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Abstract

Suppose G = F(z,y,2) is the free group generated by z,y and z, G' = F(z,y), G" = F(z) are
subgroups of G. G acts on an R-tree T minimally with T',T" be the minimal invariant subirees of
G',G" respectively, To = T' NT". Assume L' is the set of partial isometries on T, generated by

elements of G'.

We prove that the action T x G — T is discrete provided it is free if the following condition
is satisfied: For any o,7 € %', if there is an integer m such that Domain(o }2™ N Domain(T)# 0,
then one of the following is true: (a) Domain(o)=Domain(t); (b) One of Domain(c), Domain(T)

consists of a single point which is an endpoint of the other.

AMS (MOS) Subj. class.: 57M60, 05C05.
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0. Introduction

In Part 1 and 2, we investigated minimal actions of a finitely generated free group G on an

R-tree 7. We studyed the following property for such actions:
Property (DF): The action is discrete provided that it is free.

As we learn from part 1 that there is an example of a minimal action of the free group of rank
3 on an R-tree which is free and indiscrete (Bestvina-Handel), therefore Property (DF) is not true
in general. In order for the data to be sufficient for our study, in Part 1 we introduced condition A,
A’ and B (Part 1, page 8, 9, 14).

In the first two parts, we decomposed G as a free product of free groups G’ and G" of smaller
rank, we worked on the intersection Ty of 7" and T, where 7" and T" are the minimal invariant
subtrees of G', G" respectively, and we translated the problems of the freeness and discreteness of
the action T' x G — T to the problems of the partial action of £ on T; under Condition A, where ¥
is the set of partial isometries on T} defined by elements of G (see Proposition 4.2 and 4.3 of Part 1).
We showed that an action satisfies Property (DF) if Condition A (A’) and B are satisfied (Theorem



4.11 of Part 1).

In Part 3, we continue the study of Property (DF) for the action of G on T'. We provide another
approach to see what actions satisfy this property. We assume Condition A and the freeness of the
action 7' x G — T, prove, in some certain cases, that the action is discrete. The idea is to project
the partial isometries on T, in ¥ to partial isometries on one side quotient space, say on Q' = T"/G".
All such obtained partial isometries on @’ generate a pseudo group P’, we prove that the action
T x G — T is discrete if and only if the partial action of P’ on @' has no infinite orbit (see Theorem
2.5);

Section 1 contains preliminary materials including the notation. Section 2 is devoted to the
main theorems of this paper along with the proofs. In Section 3 and 4, we provide examples which

are applications of the theorems in Section 2.

1. Preliminary

Throughout this paper, G always represents a finitely generated free group and T" always stands
for an R-tree. We use T' x G — T for the action of G on T', and u-g for the image of the pair (u,g)
under the action, where v € T and g € G.

We always assume, without mention everywhere, that Condition A is satisfied. Without loss of

the generality, as in part 1 we make the following;:

Assumption 1: The actions T/ x G’ — T" and T" x G" — T" are free and discrete.
Assumption 2: Tj # 0.

Assumption 3: |T;| < oc.

Assume p: X — Y is a map, S is a subset of X, we use p|s for the map p restricted on S,
and (5)° for the interior of S with respect to X. When S is the union of a family of R-trees or
R-graphs, we denote by Y (.5) (E(S) resp.) the set of branch points (end points resp.) of connected

components of §.

An alternating word (with respect to G’ and G"”) is an ordered family {ay,az,...a,} of
elements of G’ U G — {1}, such that ay; € G"” — {1}, aap41 € G' — {1} or ay € G' — {1},
aspy1 € G" — {1} for all k. We allow the empty word to be an alternating word. For every element
g € G, there is a unique alternating word {a;,as,...,a,} such that g is the product of a;’s, i.e.
g = ayas---a,. (g = 1 if and only if the corresponding word is empty.) Call this word as the
alternating word of g (in elements of G’ and "), call » as the (alternating ) word length of g



and denote it by L(g). Set g, = a,,¢. = a, and

1, if i = 0;

gi=3ya--a;, ifi<nandi>0,;
g, ifi > n.

Every element g € G induces an isometry from T,-¢~' N7, to Ty N Ty - g, we denote this partial

isometry of Ty by o,, denote its domain and range by D, and R, respectively, which are closed

subtrees of Tj.

Let
Y ={o4lg € G', D, # 0}

L' ={o4lg € G", Dy # 0}

I ={oylg € G, D, # 0}

¥ acts from the right on Ty, with the product of elements of ¥ being the composition of them
in the usual sense, if this composition exists and is an elements of ¥. Notice that the identity map

of Ty is included in X.

Assume ¢: T' — Q' = T' /(" is the quotient map. To simplify the notation, for every subset X
of Ty, we denote ¢'(X) by X.

Suppose g € G" — {1} and D, # 0, if D, and R, are embedded into Q" by ¢', then o, induces
a partial isometry of ' from D_g =¢'(D,) to R, = ¢/(R,) denoted by 7, such that

(1.1) ¢'(u-g) = (¢'(u))7,

for every point u € D,, (where (¢'(u))7, is the image of ¢'(u) under 7, ).

In general, divide D, and R, into finitely many closed subtrees (of finite total measure) with
disjoint interiors:
Dy = U D, R; = U R
e, iel,
where 1, is a finite index set, such that for every 7, D} -g = R}, and D, R} are embedded into Q'
by ¢'. Write ﬁ; = ¢/(D}) and E:, = ¢'(R}). o, induces a homeomorphism from 5; to R; denoted

by E;, satisfying (1.1) with Ef, replacing @, for every point u € D;.

