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Summary

We use the empirical likelihood method to derive a test and thus a confidence interval based
on the rank estimators of the regression coefficient in the accelerated failure time model. Stan-
dard chi-squared distributions are used to calculate the p-value and to construct the confidence
interval. Simulations and examples show that the chi-squared approximation to the distribution
of the log empirical likelihood ratio performs well, and has some advantages over the existing
methods.
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1. Introduction

The semiparametric accelerated failure time model (Wei, 1992) is a linear regression

model in which the responses are the logarithms of survival times and the error term

distribution is unspecified. It provides a useful alternative model to the Cox proportional

hazards model for analysing censored survival data. Starting with Prentice (1978), many

people have studied a rank-based estimation method in the accelerated failure time model

with censored data, including Tsiatis (1990), Wei et al. (1990), Ritov (1991), Lai & Ying

(1991) and Ying (1993). A nice summary can be found in Chapter 7 of Kalbfleisch &

Prentice (2002).

A large-sample study of the rank-based estimator is given by Lai & Ying (1991), Ying

(1993) and several subsequent papers including Jin et al. (2003) which deals with the

weighted version of the rank-based estimator. They show that the estimator is asymp-

totically normally distributed but the asymptotic variance of the estimator involves the

hazard function and the derivative of the hazard function of the unknown error term. The

estimation of such functions can be highly unstable. To make things worse, the number
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of subjects at risk, i.e. the effective sample size, for estimating the hazard is always small

in the tail of the distribution.

Since it is difficult to estimate the variance of the rank-based estimator well by conven-

tional methods, Jin et al. (2003) use a resampling method, based on Jin et al. (2001), in

which one needs to generate repeatedly some nonnegative random variables and to solve

the randomly perturbed optimisation problems. The variance estimator depends on the

random number generator, the number of iterations and the nature of the perturbation.

For large numbers of iterations it can be time-consuming to solve the optimisation prob-

lems. Also, it is not clear what is the preferred distribution for the perturbation. For

example, Jin et al. (2001) have used gamma and beta random variables.

The empirical likelihood method was proposed by Thomas & Grunkemeier (1975) to

obtain better confidence intervals in connection with the Kaplan-Meier estimator. Owen

(1988, 1990) and many others developed this into a general methodology. It has many

desirable statistical properties (Owen, 2001). Recently, the empirical likelihood method

has been shown to work in various inference problems involving censored/truncated data.

One nice feature of the empirical likelihood method is that we can compute p-values of

a test and construct confidence intervals without estimating the variance of the statistic.

The test statistic can be referred to a central chi-squared distribution under null hypoth-

esis. It can be very difficult to estimate the variances of the statistics as in the case of

the rank-based regression estimator for the censored accelerated failure time model.

We propose in this paper an empirical likelihood testing procedure for the censored

rank regression estimator where the likelihood is defined as the censored empirical like-

lihood of the error variables and we show the limiting distribution of the log empirical

likelihood ratio is a central chi-squared distribution under null hypothesis. The empirical

likelihood method avoids the need to estimate the variance; instead one must carry out

a constrained maximisation of the censored empirical likelihood, which can be done re-
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liably. Furthermore, to test one hypothesis or obtain a p-value, the empirical likelihood

method involves solving only one optimisation problem, whereas the resampling method

needs to estimate the variance first by solving a very large number of repeated optimisa-

tion problems. Also, the empirical likelihood inference is ‘repeatable’ (same data set and

hypothesis will always give an identical p-value) whereas the resampling method is not.

2. The regression model and the empirical likelihood

Consider the linear regression model

log Ti = β
′

0Xi + εi (i = 1, · · · , n) , (1)

where the εi are independent, with an unspecified distribution F0(t). Since we are only

going to use the ranks in the estimation, the mean of εi is not identifiable, and thus is not

assumed to be zero. Thus, in effect, the intercept term is included in the εi. The β0 in

the above model is a q-vector of regression parameters to be estimated, and X is a matrix

not including a column of 1’s.

