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SUMMARY

The non-parametric maximum likelihood estimator (NPMLE) of the distribution function

with doubly censored data can be computed using self-consistent algorithm (Turnbull, 1974).

We extend the self-consistent algorithm to include a constraint on the NPMLE. We then

show how this can be used to construct con�dence intervals and test hypotheses based on

the NPMLE via empirical likelihood ratio. Finally we present some numerical comparison

of the performance of the above method with another method that make use of the in
uence

functions.
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1. Introduction

When data are doubly censored, the nonparametric maximum likelihood estimator (NPMLE)

of the distribution function have no explicit form and have to be computed via some iteration

[Turnbull(1976), Chang and Yang(1987), Zhou(1995), Zhan and Wellner(1999)]. The estimation of

the asymptotic variance of the NPMLE is even more involved [Chang(1990)].

Self-consistency algorithm is a general way of computing non-parametric distributional estima-

tors when data are not completely observed [Efron (1967), Turnbull(1974), Tsai and Crowly(1985)].

In particular, a NPMLE of distribution function based on an i.i.d. sample must satisfy the self-

consistent equation [Gill(1989)]. It is a special case of the EM algorithm when the parameter is the

distribution function itself [Dempseter, Laird, and Rubin(1977)].

In this paper we extend the self-consistent algorithm to compute the NPMLE under a constraint

F (T ) = � for doubly censored data. This constrained estimator is useful in the construction

of empirical likelihood ratio. As an application we show how this in turn will allow us to �nd

con�dence intervals and test hypotheses for doubly censored data.

Another approach of constructing con�dence intervals based on the NPMLE with doubly cen-

sored data is to estimate the in
uence function/variance of the NPMLE. But the in
uence function

is not easy to estimate and this approach may not be very practical for larger samples. We will

compare the two approaches for one example in this paper.
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Doubly censored data can arise when observations are subject to both right and left censoring,

i.e. the patients are only watched within a window of observational time, otherwise we only know

it is below or above the window. Double censoring also arise from pairwise comparisons when there

are right censoring in both group, as the following example explains.

Example: In paired comparison experiments, we have n pairs of observations based on two treat-

ments. To estimate the treatment di�erence, it is customary to focus on the n pairwise di�erences.

However, when right censoring occurs in either treatments, the pairwise di�erence can be right

censored, or left censored, as the following table shows.

Trt 1 Trt 2 di�(1� 2)

14+ 6 8+

12 7 5

9 5+ 4�
For a pair of observations, if the observation from treatment one is right-censored but treatment

two is uncensored, their di�erence will be right-censored; if the observation from treatment one

is uncensored but treatment two is right-censored, their di�erence will be left-censored; If both

observations are uncensored, their di�erence is uncensored. If both observations are right-censored,

their di�erence can take any value, we drop those data from further analysis.

Therefore, the di�erences of paired right-censored data can be doubly censored { having both

left and right censored observations. Section 6 will treat this in more detail. }
The rest of this section is to formally introduce the relevant notation and basic assumptions.

Let X1; � � � ; Xn be positive random variables denoting the sample of lifetimes which is indepen-

dent and identically distributed with a continuous distribution F0. The censoring mechanism is

such that Xi is observable if and only if it lies inside the interval [Zi; Yi]. The Zi and Yi are positive

random variables with continuous distribution functions GL0
and GR0

respectively, and Zi � Yi

with probability 1. If Xi is not inside [Zi; Yi], the exact value of Xi cannot be determined. We only

know whether Xi is less than Zi or greater than Yi and we observe Zi or Yi correspondingly.

The variable Xi is said to be left censored if Xi < Zi and right censored if Xi > Yi. The

available information may be expressed by a pair of random variables: Ti; �i, where

Ti = max(min(Xi; Yi); Zi) and �i =

8><
>:

1 if Zi � Xi � Yi
0 if Xi > Yi
2 if Xi < Zi

i = 1; 2; � � � ; n: (1:1)

The modi�ed (constrained) self-consistent equation for doubly censored data is derived in Sec-

tion 2. We generalize the self-consistent algorithm to deal with several constraints in Section 3.