Set
T = (Bl € & - {1hi€ L. D, #0)

Denote the pseudo-group of partial isometries generated by elements of 5] by P. It is clear that

#E’ < 00,50 P is finitely generated.
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A word in elements of & is an orderd family {oy,09,--0,} of elements of ¥ — {id} written
in the form of a production o, :¢5---0,. If the word really involves some letters, it is said to be a
nonempty word, 1 is the empty word. Suppose ¢ € f, if ¢ € G" be such that ¢ = -0_'; for some
i € I, then g is called a lift of 0. Suppose w = 0,03 -+-0, is a word in elements of ¥, G159y -On
are elements of G, if g; is a lift of o; for i < n, then g,¢,---g, is called a lift of w. If the action
T x G — T is free, every word in elements of ¥ has a unique lift. A nonempty word is reduced if
no letter involved is followed by its inverse in the word. We see that every word w = 0y -02+--0,
corresponds a partial isometry of ¢, which is the composition a,05 - -0, if it exists or a map with
empty domain, we denote this partial isometry by o,. When we say that a word w fixes a point

u, we mean that o, is defined at u and fixes it. we denote by D(w) and R(w) the domain and the

range of o, .

2. Main theorems
Set § = {(u,9)|lv€ Ty,g € G and u-g; € Tp,¥i > 0}.

Lemma 2.1: (a) If u € Ty,9 € G are such that (u,g) € S, then there is an element o ofﬁ’
lifting to g, such that u-g = (u)o.

(b) Suppose w = E;‘l E‘g‘: --'a_;':_ is a reduced word in elements of &, u € D(w). Assume
v € Ty be such that T = u, then there is a unique set of elements {s\,52,...8,} C G’ such that
if hj = 81915292+--8;9; and w; = E;‘l ---E;Jj for 7 < n, then (v,h,) € S and v-hj_y8; € D;’j,

v-h; = (u)oy, for each j.

(¢) Ifu€ Q',ve Ty such that T = u, then {v-g|(v,g) € §} = (v)P'.

Proof: (a) Assume g = a;a,---a, is the alternating word of g. For each i < n both u-g;_,
and u-g; belong to Ty, so either a¢; € G’ and then W g;_; = @ -g;, or a; € G",u-g;—, € D,, and

u-g; = (U gi1 )'c?f,l for some j € I,,. By induction on n, the existence of o is clear.

(b) We prove by induction on n. Assume there are uniquely s,,5;,5,_, € G' such that v-h; =
(u)oy, and (v,hn_y) € S. Because v-h,_; € "5;’; and D;j_ is embedded into @', there is a unique
3n € G', such that v-h,_;s, € Dir, then (u)ay = (0u,_,(4)Ty = (v-hao1)T = v-hispngn =

v-h,. Since v-h,_18, € D;'; C T, and v-h, € R;'; C Ty, (v, hy) € S.

(¢) This is a direct consequence of (a) and (b). Note that for every element o € P, there is at

least one word w in elements of f, such that o, = o. &
Corollary 2.2: B, = (Y, )F

Proof: Suppose u € By, then there are v € Yp,g € G such that (v,g) € § and 77§ = u. By

Lemma 2.1 (a), there is an element o of P’ such that (T)le=v-g=wu,s0ué€ (79)?'.
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Assume u € (?0 )ID—’, then there is a point v € Y;, an element o, € F, where w is a reduced
word in elements of E—', such that u = (?)o,,. By Lemma 2.1 (b), there is an element A € G such

that (v,h) € § and v = (T)o, = v-h. We see that v-h € By and u € By &
Lemma 2.3: If the action T x G — T is not free then P has a fized point inY .

Proof: Suppose the action is not free, by Propositions 3.1, there is a point u € Y}, an element
o, € ¥ with ¢ = a,a3 -+ -a, be an alternating word in elments of G’ — {1} and G" — {1} such that
(u)a, = u,i.e. w-ayas---a, = uand wayay---a; €Ty for i < n. We may assume that a;,a5... € G’
and as,as... € G, it is easy to see that 7,,0,, -+ 0,4, € P fixes W € Y,, where k is the gratest

integer such that 2k < n. O
Lemma 2.4: Assume Condition A is true and the action T x G — T is free, then
#(Y, )F < oo if and only if the action T x G — T s discrele.

Proof: If #(:Y_U)F = #B, < oo, then there are only finitely many G'-orbits which intersect
B,. Because the intersection of each G'-orbit and By can have only finitely many points, we get
# By < oo. From Theorem 4.8 of Part 1, we see that Condition B is satisfied, so according to Theorem
4.11 of Part 1, the action T' x G — T is discrete. On the other hand, if #B, = #(ﬁ)‘ﬁf = o0, then
# B, = , by the proof of Proposition 4.3 (a) of Part 1, #F(u) = oo for some point u € Y5, as a

consequence, the action 7' x G — T is not discrete. &

Theorem 2.5: Assume Condition A is true and the action T x G — T is free, then the action
T x G — T is discrete if and only if #(u)?’ < 00 for every point u € Y, if and only if this is true
for every point u € Q’.

