p~ (L) - W for each n > 0. Then By induction on n
we can see that I, is open for every n. I is the interior of Ty — Domain(p), I is the set of points
on which p" is well defined (has single value on each point) and whose p"-images are outside the

domain of p.
Lemma 4: If4,j > 0 and i # j, then ;N I; = 0.

Proof: Suppose this is not true, assume ¢ is the smallest integer such that I; N I; # @ for some
integer j > 4, then i must be 0, otherwise I;_; NJ;, D p(L;)Np(I;) D p(L;NI;) # @, this is impossible.
But J; is included in the domain of p, which is A, I; dose not intersects [;, this is a contradiction.

¢

Assume I is any subset of Tj, define I(I) to be the minimum total measure of nondegenerate

components of I if I has one, and take /(I) = 0 if I has no nondegenerate component.

Because p(W) is a finite set, there is an positive integer n such that p(W)NnI; = 0 for every
i > n.

[e2]

Lemma 5: Assume n is such an integer that U;_,

have I(L;) > I(i,) or I(f;) = 0.

I; N p(W) = 0, then for every i > n, we

Proof: This can be proved by induction on i. Suppose J is a nondegenerate component of I;,
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because J N p(W) = 0, it is easy to see that either J N p(Aq) = @, or J C p(J') for some J' € ¢
such that J' C Ag, therefore either |[p=*(J)| = 0 or |p~*(J)| = |J|. Compared with I;, I;;, has no
nondegenerate components of smaller total measure, so we have [(Z;41) > I(L;) > I(L,) if I(114+1) # 0.

¢
Lemma 68: There is an integer n > 0 such that I; = 0 if i > n.

Proof: By Lemma 5, if there is an integer n such that I, = 0, then I; = 0 if ¢ > n since I; is
open. Suppose this is not true, then from Lemma 5, we can see that thereis a positive number A such
that |I;| > A. By Lemma 4, I; nI; = 0if ¢ # j, so for any n > 0, we have nA < 5] € T < o,

this is impossible. &

Set K = To—(U}—, I;), then K is the union of finitely many closed segments and K C AgU{p, q}.
We can easily see that p(K — W) C K. If u is a point of K, then either there is a nonnegative
integer m such that p™ is defined at u and (u)p™ € W, or for every nonnegative integer m, p™ is
defined at u.

Suppose v € Ty, define: n(v) = #{or|oc € £”,7 € I',v € D(o7)}. We have n(v) < oo for every
point v € Tg.

A forward orbit (finite or infinite ) is a sequence of points {uo,u,...} of T such that u; =
(41)o;7; for some o; € B — {id} and 7; € &' — {id}. If w; ¢ W, then either n(u;) = 0 and the
sequence terminates at u;, or n(u;) = 1 and w41 = p(ui). Since we assumed the action is free,
points in a forward orbit are all distinct from each other. A forward orbit is called complete, if it is
finite and its last point v satisfies n(v) = 0. Obviously any infinite forward orbit does not contain a

complete suborbit.

Assume ® is the set of infinite forward orbits {ug, u;,uz,...} such that u; § W for every : > 0.
If {ug,us,...} € D, then u; ¢ I, for every i > 0 and every n 2> 0, otherwise u; ., € Iy C Tp — Aq and
therefore n(u;4n) = 0 50 that {uo,u1,...,%iyn} is complete, impossible. Therefore {ug,u,...} C K.
This implies that if ® # @, then K is infinite.

Suppose K; is the union of all the nondegenerate components of K. Then Ky C Ao which is
the domain of p.

Claim T: Kg = 0.

This claim will be proved later. Assume Claim 7 is true, then K is a finite set and therefore
& = 0. If the action T X G — T is not discrete, then according to Proposition 4.3 of Part 1, there
is a point u € Y, such that #(u)S = #F(u) = co. Because #W < oo, there is an upper limit 7
of {n(v)|v € Ty}. Clearly we can have at most #W -r complete orbits starting from u. Then there
must be an infinite forward orbit {ug,u;,...} such that uo = u. We have an integer k > 0 such that
u; § W if i > k, so the subsequence {uj,Ugs1,Uk+2,-- .} belongs to @, contradicting the fact that



& = (. This proves the discreteness of the action T x G — T .

Proof of Claim 7: Assume this claim is not true, i.e. Ko # 0. Set
ek, = {J N Ky|J € €, and |J N K| # 0}

Then K, is the union of the segments in ex, with disjoint interiors .

Assume J € ¢g,, then J is a nondegenerate segment and there is a segment J; € ¢ such that
J = J, N Ky. Write p; for the restriction of p;, on J, then p;(J) is also a nondegenerate segment.
Since (ps(J))° = ps((J)°) C p(Ko — W) C K, and K, is closed, we have p;(J) C K;. According to
(A) and (B), plg,_w is injective, it is clear that p|k, is an intervial exchange in the following sense

that K is the union of p;(J) for all J € ek, , with disjoint interiors.

Set Wk, = E(K,) U(W n K,), this is the set of end points of segments in ex,. If u € E(K,),
then there is a unique segment J € ex, containing u. Assume u € Wy, — E(Ky) C W — E(Ag), u is
an end point of two different segments in ¢, since u ¢ E(K), the intersections of these two segments

with K, are nondegenerate, therefore, u is an end point of two different segments in e, .

Choose a point 4y € Wg,, and choose a segment Jy € ex, such that uy € Jo, define u; =
ps.(w), then uy € E(ps,(Jo)). If uy € E(Ky), there is a unique J; € ek, such that u, € Jy,
define uy = py, (u1); assume u; ¢ E(Ko), since p|k, is an intervial exchange, there is a unique point
vy, € E(J;) for some segment J, € ek, such that vy # up and p1,(v2) = uy, define uy = v, If
uy € E(K,), there is a unique point v3 € E(J5) for some J3 € ek,, such that u; = ps,(vs), define
uz = vs; assume u; € Wk, — E(K;), then there is a segment J; € eg, such that J; # J, and
uy € E(J;) N E(J}), define ug = py;(uz).

Assume we have got ug,%;,...,U,, we choose the point u,4; by the same rules as above. If
un € E(Ky), then uny1 = p(tn) if un = p(tn,) and tpyr = p7 ' (un) if un = p~Hun-1). If
Un € Wi, — E(Ky), then choose 41 # tn—1 and tn41 = p(tn) if thn = p7 (Un-1), Unt1 = p~ " (tn)
if up = p(2n_1).

This process continues for ever, so we get an infinite sequence {uo, %,...}. Any finite consecu-
tive subsequence of the above sequence is called an admissible sequence.

Assume 8 = {ug,uy,... Uy} is an admissible sequence, m is called the length of s. For every
i <m—1, 4y = (4)p or u; = (ui41)p, so there are g; € G" — {1} and h; € G' - {1} such that
Uip1 = ()05, 0n, = Ui-gihi of Uiyy = (%)0n, 0y, = u;-hig;. Then u, = ug-g, where g, is a product
of g;’s and h;’s. g, is determined by s.