We then explain how the constrained self-consistent estimate may be used to obtain con�dence

intervals via empirical likelihood ratio in section 4. In
uence function is discussed in Section 5. We

carry out simulations and apply our algorithm to some doubly censored data in Section 6.
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2. Modi�ed Self-Consistent Equation Under a Constraint

Suppose for a given T and � we are interested to test the hypothesis

H0 : F (T ) = � vs: H1 : F (T ) 6= � : (2:1)

As we will see later, A key step to accomplish this is to be able to compute the NPMLE of F (t)

under H0 from the data (1.1). We shall focus on computing NPMLE in this section.

First let us write down the log likelihood function (log L(F )) for doubly censored data. The log

likelihood function involves all n observations. However, We can decompose the likelihood function

into two parts: for observations before and after time T .

logL(F ) = logL1 + logL2

=
X

�i=1;i�n1

log(wi) +
X

�i=0;i�n1

log[1� F (ti)] +
X

�i=2;i�n1

log[F (ti�)] +
X

�i=1;i�n2

log(vi) +
X

�i=0;i�n2

log[1� F (si)] +
X

�i=2;i�n2

log[F (si�)]

=
X

�i=1;i�n1

log(wi) +
X

�i=0;i�n1

log[1� F (T ) + F (T )� F (ti)]

+
X

�i=2;i�n1

log[F (ti�)] +
X

�i=1;i�n2

log(vi) +
X

�i=0;i�n2

log[1� F (si)]

+
X

�i=2;i�n2

log[F (si�)� F (T ) + F (T )] (2:2)

where logL1 denotes the log likelihood function for n1 observations before time T and logL2 denotes

the log likelihood function for n2 observations after time T (n1 + n2 = n). wi is the jump at ith

observation before time T . vi is the jump at ith observation after time T . ti is the observed time

before time T . si is the observed time after time T .

Therefore, wi � 0 and
Pn1

i=1 wi = � corresponding to jumps before time T ; similarly vi � 0 andPn2
i=1 vi = (1� �) for jumps after time T .

Notice that because F (T ) = �, we have F (T )� F (ti) = wi+1+ � � �+wn1 and F (si�)� F (T ) =

v1 + v2 + � � �+ v(i�1) : The �rst part of above likelihood, logL1, only involves wi, the jumps of F

before time T as in (2.3). Similarly the second part of the likelihood only involves the jumps of F

after time T as in (2.4). Therefore we can maximize the whole likelihood in two independent steps:

maximize logL1 and then maximize logL2.

If a distribution function, say F̂ , did maximize the log likelihood under H0, then it must satisfy

that the derivative of the log likelihood function at this F̂ equal to 0. We de�ne a directional change

of wi in the direction h(:) and parametrized by � to facilitate derivative (under H0). Since wi must

sum up to �, vi must sum up to (1� �), we de�ne them as follows:
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For jumps before time T , we de�ne

wi = wi(�) =
�F̂ (ti)

1 + �h(ti)

�

C(�)
with C(�) =

n1X
i=1

�F̂ (ti)

1 + �h(ti)
; (2:3)

and C(0) = �.

For jumps after time T , we de�ne

vi = vi(�) =
�F̂ (si)

1 + �h(si)

1� �

D(�)
with D(�) =

n2X
i=1

�F̂ (si)

1 + �h(si)
: (2:4)

Clearly D(0) = 1� �.

Remark 2.1: We may also use the following de�nition in the computation of derivatives.

w�i (�) = �F̂ (ti)[1 + �h(ti)]
�

C�(�)
with C�(�) =

X
i=1;ti<T

�F̂ (ti)[1 + �h(ti)] :

Since Wi = �F̂ (ti) is the maximum, the derivative of the log likelihood with respect to � must

be zero for any direction h(t). This leads to the equation (A.*)(see Appendix A) In particular, the

choice h(t) = I[t�u] for �1 < u < 1 will give us the modi�ed self-consistent equation under the

constraint (2:1).

We shall use the convention

1� F (ti) =
X

j:tj>ti

�F (tj) ; F (ti) =
X

j:tj�ti

�F (tj) :

(a) The constrained self-consistent equation for F̂ (u) when u � T is:

F̂ (u) =
�

n1

8<
:

X
�i=1;i�n1

I [ti � u] +
X

�i=0;i�n1

1��
� F̂ (u)

1� F (ti)

+
X

�i=0;i�n1

F̂ (u)� F̂ (ti)

1� F (ti)
I [ti � u] +

X
�i=2;i�n1

P
tj<ti �F̂ (tj)I [tj � u]

F̂ (ti�)

9=
; : (2:5)

where all ti � T .