Proof: Assume #(u)? < oo for every u € Yy C @', then #(E)F < oo since #Y, < oo,
therefore the action T x G — T is discrete by Lemma 2.4. Suppose there is a point u € Q' such that
#(u)F = oo, then clearly u € T,. Suppose v € T, be a preimage of u under ¢', by Lemma 2.1 (c),
{v-g|(v,g) € §} = (u)P. Soif #(u)P = oo, {v-g|(v,g) € §} is a indiscrete set. Then it is easy to

see that {v} -G is also indiscrete, therefore the action T x G — T is not discrete. &

3. Examples in general cases

Suppose the action T x G — T is free. Assume that w = @} -2 ---T," is a word in elements of
T with D(w) # 0, define P(w) to be the following property of a point v € ¢'~ 1(D(w)): v-h=(7)oy,
where h is the lift of w. Suppose v satisfies P(w) and u = T € D(w), if the set {s;,32,...5,} C G’

is given by Lemma 2.1 (b), then we have s; = 1 for every j > 2.

A nonempty word w in elements of ¥ is called a trivial word , if D(w) # 0, 1 is a lift of w
and there is a point of g’)’_l(D(w)) satisfying the property P(w). If a word w is trivial, then o, fixes

a point in its domain.
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From now on we assume that for every g € G”, D, and R, are embedded into @' by ¢', then
T ={o,lg € G", D, # 0}.

Assume that there is a subset £, of T satisfying the following properties:

(a) Elements of ¥, generate P ,i.e. forevery o € P, there is a word w in elements of & oU(Ze) 1,

where (¥¢)~! = {o]|o~! € ¥y}, such that ¢ is o,, limited on a subset of its domain.
(b) No proper subset of ¥, generates 7.
Then %, is called a minimal generating subset of T.

Lemma 3.1: Suppose ¥, is a generating subset of Y, w=rTa- T, isa nonemply reduced
word in elements of K, where K = {o|loc € £, or 6! € £y}, u € D(w) and u is fived by o, then

fori=1,2,...,n, we have D(1;) is nondegenerate.

Proof: Suppose there is a j < n such that D(7;) consists of a single point v, then the domain
of o, = {u}, so o, is the identity map on the set {u}. If there is a k # j such that 7; = 7, we
may assume that j < k and 7; # 7; if j < @ < k, then the subword wy = 7741 -+ 7, fixes the
point ». Taking w, instead of w, we may assume that 7; # 7; if ¢ # j. By a similar argument, we
may also assume that 7; # (7;)~" for ¢ < n. Because D(7;) and R(7;) both consists of one point, we

1=1 1_—-1,

= F = 5= e o :
have 7; = 0y|{y) here v’ = T AT e T T, TJ+I But ¥, is a minimal generating subset of

T, this is impossible. ¢
A minimal generating subset X, of ¥ is called a reduced generating subset if every reduced

word w in elements of ¥, is nontrivial.

Assume the action T x G — T is free, then every element of ¥ has a unique lift. Therefore,
every word in elements of ¥ has a unique lift. Suppose z,,23,...,2, is a set of free basis of G"', w

is a word in elements of f’, define ¢;(w) to be the total sum of the exponents of z; in the lift of w.

The functions e; is additive, i.e. e;(wyws) = €;(w;) + €;(wz) for every pair of words w;,w, in

—
elements of ¥ .

Example 3.2: Assume that the action TxG — T is free. Suppose there is a minimal generating
subset £, of & such that there is at most one element 7 € £, satisfying that €;(r) = 0 for all 1,

then there exists a reduced generating subset of v,

Proof: Notice that if we change any element in X; to its inverse, we do not change the minimal
generating property of ¥;. We now construct a set ¥, from X, by changing part of its elements to
their inverses in the following way: For every element o € X, if €;(¢) = 0 for all ¢, then we keep ¢
in ¥,, if this is not true, assume that i is the smallest integer such that e; (o) # 0, then if ;(o) > 0,
we keep o in I, , otherwise change o to ¢~ '. We know that ¥, is still a minimal generating subset

of T’ and for every element o € %,, either ¢;(¢) = 0 for all i and by the assumption o = 7, or
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ei(o) > 0 if 7 is the smallest integer such that €;(o) # 0. We claim that ¥, is a reduced generating

subset.

Suppose not, then there is a reduced word w = oy -05 -0} in elements of ¥, which is trivial.

We have ¥

L5
J=1,2,...,k and therefore w = 7%, then the lift of w can not be 1, impossible. Assume this is not

ei(o;) = ei(w) = 0 for each i. If ¢;(0;) = 0 for all i < n,j < k, then o; = 7 for

true, 7 is the smallest integer such that e;(o;) # 0 for some j < k, then €;(o;) > 0 and e;(o;) > 0
for all I < k, so e;(w) > 0, this is a contradiction. &

Assume r is the following relation of two finite closed subtrees I, and I, of T: One of I, 1,
consists of a single point which is an end point of the other. If I, I; have the relation r, we write

r(fy,1,).

Example 3.3: Assume that there is a reduced generating subset ¥, satisfies the following
properties: For every pair of elements o, 7 of X, such that ¢ # 7, we have r(D(o), D(7)) if D(e)n
D(7)# 0, and r(R(o), R(T)) if R(e)N R(7) # @. Then (DF) is true for the action T x G — T .

Proof: Assume the action T x G — Tis free. Suppose I, = {¢1,02,...,0,}. The do-
main and the range of o; are denoted by D; and R; for each i < k. Set K = X, U (Z,) '=

{o1,..cyomyor . 00t}

Set D=U", D\, R=U", Riand D=Q' - D,R=Q' — R, and X = E(D)U E(R). Then
from the assuptions, for each i, F(D;)U E(R;) C X.