Let Ci be the censoring time for Ti. Assume Ci and Ti are independent conditionally

on Xi. The data we observe consist of (T̃i, δi, Xi), where

T̃i = min(Ti, Ci) , δi = I[Ti≤Ci] .

Define ei(b) = log T̃i−b
′
Xi, the residuals when b is an estimator of β0. The rank-based

estimator β̂ of β0 is the solution of the following estimating equation (Jin et al., 2003):

0 =
n∑

i=1

δiφ{ei(b)}[Xi − X̄{ei(b)}] , (2)

where X̄{ei(b)} is the average of those covariates, Xj, that log T̃j − b
′
Xj ≥ ei(b). We

assume that the function φ(·) is either a constant, resulting a log-rank type estimator,

or equal to the number of subjects at risk, i.e. a Gehan-type estimator, or some other

predictable function.
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We define a censored empirical likelihood, for the censored ei(b)’s, as

EL =
n∏

i=1

pδi
i (1−

∑
ej≤ei

pj)
1−δi , (3)

where pi ≥ 0 and
∑

pi = 1. The corresponding constraint equation derived from the rank

estimator to be used with the censored empirical likelihood is

0 =
n∑

i=1

φ{ei(b)}
[Xi − X̄{ei(b)}]

nwi

δipi , (4)

where wi is the jump size of the Kaplan-Meier estimator at ei(b). The Kaplan-Meier esti-

mator is computed from (ej(b), δj), j = 1, · · · , n. We denote this Kaplan-Meier estimator

by F̂KM(b, t).

The empirical likelihood ratio is obtained as follows. The denominator of the ratio

can easily be obtained by letting pi = ∆F̂KM{β̂, ei(β̂)} in (3). The numerator of the

empirical likelihood ratio is obtained by maximising (3) with respect to pi subject to the

linear constraint (4). This constrained optimisation does not have an explicit analytical

solution but can be computed reliably by, for example, a generalised EM algorithm.

The E-step is the same as in Turnbull (1974) and the M-step is a weighted version of

constrained maximisation similar to Owen (1990) Theorem 1. For more details, see Zhou

(2004). This will give pi = p̃i, insertion of which into (3) provides the numerator.

In the Appendix we prove the following theorem.

Theorem 1. Under mild regularity conditions the Wilks theorem holds for the em-

pirical likelihood ratio for testing the hypothesis H0 : β = β0 versus HA : β 6= β0; that

is

λ := −2 log ELR(β0) −→ χ2
q as n →∞

in distribution when the null hypothesis is true, where ELR(β0) denotes the empirical

likelihood ratio for b = β0.

With the empirical likelihood ratio we can easily compute a p-value by appealing to

the chi-squared quantile and the above Theorem. A 95% confidence region for β0 can
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be obtained as the collection of the b values such that the corresponding test problem,

H0 : β = b, has p-values larger than 0.05.

Remark 1. When b = β̂, then clearly the constrained maximisation of the censored

empirical likelihood (3) is achieved by the Kaplan-Meier estimator: pi = ∆F̂KM{β̂, ei(β̂)}.

This β̂ and pi also solves the constraint equation (4). This imply that the empirical

likelihood ratio is equal to one so that the p-value for the null hypothesis that β0 = β̂ is

one and the confidence region for β0 is ‘centred’ at β̂.

Remark 2. To compute the numerator of the empirical likelihood ratio, we require a

distribution F or pi such that (i) it has support only on the uncensored ei(β0)’s, (ii) it

satisfies the estimating equation (4), and (iii) among those F we find one that maximises

the censored empirical likelihood (3).

Remark 3. When maximising (3) subject to the constraint (4), we are only allowed to

change the pi’s; the wi’s should always remain unchanged for a fixed b.