The last term in (2.5) can also be simpli�ed to

X
�i=2;i�n1

F̂ (min(u; ti�))
F̂ (ti�)

:

(b) Similarly, the constrained self-consistent equation for u > T is:

F̂ (u) = � +
1� �

n2

8<
:

X
�i=1;i�n2

I [si � u] +
X

�i=0;i�n2

F̂ (u)� F̂ (si)

1� F̂ (si)
I [si � u]

+
X

�i=2;i�n2

�
1�� [F̂ (u)� �]

F̂ (si�)
+

X
�i=2;i�n2

P
sj<si

�F̂ (sj)I [sj � u]

F̂ (si�)

9=
; : (2:6)
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where all si > T .

Again the last term in (2.6) can be simpli�ed to

X
�i=2;i�n2

F̂ (min(u; si�))� �

F̂ (si�)
:

For the derivation of above self-consistent equations, please see Appendix A. We summerize the

result in the following theorem.

Theorem 2.1: The NPMLE of F (�) under hypothesis (2.1) based on data (1.1) must satisfy

the modi�ed self-consistent equations (2.5) and (2.6). }
Using the above modi�ed self-consistent equations, we can iteratively compute the estimator of

distribution F under the constrain equation by combining the estimator before and after time T .

Theorem 2.2: The estimator obtained by the above modi�ed self-consistent equations is at

least a local maximum of the likelihood function under (2:1).

Proof: See Appendix B.

3. Modi�ed Self-Consistent Equations Under Many Constraints

In this section, we extend the modi�ed self-consistent algorithm to handle hypotheses (constraints)

at several times:

H0 : F (T1) = �1; F (T2) = �2; : : : ; F (Tk) = �k

H1 : F (Tj) 6= �j for at least one j; 1 � j � k:

For simplicity, we only give the proof for k=2. Following the similar steps as in the simple

hypothesis, we can decompose the log-likelihood function into three parts: before time T1, between

time T1 and T2 and after time T2.

logL(F ) = logL1(F ) + logL2(F ) + logL3(F )

=
X

�i=1;i�n1

log(wi) +
X

�i=0;i�n1

log[1� F (ti)] +
X

�i=2;i�n1

log[F (ti�)]

+
X

�i=1;i�n2

log(zi) +
X

�i=0;i�n2

log[1� F (xi)] +
X

�i=2;i�n2

log[F (xi�)]

+
X

�i=1;i�n3

log(vi) +
X

�i=0;i�n3

log[1� F (si)] +
X

�i=2;i�n3

log[F (si�)]

where wi, zi and vi are de�ned as jumps on ith observation before time T1, between time T1 and

T2 and after time T2 respectively; ti, xi and si are observations before time T1, between time T1

and T2 and after time T2 respectively. There are n1 observations before time T1, n2 observations

between time T1 and T2, and n3 observations after time T2. The total number of observations is

n1+n2+n3 = n. Note that the constraints are
Pn1

i=1 wi = �1,
Pn2

i=1 zi = �2��1, and
Pn3

i=1 vi = 1��2.
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We de�ne the jumps before time T1 and after time T2 similarly as in section 2. The jumps

between time T1 and T2 can be de�ned as

zi = zi(�) =
�F̂ (xi)

1 + �h(xi)

�2 � �1
B(�)

with B(�) =
n2X
i=1

�F̂ (xi)

1 + �h(xi)
;

and B(0) = �2 � �1.

logL1(F ) and logL3(F ) here are the same as logL1(F ) and logL2(F ) in Section 2. We shall

focus on logL2(F ), the log-likelihood function between time T1 and T2. The self-consistent equation

for T1 � u � T2 is:

F̂ (u) = �1 +
�2 � �1
n2

8<
:

X
�i=1;i�n2

I(xi � u)

+
X

�i=0;i�n2

1��2
�2��1

[F̂ (u)� �1]

1� F̂ (xi)
+

X
�i=0;i�n2

[F̂ (u)� F̂ (xi)]I[xi � u]

1� F̂ (xi)

+
X

�i=2;i�n2

[F̂ (min(xi; u))� �1]

F̂ (xi�)
+

X
�i=2;i�n2

�1
�2��1

[F̂ (u)� �1]

F̂ (xi�)

9=
; (3:1)

where T1 � xi � T2 (For the details, see Appendix C).