Also, let ¥, = {o;|i < m, |D;| = |R;| = 0}. Assume w = 7y -7y -7, is a word in elements of

K, if there is an ¢ < n such that ; € ¥,, then we say that w intersects X,.

Define ¢: D — R be such that its restriction to each D; is o;. ¢ is multivalued at intersections
of some domains. Every such intersection consists of a single point which belong to X, so o is well
defined (i.e. has a single value) in the interior of each domain D;. Similarly, 6~! is defined on R

and is well defined in the interior of each range R;.

According to Theorem 2.5, it is enough to prove that for every u € Y, C Q’,(u)? is a finite
set. Now, fix a point u € Y. Assume that F, is the space of finite reduced word w in elements of
K such that u € D(w). Then (E)F = (u)F,, because I, is a generating subset of Y. It is enough
to prove that #F, < oo for every u € Q.

Suppose 7 € K, for simplicity we say that 7 = o, if 7 € {0y,...,0,}, and 7 = o7}, if
re{ort,...,00 ).

Suppose w = 7Ty - - - T, with each 7; € K, if there is an i such that either (a),7; = 0,734, = 071,

or (b) r; = 07!, 1341 = o, then R(7;)N R(T.._+11) # 0, so either R(7;) or D(7i4,) = R(T;_ll) consists

of a single point v € X, we say that w has a negative turn at v in case (a), and a positive turn



at v in case (b).

Lemma 3.4: Assume w = 773 -+ T, is a reduced word in elements of K, if w has a turn, then

o, fizes no point in Q.

Proof: If w has a turn, then one of 7;’s must belong to X,, by Lemma 3.1, ¢, can not fix any
point of Q’. &

According to Lemma 3.4, a reduced word w in elements of K can not have three turns at the
same point, so it can only have at most 2#X < oo turns. If a word w has no turn, it is called a
straight word. For every point u € Q)’', let f-"j‘ be the subset of F, consists of straight words in
elements of ¥, f'u” be the subset of F, consists of straight words in elements of X! and F., be the

union of F} and F .
Lemma 3.5: The following two statments are equivalent:
(a) #F, < oo for every u € Q'.
(b) #F, < oc for everyu € Q'.
Proof: The proof of (a) == (b) is trivial.

(b) = (a): If two words w and w' in F, have exactly the same positive and negative turns in
the same order, assume they have the last turn at » € X, then by Lemma 3.4, the subwords of w
and w’ before this last turn are the same and the subwords of them after this last turn both belong

to f},. Because #.73',, < oo for every v € X and #.7:',‘ < oo, we have #F, < 0. &
Now, Let us prove that for every point u € (', #f;" < oo and #.?:"; < 0.

Suppose u € D, if there is a composition a; a;, - - -a;, (with each o;, € ¥, ) defined at u, we say
that o* is defined at u and we write (u)o* for (u)o,0; -+ 04. Note (u)o* may have more that one
values. If § is a subset of @', (§)c* is defined as {(u)o*|u € SN D,o* is defined at u}. (u)o~* and
(5)o* are similarly used for v € D and S C Q'.

Lemma 3.6: Assume u € Q', w is a word in elements off" and u is fized by w. Then
(a) The lift of w is 1.
(b) w can not be a nonemply word in elements of £, , i.e. o, # * for any positive integer k.

Proof: (a) Suppose w = r-73 -+ -7 with ; € T for each i and v € T, is such that 7 = u. Assume
the lift of 7; is ¢; € G”, by Lemma 2.1 (b), there is a unique set of elements {s;,55,...,8:} C G’
such that if h = s;g; -+ - s¢gi, then (v,h) € S and v-h = (u)o, = u= 7. Since the action TxG — T
is free, we must have h € G'. This implies that g,¢5 - -gx = 1.

(b) Suppose w is a word in elements of . Assume v € Ty, g; € G" and s; € G' fori = 1,2,...k
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are as in (a). Assume that s; = 1 for all j > 2, then v-s, satisfies the property P(w), so w is trivial.
Assume there is a j > 2 such that s; # 1, we may assume that for any / < j,1 > 2, s; = 1, then
9192 -+ +gj—1 = 1, so the reduced word 7y -1, - - - 7;_; is trivial, this is impossible since I, is a reduced

generating subset of T &
Set Iy = D, Iy, = UM {(I)o; |o; € Z,}.
Lemma 3.7: Ifi,j > 0 and i # j, then (1;)° N (L;)° = 0.

Proof: Suppose this is not true, assume 7 is the smallest integer such that (;)° N (I;)° # 0 for
some integer j > i. Then i must be 0, otherwise (I;_;)° N ([;—,)° # 0. But I; C D which does not

intersect I, = D, this is a contradiction. &

Assume [ is a subset of @', define [(/) to be the minimum total measure of nondegenerate

components of I if [ has one, and take {(I) to be 0 if I has no nondegenerate component.
Since X is a finite set, there is an positive integer n such that X N (f;)° = 0 for every i > n.

Lemma 3.8: Assume n is such an integer that ;- (L;)° N X = 0, then for every i > n, we

have I(1;) > I(1,) or [(1;) = 0.