We have the following notions for an admissible sequence s = {ug,...,up }:

s is simple, if u; € E(K,) for all i > 1,i < m — 1. sis u-u, if u; = (uo)p and upm = (Um—1)p

is u-d, if u; = (uo)p and upm_1 = (U )p; is d-u, if g = (u;)p and uy = (Um+1)p, and is d-d, if
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ug = (u1)p and Um41 = (um )p. Suppose the length of s is 1, i.e. 3 = {ug,u;}, then if u; = (uo)p, s

is called a u-step; if ug = (u;)p, s is a d-step.

Set ¥ = U{D(w,A)|w € A} and ¥, = U{D(w,Ao)|w € Ay}, then ¥ is the set of directions in
A starting from points of A, and ¥, is that for A,.

Let
£ = {o € ¥||D(0)| > 0}
2" = {o € 2"||D(0)| > 0}
where D(o) is the domain of .

If t € D(u,A) for some point u € A, according to (A), there is a unique ¢ € D(v,A) for
some v € A such that (1)& = {t,#}. Denote this ¢ by C'(t). If t € D(u,A,) for some point
u € Ag, according to (B), there is a unique direction ¢’ € D(v,Ay) for some v € Ay such that
()" N ¥y, = {t,t"}. Denote this ¢ by C"(t). We have C'(C'(t)) = t for every t € ¥ and
C"(C"(t)) =t for every t € ¥,.

Assume 8 = {ug,U;,...,Uny } is an admissible sequence, g;,h; for 0 < ¢ < m — 1 are as before.

There is uniquely a sequence of directions {to,%1,...,tm—1} such that for ¢ < m — 1, we have
t; € D(u;,Ko), and A(t) € D(uiy1,Ko), where A is p or p~! such that w4y = A(y;). This

sequence {lo,%1,...,tm-1} is called the sequence of directions associated to s.

Lemma 8: Assume s = {ug,...,Un} 15 a simple admissible sequence, if there is an integer i

such that 0 < i < m, Uiy, = (u;)p and g;_19; # 1 then u; - g7, u; - g; € E(Tp).
Proof: Suppose this is not true, we may assume that u;-g; € E(T5).

There is a direction ¢ € D(u;,Ao) such that C"(t) € D(u;-g;_"y,Ao). Because u;-g; & E(Ty), g:

carries ¢ to a direction in D(w; - g;, Ag). This contradicts (B), impossible. O
)
; :-g.
: u‘i 3-1;-: _{% 3 _u" L
cw=t-9,, i
Fig. 3.

Suppose u is a point of A, let D, be the set of directions { € D(v,A) such that there is
a sequence {vg,v;,...,v} of points and a sequence {{,%1,...,¢;_1} of directions satisfying the
following conditions: vy = u,v; = v, t; € D(v;,A), D(viy1,A) = {C'(4:),tiy1} (C'(2:) # tiyr) for
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i=0,1,...,0—1,and C'(-,) = t. We also include D(u,A) in D,. The set of starting points of all
the directions in D, is denoted by S,. Obviously, in the above definition, ¢; € Dy, and v; € Sy for
eachi<l,and y; € (A)°if1<i<I-1.

L’(‘f;)"[.
e

. City) 4, )
: | ? =
V.;——_—? VI vz V5=K

Fig. 4.

Lemma 9: (a) Assume every point of Y (T") has order 3 in T", or equivalently, Y (T') has two
G'-orbits. If u € Y(T'), then #(S.) < 4. If #(S.) = 4, then p,q € Sy. As a consequence, if
#(Su) n (TO)O > 3, then #(Su) =3.

(b) Assume every point of Y(T") has order 4 in T", or equivalently, Y(T') is a G'-orbit. If
u € Y(T"), then #(S,) < 5. If #(Su) = 5, then p,q € S,. As a consequence, if #(5.) N (Tp) = 4,
then #(S.) = 4.

(c) Ifu € W' =Y (T"), then either p or g belongs to S, and #(S.) < 3. If #(Su) =3, p,q € Su;
if #(5.) = 2, then S, C E(A).

Proof: (a) Since u has order 3 in 7", there are at most 3 ¥'-classes of directions in D,. By (A),

each class contains not more than 2 directions, therefore, #D, < 6, this implies (a).
(b) Similar to (a), #Du < 8, so (b) is implied.

(c) Claim 1: either p or g belong to (u)£’. To prove this claim, we may assume u ¢ {p,q}.
Suppose u € (p)2’. Since u, and therefore p, is not a branch point of T", u € (p)¥’, or equivalently
p€ ()% C S,. Similarly, if u € (¢)%', then ¢ € (W) C Sy-

Take any w € W' = Y(T"), let v € (u)¥'. Claim 2: {u,v}N{p,¢} # 0. Assume this claim is not
true, then u, v € (Tp)°. Because u and v are not branch points of 7", we have (D(u,A))E' = D(v,A).

This contradicts Claim 1, impossible.

By the claim 2, if u € W' = Y(T") — {p,q}, then S, — {p,q} = {u}. So #(Sy) < 3. Actually,
#D(u,A) = 2 if and only if both p and ¢ belong to (u)f)’ = §,, if and only if #(S,) = 3. This
implies all the claims of (c) for Sy.
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Suppose p € Y(T"), and p € A, t is the unique direction in D(p,A). Assume C’'(t) € D(u,A)
for some u € Tp. If u = g, then S, = (p)ﬁ}’ = {p,q}. f u # ¢, then S, = S,, by the last paragraph,
the claims of (c) for S,, and symmetrically for S, if ¢ ¢ Y(T"), are true. .

A simple admissible sequence s is called illegal if hohy -+ hpn_1 = 1, and any pair of consecutive
gi's in g, are inverse of each other. For example, if g, = gohoh19192 hahsgsgeha, then s is illegal if
and only if g1g; = gsgs = hohihahshy = 1. If s = {uo,u,} is a step, since ho # 1, s can not be
illegal. For a sequence s = {ug,%i,...,Um} satisfying that any pair of consecutive g;’s in g, are
inverse of each other, we define a sequence {vg,v1,...,%m } of points, and a sequence {ea,€1yevesCm}
of directions as follows: For each i, if u; = (ui_1)p, take v; = u; and take ¢; = ; if 1 < m,
tm = C'(C"(tm-1)) = C'(em-1); if i_y = (ui)p, let v; = w g7}y = u;-g; and let ¢; = t;-g; if
i< m,cm = tm_1 hm_1. We see that v; = vg-hohy +--hy_; for all i. For each 1, ¢; € D(v;,Ap),
C'(¢;) = ci-hi € D(vi41,M0), and if § £ m—2, ¢;-hi # ciy1- {voy..,vm} and {cg,...,cm } are called

the lift of {uo,...,Un} and {fo,...,tm—1} Tespectively. From now on, unless mention of contrary,
{to,t1y..+stm=1}> {V0s..,¥m } and {co,..-,¢n } are always as defined above.
Vo Co ..-.!Ie:cl E':u' ~ 2 c’(r'l) ..V'2 C‘ -~ e___h(c;):tg
'——ﬁ - - 3 ~ il
C(Lp) V’:l{’
.__._-tL-). _“z 4
Uq

- (m_= 3)
Fig. 5.