4. Empirical Likelihood Ratio Tests And Con�dence Intervals

Let ~F be the NPMLE of F which maximizes log likelihood, log L(F ) de�ned in (2.2), over all

distributions and F̂ denote the NPMLE of F under H0, which maximizes the log likelihood only

among distributions that satisfy H0. We de�ne the empirical likelihood ratio function as:

R(H0) =
L(F̂ )

L( ~F )
:

Our likelihood ratio test statistic is:

�2 logR(H0) = �2 log maxH0
L(F )

maxH0+H1
L(F )

= 2

�
log( max

H0+H1

L(F ))� log(max
H0

L(F ))

�

= 2
h
log(L( ~F ))� log(L(F̂ ))

i
:

The method described in section 2 will enable us to compute the constrained NPMLE F̂ which

maximizes the log likelihood under H0 : F (T ) = �. Using the usual self-consistent algorithm, we

can compute NPMLE ~F without any constraint. So once we have these estimates, we can easily

compute the empirical likelihood ratio. We use chi-square theory to carry out hypothesis testing
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and construct con�dence intervals. For theory about empirical likelihood ratio, see Owen (1987)

and Murphy and Van der Varrt (1995).

If the observed �2 logR(H0) is greater than �
2
1;� (the 100(1��)th percentile of �2 with 1 degree

freedom), we reject H0 at � signi�cance level. To construct the con�dence interval for F (T ), we

can test di�erent hypotheses with �xed T and various �'s and form the 1 � � con�dence interval

for F (T ) as n
� : �2 logR(H0 : F (T ) = �) � �2

1;�

o
: (4:1)

We can also the construct con�dence interval for percentile F�1(�) as follows. Test many

hypotheses with �xed � value and various T values, and form the con�dence interval as:

n
T : �2 logR(H0 : F (T ) = �) � �2

1;�

o
: (4:2)

In particular, a con�dence interval for the median can be obtained with � = 1=2.

5. In
uence Function of NPMLE and Its Estimation

In
uence function (or in
uence curve) is a general technique to obtain the variance of a random

process (and more). In the analysis of ~F (�) with doubly censored samples, there are three in
uence

functions corresponding to right, left and non-censored observations. Chang (1990) computed those

asymptotic in
uence functions for the process
p
n(F̂n(t)� F (t)), he obtained the following:

p
n(F̂n(t)� F (t)) =

Z T

0
IC1(t; s)dq

(n)
1 (s) +

Z T

0
IC0(t; s)dq

(n)
0 (s)

+

Z T

0
IC2(t; s)dq

(n)
2 (s) + o(n)p (1) ;

where

q
(n)
j (t) =

p
n

" 
1

n

X
i

I[zi�t;�i=j]

!
�E

 
1

n

X
i

I[zi�t;�i=j]

!#
j = 0; 1; 2 :

>From the above, we could try to estimate the three asymptotic in
uence functions, ^ICj(t; s)

and then estimate the variance of
p
n(F̂ (t)� F (t)) by

Z T

0

^IC2
1(t; s)dq

(n)
1 (s) +

Z T

0

^IC2
0(t; s)dq

(n)
0 (s) +

Z T

0

^IC2
2(t; s)dq

(n)
2 (s)

�
 Z T

0

^IC1(t; s)dq
(n)
1 (s) +

Z T

0

^IC0(t; s)dq
(n)
0 (s) +

Z T

0

^IC2(t; s)dq
(n)
2 (s)

!2

:

However, those in
uence functions are only de�ned via Fredholm integral equations that involve

unknown distribution.
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We plug-in the (self consistent) estimate of those distribution functions, discretize the Fredholm

integral equations into matrix equations and solve for ^IC. For details see Chang (1990) and

Numerical Recipes in C.

In this approach we need to solve a matrix equation that resulted from discretizing corresponding

integral equations for in
uence functions. If we discretizing at a few points, then the estimate would

not be very good. If we use a lot of discretizing points, computation is slow. Therefore for large

sample sizes, this approach is very computationally expensive (to �nd the inverse of a large matrix).