Proof: This can be proved by induction on i. Suppose J is a nondegenerate component of I;,
because X N J° = 0, either J° C R or J° C R so that J C R since R is closed. Then if o; € I,
and JNR; # 0, (J)o, ! either consists of one or two points or is isomorphic to J, therefore either

|(J)e7 | =0or|(J)o7"| = |J|. Compared with I;, ;41 has no nondegenerate component of smaller

total measure, so we have I(L;11) > I(I;) > I(1,) if I(fi41) # 0. &
Lemma 3.9: There is an integer n > 0 such that for any k > n, [(1;) = 0.

Proof: Suppose I(I;) # @ for all ¢ > 0, then by Lemma 3.8, there is a positive number A such
that |I;| > A for every k > 0. By lemma 3.7, (L;)° N (f;)° = @ if i # j, so for any n > 0 we have
nA < X7, |L| £1Q’|. But |Q'] < oo, this is impossible.

Suppose there is an n > 0 such that I(I,) = 0, then {([;) = 0 for all z > n. O
Suppose X is the set of end points of all the open ends of I; for i > 0, X is a finite set.
Lemma 3.10: Ifu € XN R;, then ('u:)z;r,-_1 €X.

Proof: If o; € X, then (u)o; ' € E(D;) C X. Assume o; ¢ X,, suppose u is an end point
of J which is a component of I} for some k& > 0, with the corresponding end open. Suppose the
only direction in D(u,.J) is not in R;, since we assumed that v € R;, we have u € E(R;) and
then (u)o;' € E(D;) C X. If this direction is in R;, then it is carried by cr,.'1 to a direction in

1

D((u)o;',(J)a; ") and (u)o; ' is the end point of a component of (J)o; ' with the corresponding

end open. Clearly (J)o; ' C iy, 50 (u)o; ' € X. &
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Lemma 3.11: [f for some k > 0, I, has a component J of 0 total measure, then it must consists

of a single point u, with u € X.

Proof: There is a sequence {Jg,J2,...Jp = J} of closed subtrees such that J; is a component
of I; and J; 4, C (J; )al.':] for some o, € ¥, — E,. Notice that |J; .| < |J;], since |Jy| > 0, there is
a j > 0 such that |J;| > 0, |[J;4,1| = 0. Then |[J; N ;| =0,s0 J; N Ry, C E(R;,). If J;y = {v},
then v € (E(R;,))o~! = E(D;;) C X. By Lemma 3.10, u € X. O

For every point u € Q’, let (), be the subset of F;} consists of all the words which do not

u

intersect ©,. The subset (F. )y of Fo is defined in the same way. Because for every point v € Q’,
there is at most one o; € ¥, — ¥, which is defined at v, it can be seen that for any positive integer
n, there is at most one word in (F7), whose word length is n, if w,w’ € (), and w has longer

word length than that of w’, then w’ is a subword of w. The same is true for words in (F )o.

Lemma 3.12: For every u € X, there is an integer k such that all the words in (F] ), have
word length less that k.

Proof: Suppose this is not true for a point u € X, then #(F)o = o0o. Set U = {(u)ou| €
(7)o}, then by Lemma 3.6 (b), (u)o, # (u)oy: if w,w' € (F7)o and w # w', so #U = oc.
According to Lemma 3.10, U C X, but X is a finite set, this is impossible. &

Lemma 3.13: There is an integer n > 0 such that I, = 0.

Proof: Suppose n' is such a number that for every i > »n' [(I;) = 0, as in Lemma 3.9. Then
I, consists of several single element components, i.e. I, = Uj_,{u;}. By Lemma 3.11 and Lemma
3.12, for each u;, there is an integer n; > 0 such that all the words in (JE'U“J )o have word length less

than n;. Take n = n’ + max{n;|0 < j <!}, then it is easy to see that I, = {. ¢

Set M = U;_, I, K = Q' — M. Then by Lemma 3.13, M consists of finitely many components,
so is A if it is not empty. We have (K)o, C K ifw € (.7'_;" Jo-

Lemma 3.14: |K| = 0.

Proof: Suppose this is not true. Assume J is a component of A of maximum total measure then
|J| > 0. Because J C Q' — I, = Q' — D, J C D; for some o; € £, — £,. Then (J)o; is isomorphic to
J, so it is also a component of A of maximum total measure. Consequently, for every ¢ > 0, there is
a word w; € (]ﬂ-‘,f )o whose word length is ¢ such that J C D(w;) and (J)o,, is a component of K of
maximum total measure. But A consists of finitely many components, so there is a pair of integers
n, | such that n # [ and the two components (J)o,, and (J)o,, have nonempty intersection. Then
these two components must equal to each other. We may assume that n = 0, then (J)o,, = J.
0w, |p(s) is a permutation with E(J) being a finite set, so there is an integer p such that of, has a

fixed point u in E(J). Then (u)o'? = u, contradicting Lemma 3.6 (b), impossible. ¢
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Lemma 3.14 implies that K = {ky,ks,...,k;} for some integer ¢.
Proposition 3.15: For every point u € (', we have #(F} )y < .

Proof: If u € Iy = D, then (F}), = 0. If u € I, then there is a word w € (F}), whose word
length is k such that (u)o, € Iy = D, then (F;}), contains no word of length greater than k. So
#(FH)o < 0. Suppose u € K, then (u)(F})o € K. By Lemma 3.4, if w,w' € (F}), and w # w',

then (u)o, # (u)o,:, because #K < oo, we have #(FF)y < oc. ¢

For each ¢ < m such that o; € £,, we denote the unique point in R; by p;. Fix a point u € @',

if there is a word w = o ---71 € F+ such that 7. = o; for some o; € ¥,, then by Lemma 3.2,

u

such word is unique, denote this unique word by w;.
Proposition 3.18: For every point u € ', we have #.7:-‘;" < 00.