Lemma 10: For any illegal admissible sequence s = {ug,%1,...Un}, we have vo = v and
Co # Cm - ThCT'GfOTe, Vg = Vm € (Ao)o.

Proof: Suppose ¢g = ¢m, then C’'(co) = C'(em), ie. co-ho = em +h !, = ¢m-1. Then
¢, = €2 hm_2 = C'(¢m_2) and therefore, ¢; -hy = C'(¢1) = €m—2. Inductively, for any k< m, we
have ¢ -hg = C'(¢k) = tm—k—1. If m is even, we have cz_, ha_ = C'lez_y)=ca;ifmis odd,

we have ¢m-1 +hm-1 = cm-1, these are all impossible. o
2 F] 2

Lemma 11: Assume 8 = {to,uy,...,Up } i8 @ u-u or u-d simple admissible sequence, suppose

one of the following three conditions is true:
(a) {uo,um} N E(Ko) # 0.
(b) s is legal.

(c) s is u-u.
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then (g,)s € G" — {1}, in particular, g, # 1. If g, € G", then s is illegal.

Proof: Case 1: s is u-u and such that any pair of consecutive g;’s in g, are inverse of each other,
then g, = gohohiha +++Bm, 50 (gs)s = go and g, € G” if and only if hohy -+ -hm = 1, i.e. if and only
if s is illegal.

Suppose Case 1 is not true, there is at lest one odd integer j such that g;jgj+1 # lorj+1=m.
Suppose ji,ja,. .., Jk are all the odd integers with the above property (in their original order), set
jo = —1. For each I, the u-d subsequence s; = {(u(j,_,41)s---»U(j,+1)} 18 such that any pair of
consecutive g;’s in g,, are inverse of each other. We have g,, = g(j,_,+1)RG_,+1)PGi_y) * P g5, for
each | < kand g, = g, - -+ gs, 7, where 7 = 1if j, = m—1and 7 = g¢, 41 R +1) vhy if je #m—1
(Since ji is the last integer with the property described above, the subsequence {8 4+1)r -+ -2 Um } I8

u-u ).

Case 2, k > 1 or k= 1but j; + 1 # m. Then for each [ either the initial point or the terminal
point of s, is not in E(Ag). Denote the lifts of s; and its associated sequence of directions by
{VGi_ a1y VG+1) ) and {6, 41)s 0009 Cis Gy +hj, } respectively. If s; is illegal, by Lemma 10 we
have v(j, 41y = U¢j,_,+1) € (Ao)°. On the other hand, according to Lemma 8, at least one of this two
points belong to E(Ag), this is impossible. This proves that s; is not illegal, i.e. h¢j,_,41) - -hj, # 1,

then (gs,)o = 9¢,_s+1) and (gs,)e = gj,- It is clear that (g,)s = (¢s,)s = go and g, ¢ G".

Assume, from now on, that kK = 1 and j; + 1 = m, then s is u-d.

Case 3, s is legal. Then hohy ++-hp_1 # 1 and g, = gohohs ++-hm-1gm-1. We have (g,)s = 9o
and g, € G".

Case 4, s is illegal and {ug,un} N E(K,) # 0. We have g, = gogm-1. If gogm-1 = 1, then
U, = Ug. By the assumption this point belong to E(K,), we have tq = fm_1 *Pn—19m-1 and
therefore, ¢g = 1090 = tm—1*Am-19m-190 = tm-1"hm-1 = €m, contradicting Lemma 10. So this

case can not happen.

It is clear that Case (a), (b) and (c) are included in Case 1, 2 and 3. The Lemma is thus proved.

Lemma 12: Assume s = {ug,U1,...,Un} 18 @ d-d or u-d simple admissible sequence, suppose

one of the following three conditions is true:
(a) {uo,um} N E(K,) # 0.
(b) s is legal.
(c) s is d-d.

then (g,). € G" — {1}, in particular, g, # 1. If g. € G", then s is illegal.
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1

Proof: The inverse sequence s~! of s is a u-u or u-d simple admissible sequence. We have

gs-1+ = (gs)~'. This Lemma follows from Lemma 11. ¢

Lemma 13: There is no d-u illegal admissible sequence s = {ug,%1,...,%n} such that uy =

Proof: Suppose s is a d-u illegal sequence, we have uy = u,,. If this point belong to E(K,),

then ¢y = ¢,,, contradicting Lemma 10. O

Lemma 14: Assume 8 = {Ug,..., Uy} is a simple admissible sequence, if u; # u; for 0 < i <

j<m-—1, then uy, # u, for every 0 < n < m.

Proof: Suppose there is an integers n such that 0 < n < m and u,, = u,. Look at the
subsequence sy = {%n, Un41,- -+ Um }. According to Lemma 11, 12 and 13, if s, is legal or if s is u-u
or d-d, g,, # 1, but u, is fixed by g,,, impossible. So s, is illegal and is either u-d or d-u. Let us

take the case where s¢ is u-d for example.

Because up_y) = (Uy)p = (Un)py Um—1 = Up—y OF Up_1 = Up41. By Lemma 10, 4, -g, #

trne1*Pm—1, SO Upm—1 F Up41, we have up_; = U,_1, contradicting the assumption. O

A loop is a simple admissible sequence of positive length with the initial point and the terminal

point coincide.

Corollary 15: Assume s = {ug,...,un} is a simple admissible sequence, uy € E(K,). If s

contains a loop l, i.e. if a consecutive subsequence | of s is a loop, then ! = s.

Proof: Suppose j is the smallest positive integer such that u; = u; for some integer i < 7, (such
J exists, because s contains a loop ). By Lemma 14 we have i = 0, then u; = uo € E(Ky), so j = m.
This implies that s = /. &

Corollary 16: There is an upper limit for the lengths of simple admissible sequences starting
from points of E(K,) .

Proof: If s = {ug,1,...,%y,} is a simple admissible sequence and uy € E(K,), then either
{uge|k < [Z]} € W, or {uars1|k < [25L]} C W. According to Corollary 15, points in s are distinct
from each other, except possibly uy = u,,, we have [%] < #W 41,50 m < 2#W + 2 < oo. O

Assume {ug,uy,...} is a infinite admissible sequence with uy € E(K;). According to Corollary
16, it can be divided into infinitely many simple subsequences $;, 83,..., such that each s; starts and
ends at points of F(K,) and the terminal point of s; equal to the initial point of s;,, for i > 1. We
can make the length of each s; positive. Since #E(K,) < oo, there are nonnegative integers m < n
such that the subsequence s which is the union of $,,,8n41,...,8, in their original order is a loop.
We may assume that m = 1 and the terminal points of s; for 1 = 1,...,n are different from each

other. For i < n, write s; as {u},ul,..., u:ﬂ} where m; is the length of s;. Denote the sequence of
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directions associated to s; by {t§,1},.- }. Also the notation g_, and h' for j =0,1,. -1

" m,-—l

are naturally used.