In our experience, when censored observations (both right and left) total exceed 500, it becomes

slow in our implementation, since we discretizing at observed censoring times.

Nevertheless, this approach is worth exploring and it is interesting to compare to the approach

of empirical likelihood described in Section 4.

6. Applications, Simulations and Examples

6.1 Applications: Paired Comparison

In section 1, we gave an example indicating that doubly censored data may result from paired

comparison experiments. We shall specify a model for this case and illustrate the use of the

testing procedures to test the hypothesis for drug e�ect when we do not want to make parametric

assumptions.

A reasonable model for the paired experiment is as follows: for ith subject (or pair) (i =

1; 2; : : : ; n) we observe Y1i and Y2i where

Y1i = �d + Si + �1i ;

Y2i = �p + Si + �2i ;

where �d(�p) is the main e�ect for drug (placebo), Si is the subject e�ect, �ki is the random error.

The di�erence of Y1i and Y2i is:

Di = (�d � �p) + (�1i � �2i);

which is free from Si, a fact that lead many test procedures to be based on the Di's. If we assume

�1i and �1i are exchangable, then the median of Di is �d � �p. Thus a test of H0 : �d � �p = 0 can

be carried out by testing if the median of Di is zero. Double censoring on the Di requires our test

as described in section 4 and 5.

In the case where �ki are i.i.d. with a distribution of exp(�)� 1=� (mean zero exponential), Di

has double exponential distribution with location parameter �d � �p. Since the sample median is
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MLE of location parameter for double exponential distribution, we can expect the test to perform

well in this case.

We carried out some simulations for this procedure summerized in Table 6.1.

Table 6.1: The Percentage Of Rejecting H0 : �d = �p At � = 0:05

Di�erence Size No Censored Light Censored Medium Censored Heavy Censored

0:0 n = 100 0:053 0:054 0:058 0:044
n = 25 0:077 0:048 0:053 0:044

0:3 n = 100 0:968 0:907 0:819 0:633
n = 25 0:487 0:374 0:284 0:188

0:2 n = 100 0:767 0:635 0:487 0:373
n = 25 0:276 0:205 0:146 0:120

When the null hypothesis is true, the percentages of rejecting H0 are very close to the nominal

level 0:05 for small and large samples. When there is di�erence between drug and placebo, the

rejecting percentages decrease with the increases of censoring observations.

6.2 Simulation: Hypothesis Testing

In our �rst simulation, we took normally distributed samples of size 100 and size 25 respectively

for each run and each entry in Table 6.3 was based on 5,000 runs.

Table 6.2: Generating Normally Distributed Samples i = 1; 2; � � � ; n:
Xi Zi Yi

light-censored N(� = 10; � = 2) N(� = 6; � = 2) exp(1) + Zi + 8
(10%� 20% censored)

medium-censored N(� = 10; � = 2) N(� = 7; � = 2) exp(1) + Zi + 5
(20%� 40% censored)

heavy-censored N(� = 10; � = 2) N(� = 9; � = 2) exp(1) + Zi + 2
(40%� 60% censored)

Table 6.3 illustrates the probabilities of rejecting H0 : F (T ) = � at nominal signi�cance level

� = 0:05 (or 0:10). The percentages were computed as the number of �2log-likelihood ratios greater

than critical value �2
1;0:05 = 3:84 (or �2

1;0:1 = 2:71) divided by 5000. From Table 6.3 we can see the

probabilities of rejecting H0 are pretty close to the nominal level � = 0:05 (or 0:10).

We took exponentially distributed samples of size 100 and size 25 respectively for our second

simulation. This simulation was also based on 5000 samples.
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Table 6.3: The Percentage Of Rejecting H0 : F (T ) = � At � = 0:05 And 0:10

T � Sample Size Light Censored Medium Censored Heavy Censored

10 0:5 n = 100 5:38% / 10:36% 5:02% / 10:04% 4:66% / 12:26%
n = 25 4:62% / 10:76% 4:82% / 10:12% 4:92% / 10:14%

8 0:1586553 n = 100 5:04% / 10:2% 5:02% / 10:4% 5:70% / 10:44%
n = 25 5:12% / 12:8% 6:08% / 11:52% 5:58% / 10:72%

Table 6.4: Generating Exponentially Distributed Samples i = 1; 2; � � � ; n:
Xi Zi Yi

light-censored exp(2) exp(15) exp(1) + Zi + 1
(10%� 20% censored)

medium-censored exp(2) exp(8) exp(1) + Zi + 0:3
(20%� 40% censored)

heavy-censored exp(2) exp(5) exp(1) + Zi

(40%� 60% censored)

Again Table 6.5 shows that the probabilities of rejecting H0 are around the nominal level

� = 0:05 (or 0:10).