Proof: If o; € X, for some i < m, define H; = {w = 7 ---m € F}|3j < k such that 7; =
o, ng Lif j <<k}

If we H;, ; = o; is as above, then my7y---7; = w; and 74 1Tj40- Tk € (.7:":.)0, therefore,
it 13 SAAY 50 286 that R Hy S #(ﬁp+ Jo < 00. Because Fif = (F})o U U, ex, Hi we have #FF <
#(F o+ Zorex, #Hi < o0. 5

Because the conditions on o, D) and on o¢~', R are symmetric, we also have:

For any point u € Q', #F, < oo.

Then #F, < oo for every point u € @’ and therefore, the action 7' x G — T is discrete. This
completes the proof of this example. ¢

Example 3.17: If there is a reduced generating subset X, of ¥ such that #¥, = 1, then the
action T x (G — T satisfies Property (DF).

Proof: This can be easily proved by applying Example 3.3. &

ol

Remark: By symmetry we have Q" =T"/G", ¢': Ty, — @", ¥ and P’ etc. All the results in

Section 2 and 3 remain true if we replace Q’,aﬁ’,f and P’ by Q",qﬁ”,fﬂ and P

4. Applications to actions by the free group of rank 3

In this Section, we focus on minimal actions of G = Fj (the free group of rank 3) on an R-tree

T. We provide examples of actions which satisfy the Property (DF) or which are not free.

Assume that {z,y,z} is a free basis of G, i.e. G = F(z,y,z). Take G’ = F(z,y), G" = F(z).
We may assume that |4, N A,| < min{r(z),7(y)}, where 7( ) is the translation length function for

the action 7' x G — T (cf. Part 1, page 4).
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As before, 7', 7" are the minimal invariant subtrees of G, G’ respectively. From the materials
of Part 1 (page 4-5) we know that @' = T'/G" is one of the following:

Fig. 1.

T" is the axis A,, so Q" is just a circle. Since Ty C A,, we have T, = [p, g] for some p.g € A,.

We assume further that the direction represented by the arrow from p to ¢ is the direction of A..

Fig. 2.

Example 4.1: Assume there is an element g € G, such that |7, N A;| > 7(z) + 7(g), then the
action T' x G — T is not free.

Proof: Because Ty C A., |A, N A,| > 7(z) + 7(g) so there is a point u € A, N A; which is fixed

by the commutator zgz~1g~1. ¢

Fig. 3.

Example 4.2: Set w = T, N Ty-z7 ", assume that w and w-z are both embedded into @ by @,
then the action T x G — T satisfies (DF).
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Proof: We see that w = D, and w-z = R,. For any integer m # 0, D.» and R,» are contained
in w and w -z respectively, so they are embedded into Q' by ¢'. Then T = {G,m |D,m # 0}. Since
we only have finitely many m such that D,» # 0, ¥ is a finite set. For any positive integer n, set
w, = (7.)", then 7.~ = 0, |55 ,. Therefore {7.} is a reduced generating subset of Y. Applying

Example 3.16, we see that (DF) is true for the action T x G — T .

Example 4.3: If T; C A, for some element g € G’ — {1} such that A, is aloop (i.e. a subspace
homeomorphic to a circle) in @' ( this is true for example when g is conjugate to z or y), then (DF)

is true for the action T'x G — T .

Proof: Assume T, C A, for some g € G’ — {1}. By assumption, A, is a loop in @', its
circumference ¢ is a number dividing the translation length 7(g) of g. There is an element h € G'—{1}
and there are points u,v € A, such that u-h = v and dis(u,v) = ¢. It is clear that [u,v] C A; and
e¢=7(h). Then T, C Zg = m:zh.

There is an element s € G’ such that Tp-s N A, # 0. Suppose Ty -s ¢ Ay, then there is a
point u € E(Ty-sN Ay) such that D(u,Ty-8) — D(u, Ay) # 0. Assume t € D(u,Ty-s) — D(u, Ay ),
since D(W, Ty -s) C D(w, A,), we have T € D(T, Ap) = ¢'(D(u, Ay)). But ¢ maps 77 to Q' locally
isometrically, this is impossible. Therefore Ty-s C A,. Then Ty, C Ay 57! = Ay,

o+

Y

TS
Ah(ﬂ;-S & _AhL _i’__j. Jﬂ'

=
=i

Fig. 4.

If |Ty] > 7(z) 4+ ¢ = 7(2) + 7(shs™ '), then by Example 4.1, the action T x G — T is not free.
Assume |Ty| < 7(2) + ¢, then |w| = |w-z| = |To| — 7(2) < e. So w and w -z are embedded into
Eg = A, therefore into Q'. Applying Example 4.2, we see that the action 7' x G — T satisfies the
Property (DF). &

Example 4.4: If there is an element g € G’ such that |D,| > 7(z) then the action T x G —= T

is not free.

Proof: We know that o, is a translation or a reflection restricted to D,. If [D,| > 7(z), then
there is a point u € D, such that u-z € D,. We have (u-z)o, = (u)o,-z € R, if 0, is a translation,
el ~1
g

and (u-z)o,-z = (u)o, € Ry, if o, is a reflection. So we have either u-zgz~ = woruzgzg ' =u,

i.e. uis a fixed point. ¢
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Z(=bz' 292" w2 wq u-zgr

Dg Ry

Fig. 5.