The remaining part of this chapter is devoted to prove that g, # 1 for the loop s, which
contradicts our assumption that the action 7'x G — T is free and proves that K, # 0 is impossible.

Lemma 17: Assume s and s; for i = 1,2,...,n are as in the last paragraph. Ifi < n, and '
is the union of s; ’s in the order of 8;,8i41y++.y8n,81,...8;—1, then ' is also an admissible sequence,

and ¢, is conjugate to g,.

Proof: The lemma is implied by the following claim: uj # uj, _,. Since if this claim is true,
then s, is u-u or d-u, if s; is u-u or u-d, and s, is u-d or d-d, if s; is u-d or d-d. So the union of s,

and s;, and therefore ¢, is an admissible sequence.

Proof of the claim: Assume u} = u}, _,. Take s;' to be the inverse sequence of s,, then the

initial two points of s ! are those of s;. By the rules for admissible sequences, we have s; = s;!. This

implies u}, = uj = u},~! , contradicting our assumption that the terminal points of s;,582,...,8n
are distinct from each other. ¢
Lemma 18: Assume s = {Ug,...,Un} i5 a u-u illegal sequence, {tg,11,...,tm-1} is the se-

quence of directions associated to s, then
(a) m = 3 and the lift {vy = vs,v1,v2} of s belong to Y(T").
Assume further that uo,us € E(K,), then we have:
(b) vo = v3 € E(K,), v1 € (Kq)°.
(c) ty-gs = ¢y is not in Ko and as a consequence, {vg,v1,73, } N (Ko)® = {v: }.

(d) If D(v,Ty) = {t,t'}, with v € {vy,v1,v2}, then C'(t),C'(t') are directions from the other
two points of the lift {vy,vy,v2}, one from each.

Proof: (a) From Lemma 10 we know the two directions in D(vo,To) are ¢o and ¢p. It is clear
that Sy, = {Vo = Um,V1y.++yVm-1}, 50 m = #85,, and Sy, C (Tp)°. By Lemma 9, #5,, < 4, and if
v € Y(T'), #5,, < 2. But m is odd, and a u-step can not be illegal, we can only have that m =3
and vy € Y(T"). Therefore, {vg,v1,v2,v5} C Y(T").

(b) V3 = Uz € E(I(o), v = U € (I{Q)o.

(c) According to Lemma 10, ¢3 = ¢2-hy # ¢o = to-go. Because ug ¢ E(Ao), c3-g;1 € D(ug,Ap).
But ug € E(K)), s0 c3-g5 " & D(ug, Ko).

It is clear that (cz- gy ')p = c2. Because the restriction of p on Ay — W is 1-1, each direction

can have exactly one preimage under p, since (Ky)p = Ky, ¢, can not be in K,.
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(d) This can be easily checked. ¢
4 Uy
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Fig. 6.

Lemma 19: Assume 8 = {ug,Uy,...,Un } 18 a u-u or d-u simple admissible sequence, suppose
there is a positive integer k such that the subsequence {u,Ugi1,...,Umn } i5 u-u illegal, then either

k=0 orgi_19: = 1. As a consequence, if s is not illegal, (g,). € G' — {1}.

Proof: Assume k > 0. If gx_19; # 1, by Lemma 8, u; -gx € E(Tp). But since {ug,...,un} is
illegal, Lemma 10 tells us that u; -gx € (Ag)°, impossible.

Assume s is not illegal. If any pair of consecutive g;’s in g, are inverse of each other, then
(9s)e = hohy+++hp_1 € G' — {1}. Assume the contrary, suppose j is the greatest integer such that
{u;,u;41} is a u-step, and g;_19; # 1. Then {u;,...,un} can not beillegal, 50 hjhj11 - hp_1 # 1.
As in the proof of Lemma 11, we have g;_,g; can not be canceled in g, from left, therefore, (g,). =
hihjsy - hm_y. Q.

Lemma 20 : If s is a legal d-u or d-d simple admissible sequence, then (g,), € G' — {1}.

Proof: As in Lemma 12, this lemma can be proved by taking the inverse sequence of s and by

applying Lemma 19. &

Assume ¢ is the subsequence of s consisting of s;,8;41,...,8; forsome 1 < i < j < n. Suppose s’
satisfies the following properties: if ' = s, then g, = g,» # 1; when &' # s, we have (g,/)s € G" — {1}
ifi > 1 and & is u-u or u-d; (gs+)s € G’ = {1} ifi > 1 and ¢' is d-u or d-d; (gs)s € G" = {1} ifj < n
and &' is d-d or u-d and (g,/)s € G’ — {1} if j < n and &' is d-u or u-u. Then s’ is said to be ideal

in s.
Lemma 21: Assume s is the union of 31,83,...,8, as before.
(a) If s; is not u-u or d-d illegal for some i < n, then s; is ideal in s.

(b) If s can be divided into subsequences ti,ts,...,t,, such that each t; is the union of some

s;’s which are consecutive in s, and all the t; are ideal in s, for example, if no s; is a u-u or d-d
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illegal subsequence (we can take t; = 3; fori=1,2,...,n), theng, #1 .
Proof: (a) It follows from Lemma 11, 12, 13, 19 and 20.

b) If all #; are ideal in s, then when we write g, = ¢, ¢, *** gt,, there is no cancellation of
J 1J%3 r

letters between subwords g;,, 9., .., g:,, therefore, g, # 1. &

We assumed that the action T x G — T is free, Lemma 21 tells us the situation described in

(b) can not happen.

If there are exactly two simple subsequences s; and s; of s which are u-u illegal, and all the
remaining simple subsequences are u-steps, then s is called a u-u double illegal circle. The

definition of d-d double illegal circle is symmetric to the above with u replaced by d.

If s is a double illegal circle, s; and s; are as above, we may assume i < j. Since g, = 1 (we
don’t have fixed points), the number of u-steps between s; and s; should be the same as the number
of u-steps before s; or after s;. So s consists of 2n simple subsequences whose initial and terminal

points belong to E(K;) and j — i = n for some integer n. We may assume ¢ = n and j = 2n.

For simplicity, we use 0 for 2n, so s, = So. Denote uf = v, g¢ = g for 0 < k < 2n -1, and
ht = h for 0 < k < n and n < k < 2n — 1. From now on, for a double illegal circle s we always

keep the assumptions and notation given above.

It can be seen that g, = gog1h1g2ha - gngn+1hns1 - g2n-1h2n-1, since g, = 1, we must
have gogy = 1, and gn_rs10nsx = 1, Rpprhn-p = 1 for £ = 1,2...n — 1. From this we get

vy g1 = (ud-g0)- g5 " = ud = vo, and similarly, v;-g; = van—i41 for i =2,3,...,n.
Set A! = {u € To NY(T")|u € D,, for some g € G’ with o, € £'}.
Lemma 22 : Assume s is a double illegal circle, then
(a) A" consists of the lifts L,,, L, of so and s, and L,,, L, are in the different G'-orbits.
(b) Wi, = {w|0<i<2n—1}U {u),us}.