Table 6.5: The Percentage Of Rejecting H0 : F (T ) = � At � = 0:05 And 0:10

T � Sample Size Light Censored Medium Censored Heavy Censored

0:5 0:6321206 n = 100 4:18% / 9:06% 4:50% / 9:58% 4:94% / 9:98%
n = 25 4:58% / 9:68% 4:70% / 9:74% 5:40% / 10:2%

0:3 0:4511884 n = 100 4:72% / 8:64% 4:56% / 9:34% 4:48% / 9:38%
n = 25 4:52% / 10:18% 4:82% / 10:18% 5:46% / 10:68%

Figure 6.1 and 6.2 are Q-Q plots of �2log-likelihood ratios for the above two simulations verse

the �2
(1) percentiles. At the point 3:84 (or 2:71), if the �2log-likelihood ratio line is above the

dashed line (45� line), the rejecting probability is greater than 5% (or 10%). Otherwise, the

rejecting probability is less than 5% (or 10%).

Remark 6.1: The Q-Q plots for exponentially distributed light-censored simulations (Figure

6.1(d) and 6.2 (d)) are somehow more discrete than the others. We did 5000 uncensored simulations

with exponential distribution, the Q-Q plot is similar to Figure 6.1(d) and 6.2 (d). Since the

constraint is F (T ) = �, F̂ and ~F only depend on the number of observations(n1) before and (n2)

after time T . If there are the same n1 and n2 in two uncensored samples, �2log-likelihood ratio will

be the same. That is why uncensored and light-censored plots look more discrete. The censoring

somehow smoothed the plot, and made the chi-square approximation better.
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6.3 Example: Con�dence intervals { A case study

We compare the con�dence intervals obtained via empirical likelihood ratio as in section 4 to

con�dence intervals obtained by directly estimating the asymptotic variance of F̂ (T ) and then form

the Wald (1� �) con�dence interval:

F̂ (T )� Z(1��=2)

q
^V ar[F̂ (T )] : (6:1)

where Z(1��=2) is the 100(1��=2)th percentile of a standard normal distribution. Better con�dence

intervals may be obtained on a transformed scale. We may use the log-log transformation to obtain:

(Ŝ(�) = 1� F̂ (�)),

[Ŝ(T )b; Ŝ(T )1=b] ; where b = exp

2
4Z(1��=2)

q
^V ar[Ŝ(T )]

Ŝ(T )j log Ŝ(T )j

3
5 : (6:2)

or the logit transformation to obtain:

[
ea

1 + ea
;

eb

1 + eb
] ; (6:3)

where

a = log
F̂ (T )

1� F̂ (T )
� Z(1��=2)

F̂ (T )(1� F̂ (T ))

q
^V ar[F̂ (T )]

and

b = log
F̂ (T )

1� F̂ (T )
+

Z(1��=2)

F̂ (T )(1� F̂ (T ))

q
^V ar[F̂ (T )] :

It is not easy to obtain the Wald type con�dence interval for the median (or other quantiles).

But we can invert the test of F (T ) = 0:5 with estimated variance. Therefore the con�dence set for

median may be obtained as the set of points T that satisfy the following condition:8<
:T : �Z(1��=2) �

F̂ (T )� 0:5q
^V ar[F̂ (T )]

� Z(1��=2)

9=
; : (6:4)

To construct con�dence intervals, we will use the following doubly censored data as our example.

Turnbull and Weiss (1978) reported part of a study conducted at Stanford-Palo Alto Peer

Counseling Program (see Hamburg et al. (1975) for details of the study). In this study, 191

California high school boys were asked \When did you �rst use marijuana?" The answers are either

the exact age (uncensored observations), or \I never used it" which are right-censored observations

at the boys' current ages, or \I have used it but can not recall just when the �rst time was" which

are left-censored observations. Table 6.6 shows the results of this study.