According to the Example 8.1 of Part 1, if |73| < 7(z), then the action T x G — T is free and

discrete. In view of this and Example 4.4, we can make the following
Assumption 4: |1,| > 7(2).
Assumption 5: For each g € G', we have |D,| < 7(z).

From Assumption 5, D,, R, are embedded into G" by ¢" for each g € G’ then
= {_U_y|g € Gf’D_q # 0}
which is a finite set since |T;| < oc.

Recall that in Section 2 we defined a relation r for two closed subtrees I and J as follows:

r(I,J) if and only if one of them consists of a single point, which is an endpoint of the other.

Assume o, 7 and # are elements of f”, ¢ = 76, then 7 is called a f-factors of &, and 6 a

t-factor of o.

/

Example 4.5: Assume that any pair of elements o,7 € T o # 7 satisfy the following
properties: if D(e)ND(1) # 0, then r(D(c), D(1)) or o, T are f-factors of each other. If D(e)ND(71) #
0 and R(o)N R(7) # 0 then r(D(c),D(7)) and r(R(c), R(7)) or o = 7. Then the action T x G — T

satisfies (DF).

Corollary: If domains of any pair of elements of T are disjoint or have the relation r, then

(DF) is true for the action T x G — 1T .
Proof: We assume that the action T x G — T is free.

According to Example 3.3, we only have to construct a reduced generating subset ¥, satisfying
the following properties: for o,7 € ¥,, 0 # 7, we have r(D(e),D(r)) if D(o) N D(r) # 0 and
r(R(c),R(t))if R(e)n R(7) # 0. To this end, we need the following three lemmas:

Lemma 4.6: (a) If w = 0,0, -0} is any word in elemenis of T D(w) # 0, D(o;) is
nondegenerate for each i < k, then D(w) = D(o,) and o, is either an element offﬂ or the identity

map on D(eoy).
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/

(b) For every element o € ", we have that D(c)N R(c) =0 and D(c*) = 0.

(¢) Suppose o, T are two elements offﬂ, if R(e)N R(T) # 0, then either r(R(o), R(T)) or o, T

are l-factors of each other.
(d) w is as in (a), then R(w) = R(o}).

Proof: (a) Suppose that o,7 € " be such that D(o) and D(7) are both nondegenerate and
D(ot) # 0, then D(e=')N D(7) # 0. Suppose o~! # 7, since r(D(e¢~"), D(7)) can not be true, by
the assumption, there is an element 8 € T such that r = o~ '0. Because D(7) is nondegenerate,
so is D(#). Then o7 = 6070 = 0|p(,). Because D(7) # 0, D(6) N D(a) # 0, then we deduce as
before that ¢ and @ are f-factors of each other, so they have the same domain, therefore ot = 8 is
an element of 5. If ¢ = 7= !, then o7 is the identity map on D(¢). From the above discussion, we

can prove (a) by induction on the word length of w.

(b) Suppose there is an element o € " such that D(o) N R(c) # 0, if D(o) consists of one
point, then D(¢) = R(0o), so o fixes the only point in its domain, this is impossible. Assume that
D(o) is nondegenerate, then D(c¢) and R(o) do not have the relation r, by the conditions of this
example, 0 = o=, therefore o is the identity map on D(o). Because the lift of o is not trivial,
this is impossible by Lemma 3.6 (a). So, D(0)N R(o) = @ and consequently, D(o?) = 0.

(c) The condition implies that D(¢=)N D(r~') # 0. By the assumption of this example, either
r(D(e~1'),D(r™ 1)), i.e. r(R(c),R(7)) or ¢~ ! and 7! are f-factors of each other, then ¢ and 7 are

t-factors of each other.

(d) According to (c), the ranges of elements of X; satisfy the same conditions for the domains.

(d) is proved similar to (a). &
Lemma 4.7: Any minimal generating subset £y of T is a reduced generating subset.

Proof: Assume we have a minimal generating subset ¥ of T which is not a reduced generating

subset. Then we have a reduced trivial word w = 0,03 - -0} in element of X;.

Because w is trivial, o, fixes a point in its domain. According to Lemma 3.1, D(o;) is nonde-

generate for ¢ < k. We claim that o; # a; if i # J.

Proof of the claim: Suppose there are integers ¢ < j such that o; = o;. We may assume there
is no integer | between i and j with oy = 0, = 0;. I j = i + 1, then D(w) = 0 since according to
Lemma 4.6 (b), D(c?) = 0, this contradicts the assumption. Assume j > i + 1, by Lemma 4.6 (a),
ifw = 0;4)0;42-+-0;_1, then D(w') = D(0;4,) is nondegenerate and 7 = 0, is an element of ¥
or it is the identity map on D(oiyy).

— . N =
Assume o0, € % , since w = ---0; - w’ - o; --- has nonempty domain, D(o;) N D(r7') =

D(o;) N D(t7") # 0, and R(0;) N R(t™*) # 0, therefore 0; = 7= = 0}, -+ -0}, but we assumed
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that ¥y is a minimal generating subset of E”, this is impossible. Suppose 7 is the identity map on

D(6i41), then D(o;70;) C D(6}) = 0, this is impossible. So the claim is true.