Proof: (a) Obviously L,,,L,, C A’. Because vy -g1hy - gan-1hn-19n = uf, v and u} are
not in the same G’-orbit, otherwise v; is fixed by a nontrivial elements of G impossible. since
v, = ud € L,, and u} € L,_, this two lifts can not be in the same G'-orbit. (This implies that ¥ (7")
has two G’-orbits .)

Suppose u is any point in A’. Because each G’-orbit contains one of L,, or L, , we may assume
that u € Og, where Oy is the G’-orbit containing L,,. Then as in the proof of Lemma 9 (a), we can
prove that u € A' N Oy = Ly, .

(b) Suppose this is not true, take ug € Wi, — {v;|0 € i < 2n — 1} U {u2,u} }, and take any p-

image of u, as u,, beginning from u, and u,, we have an infinite admissible sequence which contains
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a subloop &.

Suppose &' N E(K,) = . Assume s’ is u-u or d-d, by Lemma 11 and 12, g,, # 1, this is
impossible. If s’ is u-d or d-u, then m > 4, the lift of s’ contains at least 4 points which are in (7;)°,
this contradicts Lemma 9 (a). Therefore s’ N E(K,) # 0.

If 8o or s, are contained in &', then s = §', s0 up € sN E(Kp) = {v;[0 < i < 2n— 1} U {ud,u2},
contradicting our assumption. By the proof of (a), there is no u-u illegal admissible sequence other
than s; and s, whose initial and terminal points belong to E(K,). Therefore, s has no simple
subsequence which is u-u or d-d illegal and whose initial and terminal points belong to E(K)), then
by Lemma 21 (b), g, # 1, but g, fixes a point of Ty, this is impossible. &

Lemma 23: s can not be a double illegal circle.
Proof: Let us first set up some notation, which will be convenience in the later discussion.
Suppose C is the set of components of Ky. Set Cp = C Neg,.

There are J,, J,s € ek, such that uj € E(J,), v} € E(p(J,)), uf € E(J, ) and u? € E(p(J,:)).
Let J?,J9,J7,J7 be the segments in ex, U p(ek,) such that u! € E(J!) for each pair of i,; and
Iy # p(Je), Iy # Jey JT # p(Jur) and I3 # Jyr.

We have
{ui} = E(p(J,)) 0 E(J7)
{uz} = E(J,) N E(J3)
{ul} = E(p(J,)) N E(JT)
{us} = E(J,) N E(JT)
There are points a} € Ty such that J! = [a},u}] for i = 1,2 and | = 1,n, and b,b’ € T} such that
i = [ul, 8 di = [ud V)

For every point u € W, there is a m > 0 such that p™(u) = u] or p™(u) = u}, assume m is

the smallest positive integer satisfying this.

Assume ¢ € D(u, Ko) if u € v; for some i, or t € D(u},Jj) for j = 0,n, define ¢(t) = p™(¢),
then ¢(t) € D(u,J?) for j = 0 or n.

Denote the component of Ky containing u;’ by c: for ¢ =1,2 and j = 0,n. If u is an end point
of a segment J, we denote by #(u, J) the only direction in D(u,J).

Claim 1: J§ # J? and J{ # J7.

Proof of Claim 1: Suppose J = J§ = J§, since u} # u?, we have J = [u3,u?]. If there is a

positive integer k¥ < n such that u3 or u} belongs to p*(J), we may assume that k is the smallest
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integer satisfying this, then since p¥(J) € C, we would have p*(J) = ¢} = ¢}, but this is impossible
because |p*(J)| = |J| = |J7| < |c§|. Therefore u3 and u} do not belong to p*(J) for k < n, so
p*(J) € Cy for 1 < k < n. It can be easily checked that the union of end points of p*(J) for
0 < k < n is exactly the set W, which does not include the end points of ¢3, this is impossible.
Hence JJ # J3.

The proof of J{ # J? is similar.

Claim 2: If ¢ € Cy, or ¢ = JJ for j = 0 or n with a} € E(K,), one of the following facts is true

for I =0 or n:
(a) There is an integer k such that 0 < k < n and p*(c) = cb.

(b) There are integers k;,k; such that 0 < k; < m, ky > 0 satisfying that p*1(¢) = J!* and

pF2 () = ¢ where I, = 0 or n.

(c) There are integers 0 < k; < n and kg, k3 > 0 such that p*1(c) = J*, p*2(c}*) = Ji* and

p’“*’(c‘f) = ¢}, where 1,1, are 0 or n and [; # l,.

Proof of Claim 2: Suppose k is the smallest positive integer such that p*(c) N ¢} # @ for some
i=1or2and!=0orn,such k exists because positive powers of p carries the end points of ¢ to u]
or u}. This power is less or equal to n, so k < n. We have E(p*(¢)) C E(K,) U {u?,ul} and p*(c)

is isometric to ¢, therefore, connected, consequently, we have p*(c) C ¢!.

Assume p*(c) C ¢} for I = 0 or n, if both ends of p¥(c) are ends of Ky, we have p¥(c) = b,
then (a) is true. Suppose one of the end points is ul* for {; = 0 or n, then the case is included in

the following one:

p*(c) C e} for I; = 0 or n. Since p*(c) € p(ey,) we may assume that ul* € E(p*(c)). Because c
is not J, or J,/, we have p*(c) = Ji*. There is an a € E(c) N E(K,) such that p*(a) = ul’.

Consider ¢!*, as for ¢ we can prove that there is a nonnegative integer k; < n such that

pta(c)c ez fori=1or2andl; =0or n.

If i = 1, then pFa(c}*) = Ji*. Since |p*2(el*)| > |Ji*|, we have I; # ;. Obviously ¢}* can not
be carried to Ji or J? by a nonnegative power of p because it has longer length, so there is an
nonnegative integer ks < n such that p**(ci?) C ¢} for | = 0 or n. Because E(p*3(c}?)) C E(Ky), we

have p*s(ci?) = cb. Take k; = k, then (c) is true.

Assume i = 2. We may assume that ¢? # c} if I = 0 or n. Then E(p**(cl*)) C E(K,), so
pF2(cl!) = ci?. Take ky = k and ! = Iy, then (b) is true. This proves Claim 2.

Remark: From the above proof, it can be seen that when ¢ = Jj for j = 0 or n, in case (b) and

(c), we have p*:(ad) = ull.
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Claim 3: Assume ! = 0 or m, k is the smallest positive integer such that p*(J}) ne}* # @ for
I, =0 or n, then ud,u? & (p/(J3))° if0< j <k.

Proof of Claim 3: Suppose this is not true, we may assume that | = 0 and there is a positive
integer 7 < k such that either u) or u} belongs to (p?(J7))°, and we assume j is the smallest one.
Since j < k, E(p(J2)) C E(Ky), so p/(JJ) is the component of K, containing u§ or u3. Because
19/ (J9)] < |31, £ (J2) # e, we have p/(J3) = cf.

o 0 ]
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Fig. 7.