Remark 4. Even though the weight function in (4) is more complicated and depends

on the sample, which calls for a new proof of the empirical likelihood theorem, computa-

tionally this constrained maximisation problem with respect to the pi’s is the same as the

maximisation of the censored empirical likelihood with mean constraints:
∑

f(ti)pi = µ,

where f(ti) = φ(ti){Xi − X̄(ei)}/(nwi) and µ = 0. An implementation of the generalised

EM algorithm for this computation is available inside the R package emplik, downloadable

from http://cran.us.r-project.org.

Remark 5. When the dimension of β is q > 1, a 90% marginal confidence interval

for β1 can be obtained as the projection of a q-dimensional confidence region onto the β1

axis. This q-dimensional confidence region should be constructed with level χ2
1(0.9) not

χ2
q(0.9).
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3. Simulation results for one-dimensional β

First we take the regression model log Ti = 2xi + εi, where xi ∼ Un(0.5, 1.5) and

εi ∼ Un(−0.5, 0.5). The values of log Ti are right-censored by log Ci, with Ci generated

according to 1 + 3.2Zi, where Zi ∼ Ex(1). The tests we carry out are based on the

censored responses, namely min(log Ti, log Ci) = log{min(Ti, Ci)} and δi, the censoring

indicators. The sample size is 100, and the Q-Q plots are based on 5000 simulation runs.

The value of λ is computed for each simulation run for the hypothesis H0 : β = 2, and the

resulting Q-Q plot shows a good fit to the χ2
1 distribution. Simulations with other sample

sizes produce similar Q-Q plots. The empirical likelihood ratios for the Gehan estimator

has a better chi-squared approximation than those for the log-rank estimator, which tend

slightly to undercover in the upper tails.

(a) (b)

Fig. 1. Simulation study for (a) Gehan estimator, (b) log-rank estimator.

Q-Q plot of −2 log ELR, based on 5000 simulation runs, with sample size = 100.

4. Two examples

We first illustrate the methodology with the Stanford Heart Transplant data. We
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used the same data as in Miller & Halpern (1982) based on 184 cases. The data are also

available as stan inside the R package gss.

http://cran.us.r-project.org/src/contrib/Descriptions/gss.html

We used only 152 cases as suggested by Miller & Halpern (1982) and fitted a model

with only a linear term involving age, log10(Yi) = β × age + εi, where Yi is the survival

time of the heart transplant patient.

The Gehan point estimate of β is −0.0253. Based on the empirical likelihood ratio, the

90% and 95% confidence intervals for β are (−0.04177,−0.006275) and (−0.04463,−0.003011)

respectively. From the resampling method, the estimate of the variance for β̂ is 0.0001137,

based on 10000 resamplings and exponential perturbation. The Wald confidence interval

with 90% and 95% confidence levels are then easily seen to be (−0.04287,−0.007792) and

(−0.04623,−0.004434). The two sets of confidence intervals are similar to each other.

These results are also similar to those based on the Buckley-James estimate (Buckley

& James 1979) from the same data and model: the estimate is β̂ = −0.01990 with 95%

confidence interval (−0.0357,−0.0028). See a University of Kentucky technical report by

M. Zhou & G. Li for details.

For the second example we use the multiple myeloma data which is also used by Jin

et al. (2003). The data can be found in SAS/STAT User’s Guide (1999, pp. 2608-17,

2536-641) and are also available at

http://ftp.sas.com/techsup/download/sample/samp_lib/statsampExamples_of_Coxs_Model.html

There are 65 cases, of whom 17 are censored. We fitted a model with two predictors,

namely the logarithm of blood urea nitrogen, log(BUN), and haemoglobin, HGB. The

Gehan estimates of the regression coefficients are −15.011 and 1.318.

The resampling estimates of the variances of (β̂1, β̂2) based on exponential perturbation

and 10000 resamples are 36.890 and 0.814 respectively with a covariance of −1.095.
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The confidence region for β1, β2 obtained by the empirical likelihood method is shown

in Fig. 2. From the plot we can see that the correlation coefficient between the two

estimators is small and the normal approximation to the joint distribution of (β̂1, β̂2) is

not very good.