Set wy = ¢,-05 -+ ,_ . Since w is a trivial word, the lift of wy can not be trivial, then by Lemma
3.6 (a), oy, can not be an identity map. According to Lemma 4.6 (a), o,,, is an element of T and
D(wo) = D(0). Since w fixes a point of its domain, we have D(o; ' )N D(wy) = R(ox)ND(a,) # 0.
By Lemma 4.6 (d), R(wy) = R(ox_,), then R(wo)NR(o7 ') = R(e_1)ND(0y) # 0. Because all the
sets involved are nondegenerate, we must have ak_l = 0y,- Lhen oy is generated by o,,0,,...,0¢_1,
contradiction the minimal generating property of £,. This proves that there is no trivial word in

elements of X, therefore ¥; is a reduced generating subset of T, o

Assume 0,7 € 3, (D(0))° N (D(7))° # 0, then D(¢) and D(r) are nondegenerate, so they do

not have relation r, therefore, o, 7 are f-factors of each other.

Lemma 4.8: Assume that 7,72, ..., 7% and o are elements of f‘, then there is an element

o e satisfying the following properties:

(a) 0 = 0,0'0y:, where w,w' are words in elements of the set T = {r;|i = 1,2,...,k}, they

could be the empty word.
(b) (D(a"))° N(D(7:))° =0 and (R(c'))° N (R(7;))° =@ for every i < k.

Proof: If D(o) is a one point set, then we take ¢’ = o, w,w' be the empty word. Assume D(o)
is nondegenerate. If there is a 7; such that (D(¢))° N (D(7;))° # @, then o = 7,0, for some element
i e X ; Again, if (D(o,)° N(D(7;))° # 0 for some 7; € T, then o, = 7;0;, for some o, € X. In this
way we get 0y,05.... We claim that there is a nonnegative number m such that no element of T is
a f-factor of 0,, (if m = 0, 0,, = @), which is equivalent to the fact that (D(c,))° N (D(7))° =0
for every 7; € T'. This claim is clear by the claim of Lemma 4.7, note that T is a finite set. We have

o = a@,0,, where w is a word in elements of 7.

From Lemma 4.6 (c), we deduce similarly to the above that there is a word w’ in elements of T
and an element o' of ¥ such that ¢,, = o’y and (R(¢"))° N (R(r))° = 0, for every 7; € T. Since

no element of 7' can be a {-factor of o', (D(c¢"))° N (D(7:))° = 0 for every i. ¢

Given any minimal generating subset ¥, of T, we now construct another one in the following
way:

Assume ¥y = {o;|j = 1,2,...,m}. Suppose that for some i < m, we have chosen a set
Ty = {a} |7 < i—1} of elements of " such that for every j < i, there are words w;, w; in elements
of the set Tj_, = {o{|l < j— 1} such that o; = 0, 0] Ou! and the interiors of domains (ranges resp.)
of elements in the set T;_, are disjoint for each other. By Lemma 4.8, there exists an element o] of
¥ and there are words w;,w! in elements of T;_, such that o; = 0,,,0;0, and elements in the set

T; = {o}|j < i} have disjoint interiors of domains and disjoint interiors of ranges. In this way, we
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choose 0.

Elements of T,,, = {o}|j < m} obviously generate the pseudo-group P". We choose a minimal
generating subset X of T,,, then ¥} is a reduced generating subset of T satisfying the conditions

of Example 3.3, hence (DF) is true for the action T x G — T . &
Remark: the following three conditions are equivalent to each other:

(a) For any o, 7 € T o #r1,if D(eg) N D(7) # 0, then r(D(o),D(7)), or 0 and 7 are f-factors

of each other.

(b) For any 0,7 € X, 0 # 7, if R(c) N R(r) # 0, then r(R(c), R(7)), or & and T are t-factors

of each other.

(c) For any 0,7 € £, 0 # =1, if D(o7) # 0, then »(D(o7), D(c)) and r(R(oT), R(T)), or o7
is an element of T and D(or) = D(o).

Therefore in Example 4.5, we may replace the condition (a) by (b) or (¢).

Assume that 5,5, are subsets of T, if §;-2™ N S, # 0 for some integer m, then we write
Sy ~,; S,

Example 4.9: Assume for any o,,0, € ¥, the following fact is true: if D, ~. D, then
D, = Dy or r(D,, D). Then the action T' x G — T satisfies the Property (DF').

Proof: Assume the action 7' x G — T is free. Suppose @,,G, € T be such that h # g and
(Eg ) n (:ﬁh )° # 0, then D, ~, D, so D, = D since, v(D,, D) can not be true, therefore,

ﬁg = D,. we have

Tyg-10p = Jg“‘hl(DgnDh)a, == ag“hlﬂg

and then

We have

ﬁ}, = hlﬁg :Egﬁg_;

al
I
]
>
=
I
Al
o
ol
=
I
S

So 7, is a f-factor of @, symmetrically, 7, is a f-factor of 7,.

Next, assume that (D, )° N (D,)° # 0 and (R,)° N (Rx)° # 0. Then (D,-1)° N (Dy-1)° # 0, as
before, we have Ey_l = Dy-u, ie. E_q = Ry. Then T,-10, maps Tl'g = R, to its self, there must
be a fixed point for this partial isometry. If @, # @, then g # h, so @,-.7, has nontrivial lift, this

contradicts Lemma 3.6 (a), impossible. Hence 5, = @.

Now we see that this example is a direct consequence of Example 4.5. &
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