For J?, (a), (b) or (c) of Claim 2 is true. Because |J§| < min{|c3|,|c — 27|}, it can be easily
seen that (a) of the Claim 2 is not true. Suppose (b) of that claim is true, p**(J3') = Ji* and
p*a(clt) = ¢ with 0 < k; < n,ky > 0 and /;,1 = 0 or n. Because ¢ = p/(J37), we have I = 0. We
have |c*| = || = || + |Jur] + |93 | =|p(J:)| + |p(Jer)| + |J3*], this implies that u and u} are in
the same component, i.e. ¢) = ¢}. Because J} # J,, J # Jy and J, # J,1, we have J{‘ # p(J,),
I # p(J,) and p(J,) # p(Jy+), s0 ¢ consists of 3 parts: Ji*,p(J,),p(Js).

Assume J' is the union of J!* and either p(J,) or p(J,:, which share the end u}* with J{*. If
we use J’ instead of Ji* and take k; = 0, then (c) of Claim 2 is true, so we may assume (c). Then
pEr(Jp) = Jit, pFa(elt) = JP? and p*e(cf?) = b with 0 < ky < n, kg, k3 2 0, 1y,0l,] = 0 or n and
I, # l;. As before we can prove that [ = 0.
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Case 1: pha(d) = a and p*>(a?) = b
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No matter l; = 0 or n, and no matter p/(u3) = aj or p/(u3) = ¥, we can always check that,
d(t(ug,J3)) = t(ul,J7), this is impossible.

Case 2: p*2(al’) = a? and p**(a’?) = al.

Assume p/(a3) = af, then it is easy to check that pFi+*atksti(gn) = Jn go phitkatksti hag
a fixed point in J3', this is impossible. Assume p’(u3) = a3, then ¢(t(uj, J?)) = p/*+*:(t(ul, J3)) =
t(ui', J}*), 80 I = n, l; = 0. Then p'+*s(u?) = p*s(u?) = ud, so ud is fixed by a nontrivial element

of G, impossible.
Case 3: p*1(a}*) = u!* and p*s(al?) = b.

We can check that ¢(t(u,J3)) = pF++*2(t(uf, J3)) = t(ui?, JI?), it follows that I, = 0 and
50y = n. Assume p’(a3) = a3, we have p/¥i+katkatithatith (y(yd, J2)) = t(uf,J}), then k; +
ks =n+1=j 414k +ks+1+4ks+j+ ki, this is impossible. Assume p/(ul) = a?, then
pltkstititkatks(p) = p impossible.

Case 4: p*2(a}') = v} and p**(al?) = al.

Like in Case 3 we can deduce that I, = 0 and if p/ (a}) = a3, then ky+k; = j+ 14k +ks+75+k1,
if p (u3) = a3, we have p'**2(b) = b. These are all impossible.

Up to now, we have discused all the possible cases. Claim 3 is thus proved.

By Claim 3, (a) of Claim 2 can not be true for JJ and J3, if (¢) is true for one of these segments,
(a) must be true for the other, this is impossible, so (b) of Claim 2 is true for both J{ and J?. We
have for | = 0 or n, p?(J3) € Cp if j < k; and p**(J}) = J{' for some 0 < k; < n and ¢ = 0 or
n and p''(cf') = ¢y’ for some j; > 0 and r; = 0 or n. We have ey # €,. If 7o = r,,, then one of
¢} or ¢} is the image of the other under a nonnegative power of p, this power must be 0 because
¢; & p(ex,) for e = 0 or n, 50 ¢} = ¢f. If ¢} # ¢, then we can deduce that J?,J7, p(J,),p(Js’)
are different from each other, since they are all contained in ¢! = ¢}, and ¢ = ¢} contains only 3
different subsegments which belong to p(ex,), this is impossible, therefore we have ¢J = cf. It is

easy to see that ¢] = ¢} if and only if ] = ¢}.

First let us assume that ¢} # ¢} and ¢ # 3.

0 0 Y n " n
c2: P Js _uz- Ja - a: T rb Js! :u’ Jz . >
e
Ry R
€ e . . - (o * & ]
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Case l: ey =ry=0ande, =r, = n.
No matter p/°(af) is a3 or b, we can check that ¢(t(u,J9)) = t(u?, J?), this is impossible.
Case 2: g =1, =0and e, =1y = n.

If po(af) = ¥ and pi(a}) = b, then it can be checked that ¢(t(ul,J?)) = t(ul,J°). If
po(af) = ¥ and p»(a7) = af, then (t(ud, J3)) = photio++intibivtin (1(u, J2)) = t(u?, J7) and
$(t(u3,J7)) = prrtintro(t(uz, 7)) = t(uf, J7), 80 ko + Jo + 1+ ju + 1+ Jo + kn = kn + Ju + Ko,
ie. 2jo+2=0. If p°(a?) = a} and p'~(a}) = b, we similarly have 2j, + 2 = 0. If p/o(a?) = a? and
p*(a}) = a3, then p'+io+1+in () = b, These are all impossible.

Case 3: eg=r, =nande, =7 =0.

If p°(a] ) = a3, then p*otio(J?) = J2, then there is a point of J? fixed by a nontrivial element of
G, impossible. Similarly, p/»(a]) can not be a3. So p/o(a}) = b and pi»(al) = ¥/, then ¢(t(ud,J?)) =

t(uf, J?), this is not true.
Cased: eg=rp=nande, =7, =0.

If pio(a}) = aj or pi~(al) = aj, then b or ¥ will be fixed by a positive power of p, this is
impossible. So p°(a7) = ¥ and p/~(a}) = b. Then ¢(t(u3, J?)) = t(u?, J?), impossible.

Next, we assume that ¢ = ¢} and ¢ = cj.

¢§ = ¢} is divided into 3 subsegments by uJ and u} which are belong to e, , since J?,J?,J,
and J,, are all contained in ¢J, two of them must be the same. By Claim 1, J # J', so we have

J? = Jy,or J§ = J,, or J, = J,.. We have j; = j, and denote it by j.

Case 5: J, = J3.

o 0 " 7’
a ° U T = TN U T’ b
) = €31 ':. Ja -— $ J;- g $ -
o
€
6= - « + S —e &
€ e- ql
- u 4,
“““ ‘I Ig' IU! I S o

Since Jy # Jyr, p(Js) # p(Jsr). Because kg < n, ai® = p*o(ud) € E(Kp). If p/(a;°) = a), then
pre+i(J2) = J?, which is impossible, so we have p?(a$°) = b'.

If e = 0, we must have J = p(J,), then ¢(t(u3, J3)) = t(ul, J7),if &g = n, we have p(J,:) = J?,
then ¢(t(u3,J7)) = t(ul,J7), these are impossible.
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Case 6: J,» = J?. Similar to Case 5, this is impossible.