Fig. 2. Multiple myeloma data. Contour plot of −2 log ELR for (β1, β2).

The outer two loops are the 95% and 90% confidence regions for (β1, β2) jointly. The

inner two loops are used to project onto the x- or y-axis to obtain marginal 95% and 90%

confidence intervals for β2 or β1 individually. For example, the 90% confidence interval for

β2 is the x-axis shadow of the inner most loop, which has level = χ2
1(0.9). The 95% and

90% confidence intervals for β1 are (−29.5,−5.3) and (−27,−6.7), and the corresponding

confidence intervals for β2 are (−0.15, 3.6) and (0.14, 3.05).

Note that the contours are jagged and the enclosed regions are not convex. This is

because the rank estimating function is not monotone, a fact noted by many previous

authors.
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Appendix

Large sample properties of the empirical likelihood ratio

The empirical likelihood function used in (3) is exactly the same as the censored empir-

ical likelihood based on independent, identically distributed right-censored observations

used by Thomas & Grunkemeier (1975), Li (1995) and many others. Our empirical like-

lihood function should be considered as the likelihood of the εi, which are independent

and identically distributed.

Our constraint equation, (4), however, is slightly different from the mean constraint,∫
f(t)dF (t) = µ, considered by Murphy & Van der Vaart (1997) and Pan & Zhou (1999):

the f(·) we use depends on the data, and thus should be denoted by fn(·), so that

the constraint equation is
∫

fn(t)dF (t) = 0. We need a generalisation of the empirical

likelihood Theorem for censored data that allows a predictable integrand function, fn, as

given in Theorem 1 of a University of Kentucky technical report by M. Zhou & G. Li.

Suppose that the log Ti−β
′
0Xi are independent with a common distribution. Based on

the right censored observations (log T̃i−β
′
0Xi, δi) we can form the Kaplan-Meier estimator

F̂KM(t) and it is well known that {F̂KM(t) − F0(t)}/{1 − F0(t)} is a martingale with

respect to Ft, where Ft is the usual counting process filtration: see for example Fleming

& Harrington (1991, p. 91).

Lemma A1. The log-rank and Gehan weight functions used in (4), fL
n (ti) = {Xi −

X̄(ti)}/(nwi) and fG
n (ti) = (

∑n
j=1 I[ej≥ti]){Xi − X̄(ti)}/(nwi), are both Ft-predictable.
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Proof: Note that whether or not the Kaplan-Meier estimator jumps at t is not pre-

dictable but we are only concerned here with the size of the jump, if there is one. The

size of the next jump of the Kaplan-Meier estimator can be computed from the history

and thus is predictable. To be more specific, the jump size of the Kaplan-Meier estimator

at time t, if there is one, is equal to 1/n× 1/{1− Ĝ(t−)}, where Ĝ is the Kaplan-Meier

estimator when we reverse the censoring indicators. Therefore wi is predictable. Clearly

φL(t) =
∑n

j=1 I[ej≥t] is predictable and X̄(t) = (
∑

XjI[ej≥t])/(
∑

I[ej≥t]) is also predictable.

This implies that the functions fG and fL are predictable. �

Theorem 1. When b = β0, the residuals log Ti−β
′
0Xi are independent and identically

distributed, the ei’s are censored residuals and the estimating equation

E[φ(t){X − X̄(t)}] ≡ 0 (A1)

holds true.

Assume that the variance of the independent and identically distributed errors εi is

finite and positive. Then, by the generalised empirical likelihood theorem, we have that

−2 log ELR(β0) −→ χ2
q

in distribution as n →∞.

Proof: In view of Lemma A1 above and the generalised empirical likelihood theorem

of the technical report of M. Zhou and G. Li, we only need to verify (A1), which in turn

is easily seen to be true if we first condition on Ft and note that X̄(t) = E(X|ej ≥ t) and

that φ is predictable. �
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