Case 7: J, = J,+. Then p(J,) = p(J,/).

n n
. R T T al
g=q: =
. FK’ J/ f,rn
)]
Cr e, Lo uec - P :r ’) €, J.en en
& = 7 4 J. - ¢Je) = (T L 7 _

Fig. 11.

Case 7 (a): eo = n,e, = 0. Then p/(a?) = al, otherwise p*o+i(J9) = J?, impossible. We have
(t(ug,J3)) = t(u?, J?), this can not be true.

Case 7 (b) eo = 0,e, = n. First like in Case 7 (a), we deduce that p/(al) = a3.

Define a map @ from cj to its self in the following way: al;e = p*o*/, alsp = p*»*/ and

al;, = p'*. a has two values on both uj and u3, it translates J; and J7 and reflects J, = J,..

n

0 4 n
L — aa- U.JD i P(l 7;:‘ TS’ - ‘Mz N :r; a Q;‘
62 = C2. S vl A d _ ¢ — v
Ca
0 a .
Q=N %), d@)=xdy) [, L) e
Fig. 12.

Consider the sets {a™(J,)|m > 0}. If there are integers m; < my such that a™:(J,) = a™2(J,),
then @™2~™1 fixes a point of @™1(J,), so we assume this is not true. We claim that there is an
integer m such that a™(J,) N J, # 0. Suppose this is not true, assume m; < m; be such that
a™(J,) na™(J,) # 0, then there is an a € E(a™:(J,)) such that [a™2~™1(a),a) = a™*(J,) —
a™ (7, )

a oA (%) .
e e . S




23

a™2~"™1 translates a™'(J,) towards a by A = dis(a™?"™1(a),a). Because a™(J,)NJ, = 0
for all m, a™2=™: translates a™*%(J,) towards o/ (a) by A for all j > 0 (this can be proved by
induction on j). Then it is easy to see that U{a*(ma=mu)+m:(J )|k > 0} is connected and has an

infinite total measure, this is impossible, so the claim is proved.

Assume m is the smallest positive integer such that a™(J,) N J, # 0, then o™ acts on J, by
an inversion, i.e. @™ (J,) and J, have different orientations. We deduce that o™ fixes a point of J,,

since a™ is a positive power of p, this is impossible.

Up to now we have covered all the possible cases, and thus proved that a double illegal circle

does not exists. &
Lemma 24: Assume s is as before, we always have g, # 1.

Proof: Assume the loop s is the union of simple subsequences s;,38s,...,8, in the previous

sense.

If s contains no u-u or d-d illegal subsequence, by Lemma 21 (b), g, # 1. As in the proof of

Lemma 22 (a), we know that among s;, 35,...,8,, there are at most two u-u illegal subsequences.
Assume s contains a u-u illegal subsequence s;. Suppose j,! are integers satisfying that
(a)j<i<l.

(b) 8k is u-u illegal or is a u-step if j < kb < L.
(c) j is the smallest integer, [ is the greatest integer satisfying (a) and (b).

For j < k < I, if s; is a u-step, g,, = grhi with g, € G” — {1} and hy € G’ — {1}; if 8 is u-u
illegal, g,, = gx with g € G — {1}. ie. g = g¥ for j < k < I, and hy = hf for j < k < i and
i< k<l

Let ¢’ be the subsequence of s which is the union of s;,...,s;, if 8; or s; does not exist, (i.e.
if j = 0orl=mn+1), it is the union of the remaining simple subsequences. g,» = g,,g,,***9s,-
When we write each g,, as an alternating word in elements of G’ and G”, g, is a word in letters of

elements of G' and G"'. We want to prove that s’ is ideal in s.

Case 1,j=0and I =n+ 1. Then s’ = s, We have g, = g1h1g2h — 2+~ gigit1hiy1 -+ Gnhn. It

is clear that either h, or g, can not be canceled in g,, so g, # 1.
Case 2, j =0 and [ < n.

If g,, is not fully canceled in g,:, i.e. if not all the letters in the alternating word g,, are canceled
in g, then (g5 ). = (gs, )e. Since s begins with &', we have s’ is ideal in s.

Suppose g,, is fully canceled in g,.. Because s; is u-u or u-d whose initial and terminal points
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are in E(K,), by Lemma 11, we have (g,,)» € G — {1}.

Case 2 (a), 8 is the only u-u illegal subsequence of s’. From our assumptions, all the letters
between g, and (g,, ), are canceled for some integer k < ¢, i.e. hrgps1hiyr -+ gi—1hi—1 = 1, then
9s' = Gsy " Ysr_,9k9s,- We have “3 g = “5 ‘Gehk o giihioy = ‘UE By Lemma 10, tf: Gi # tfaﬂ,
consequently ¢§ - ge = (t5-9i) (hegrsrhisr -+ Gicrhic19:)™ = (85 0i) Gigrhigr o1y # 85
Gisrhizr--giothioy = 1. So ug -ge = uf € (Ao)°.

3 d L K
W= 13-4, e = o~

N

Fig. 14.

We assumed that s; is not u-u illegal. Suppose s; is u-d illegal, then uf -gf = u!, _, -k}, _; and
thegh #t, _y-hl, _1. According to Lemma 11, g{g},, _; = gs, # 1, so uf # ul,,. Then similar to the
proof of Lemma 8, we have u), € E(Ap), this contradicts the result of the last paragraph. Therefore,
we conclude that s; is legal. So (g,,)s = g}, and g,, # g). In fact g, can be written as a alternating
word in elements of G' — {1} and G” — {1}, we denote the first two letters of this word by a, and
a; 80 g, = aya,r with a; = g{,a; = hjh — 1'... Al for some positive integer ¢ and r is such that
ry € G" of r = 1. Since we assumed that g,, can be fully canceled, we have g;g{ = 1, k > 1 and
hy_1as = hy, b4k} -+ k. = 1.

As before, we can prove uf = ul-g} € (A)°. Because s; is not a u-step, u} € (K;)° C (Ao)°,
then #8,1. N (T0)° > 2, by Lemma 9, Sy 0 C Y(T"). On the other hand, according to Lemma 18
(a), the lift L,, of s; is also contained in Y (T"). As in the proof of Lemma 22 (a), we deduce that
Syt gt and Ly, are in different G' -orbits. Then by Lemma 9, #Suia-y'o <4, and #S,.0 N (Th)® < 3.

Assume ¢ is the smallest nonnegative integer such that hy_,hl ---h!, = 1. Starting from the
point u¥~1.g;_; = ulghhl -+ hl,, there are two different directions: t5~"-gx_y = C'(t5™ gr—1hi_1) =
C'(tf) and t-h!, = C'(t) where t = ¢, if ¢ is odd, and t = ¢}, - g}, if ¢ is even. Therefore,
{ul-gb,ub-gbhl, ..., ub-ghhh---hL} C Sutgi N (A)°, this set can not have cardinality more than
3. Then we can only have¢' = 1. If ¢ > ¢’ = 1, we have b, = hp_; and u} = ul}- g} = vt € E(K,).

Then s; = {ul,u},u},u}} is u-u illegal, this contradicts our assumption. Therefore, c = ¢’ = 1.

Assume the length m; of s; is more than 2, then g} ¢} # 1, by Lemma 8, ul-gbhbh} = u}-(g})~ ' €
E(Ay), contradicting the last paragraph. Therefore m; = 2.

By the assumption g! is canceled with g;_, in g,/, so uf~! = u}, therefore k—1=1and s’ = s.
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But since t}-g; = t6~'-gi_1 # t} -h}, we have t} # t! -hlgl, therefore, u} = ul ¢ E(K,), impossible.

2 0t L
. o -= Uz =ily . “ C,(.'l'.b P; .{-il >
+;'3;hl _ttl’:

i I g Ly b

- 'tr'& P“ J‘ tt'hl;

< 4 % Tt
e u°:u2 +I’hiea

Fig. 15.

Now assume that there is an f # ¢, f < [ such that s; is u-u illegal. We may assume that ¢ < f.

If f =14+ 1, then g;g; # 1, otherwise the union of s;, s, is a double illegal circle, contradicting
Lemma 23. Then by a proof similar to that of Lemma 8, we have u} -g; € E(A,). But according to
Lemma 10, u} -g; = u} € (Ag)°, this is a contradiction. So f # i + 1.

Case 2 (b), g,,_, is fully canceled in g,,g,, -+ g,,_,. Then there is a k < i such that all the
letters in g,» between g; and g; = g,, are canceled, then g,» = g1hy +--gx9sgr41hs41..-9s,- Asin
Case 2 (a), we have u% g, = u} and t%.g, # t!. Because t}.g; # t -h], it can be seen that g; must
carry tk - g to g, therefore t] -gf = ¢(tk-gk) = t&, so u¥ = u}. Then the union of s,...,8; is a

double illegal circle, impossible.

a8k Uy G = “vf -i:.f .
< % 7

St =4 Y
< e . —>

u§=l‘;=u¢f'3{

Fig. 16.

Case 2 (c), g,,_, is not fully canceled in g,, ---¢s,_,. Then there are integers k < ¢ and r < f,
r > 1 such that either (i) all the letters in g,» between g; and g, are canceled and gyg, # 1 or (ii)
all the letters in g, between h; and h, are canceled and hih, # 1.

(i) As before, we have g, = g, ***Gor_, Gk GrPr Gs,py =+ Goy» Uk -gr = uf and t§-g; # 5. If there is
an integer ¢t such that f < ¢ </, and all the letters in g,» between g;g, and g, are canceled, then as
in the Case 2 (b), we can prove that si,...,8;_; is a double illegal circle, impossible. Suppose there
is no such ¢ exists, then there is an integer o such that r < o < f and all the letters in g,» between g,

and g}, are canceled. Since between s,_; and s;, there is only one u-u illegal simple subsequence, the
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situation is the same as in Case 2 (a), by our discussions in that case, we know that it is impossible

for g,, to be fully canceled.

(ii) Suppose there is an integer ¢ such that f < ¢ < [ and all the letters in g, between hyh, and
h, are canceled. Since g,, is fully canceled in s, we have hyh,h. = 1. Then uf-g; = uf = ug*? and
th.gp = C'(t5 - gphy) = C'(t51)#£ C'(85 - gc) = t§-g.he = 5!, From this point, we can adopt the
proof of Case 2 (a) and deduce that it is impossible for g,, to be fully canceled. If no such c exists,
the proof goes like in (i).

Case 3, 7 > 0 and | = n+ 1. As in Case 2, we prove that g, is not fully canceled in g, and
therefore, s’ is ideal in s.
Because s; is u-u or d-u and is not illegal if it is u-u, we have (g,,). € G' — {1}.

Case 3 (a), s; is the only u-u illegal subsequence in s'. Suppose there is an integer k > i such
that all the letters in g,» between (g,,). and h; are canceled. Then g, = gs; hegr+1hrs1 -+ Gnln-

If either g, ; or hy is fully canceled in g,/, as in the proof of Case 2 (a), we have m; = 2, g;'; g{ =1
and u) = uf = uf*! € (Ao)°, t) # th.gihy = t§7!. Then ul € (K,)°, this is impossible.

Case 3 (b), there is an integer f such that j < f < n+1 and s; is also u-u illegal. Similar to
Case 2 (b) and Case 2 (c), we can proof that g, can not be fully canceled in g,:.

Case4,j>0and ! < n.

Case 4 (a), s; is the only u-u illegal subsubsequence of s'. Assume g, is fully canceled in g,. As
in Case 2 (a), we can prove it impossible that all the letters in g, between g; and gp are canceled,
for some integer k such that j + 1 < k < i. So either (i), letters between gj41 and g; or (ii), letters

between g/ and g}, for some r < m;, are all canceled.

(i), s = 9s,9i+19s,. Because s; is u-u or d-u and it is not illegal if it is u-u, we have (g,,). €
G’ — {1}. Since we assumed that g,, is fully canceled, we have gi+196 = 1.

As in Case 2 (a), we can prove that ’”{n,- = u).g} € (A)°, #Suf.,- < 4, glgt = 1 and
_q",'nj_zg;";,‘j_1 = 1. But then {u/, _,,ul, - hfnj_l)'l,u{nj = uj-gh,ul,ul AL} C Su{‘j, contradicting

§j=2Y"m;
the fact that #5,; <4.
™3

(ii), In this case, there is an integer k such that ¢ < k <! and all letters between (g,,). and hy
are canceled. By the proof of Case 3 (a), both (g,,). and hj are not fully canceled in g,s, therefore

gs, can not be fully canceled either, contradicts with our assumption.

This proves that g,, can not be fully canceled in g,.. Similarly, we have g,; is not fully canceled

in g,+. Then ¢’ is ideal in s.

Case 4 (b), there is an integer f such that f #1, j < f <l and s; is also u-u illegal. We may
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assume that f > ¢. Asin the Case 2, f# ¢+ 1.

By the proof of Case 4 (a), if all letters between (g,,). and h, are canceled for some integer r
between ¢ and f, then (g,,).h, # 1. It can be seen that there are integers k,r such that j < k < i,
it < r < f and either (i) k > j, all the letters in g,/ between g, and g, are canceled and g;g, # 1, or
(i) all the letters in g,» between (g,, ). and h, are canceled and (g,, )eh, # 1. In case (ii), it can be
proved that k > j, so (g, ). = hi. As in Case 2 (c), we can proof that g,, is not fully canceled in
gs'- Then (gs/)s = (gs,)s and (gs/)e = (gs,). and therefore, s’ is ideal in s.

Up to now, we have proved that every u-u illegal subsequence s; of s is contained in a subsequence
(with initial and terminal points belong to E(Kj)) which is ideal in s. The same statment for d-d
illegal subsequence can be proved similarly. From this and Lemma 21, g, # 1. The proof of this
lemma is completed now. .

Lemma 24 implies that if the action is free, then Ky = (0. This completes the proof of Theorem
3. ¢
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