The estimated median age of high school boys who use marijuana is 14 years old.

11



Suppose we are interested to obtain 95% con�dence interval for the median age of �rst time

marijuana use. Table 6.7 shows the 95% con�dence intervals for the median age with (4.2) and

(6.4). Table 6.8 shows four di�erent kinds of 95% con�dence intervals for � at the median age with

(4.1), (6.1), (6.2) and (6.3).

Table 6.7: 95% Con�dence Intervals For Median Age(14)

method Con�dence Interval

T : �2 logR(H0 : F (T ) = 0:5) � 3:84 (4:2) (11:00000; 16:99991)

T : �1:96 � F̂ (t)�0:5p
^V ar[F̂ (t)]

� 1:96 (6.4) (10; 19)

Table 6.8: 95% Con�dence Intervals For F (14)

method Con�dence Interval

� : �2 logR(H0 : F (14) = �) � 3:84 (4:1) (0:2798736; 0:7195857)

[1� Ŝ(14)b; 1� Ŝ(14)1=b] (6:2) (0:0378062; 0:9999983)

[ ea

1+ea ;
eb

1+eb
] (6:3) (0:01719094; 0:9842504)

F̂ (14)� 1:96
q

^V ar[F̂ (14)] (6:1) (�0:533258; 1:511003)

From Table 6.8 we can see the 95% con�dence interval obtained by empirical likelihood ratio

(4.1) is narrower than any other three intervals with (6.1), (6.2) and (6.3). The two transformed

intervals obtain by (6.2) and (6.3) are wider than (4.1) but close to each other. We do not know

which transformation is better. We believe the empirical likelihood ratio approach is better because

we do not need to know what is the best transformation, and simulation in the previous section

show the chi square approximation is pretty accurate. The Wald con�dence interval (6.1) includes

the numbers less than 0 and greater than 1. These are not reasonable con�dence limits for a

distribution since a distribution must be between 0 and 1. Therefore, in this example we conclude

that the empirical likelihood ratio approach works better than Wald's approach.

6.4 Software Used

The simulation was carried out using Splus 3.4 for Unix on the HP workstations. The Splus

functions that computes the constrained NPMLE with doubly censored data will be uploaded to

Statlib in the near future, as an update to the function d009newr that was there since June, 1995.
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Appendix A

Derivation of the Self-consistent Equation Before Time T

(a) The log likelihood function before time T :

logL1 =
X

�i=1;i�n1

log(wi) +
X

�i=0;i�n1

log[1� F (ti)] +
X

�i=2;i�n1

log[F (ti�)]

=
X

�i=1;i�n1

log(wi) +
X

�i=0;i�n1

log

2
4(1� �) +

X
tj>ti;j�n1

wj

3
5+ X

�i=2;i�n1

log

0
@ X

tj<ti;j�n1

wj

1
A :

To facilitate derivative we substitute wi(�) as in (2.3)

logL1 =
X

�i=1;i�n1

log
�F̂ (ti)

1 + �h(ti)

�

C(�)
+

X
�i=0;i�n1

log

2
4(1� �) +

X
tj>ti;j�n1

�F̂ (tj)

1 + �h(tj)

�

C(�)

3
5

+
X

�i=2;i�n1

log
X

tj<ti;j�n1

�F̂ (tj)

1 + �h(tj)

�

C(�)
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=
X

�i=1;i�n1

log
�

C(�)
+

X
�i=1;i�n1

log
�F̂ (ti)

1 + �h(ti)
+

X
�i=0;i�n1

log
�

C(�)

+
X

�i=0;i�n1

log

2
41� �

�
C(�) +

X
tj>ti;j�n1

�F̂ (tj)

1 + �h(tj)

3
5

+
X

�i=2;i�n1

log
�

C(�)
+

X
�i=2;i�n1

log
X

tj<ti;j�n1

�F̂ (tj)

1 + �h(tj)

= n1 log
�

C(�)
+

X
�i=1;i�n1

log
�F̂ (ti)

1 + �h(ti)
+

X
�i=0;i�n1

log

2
4 (1� �)C(�)

�
+

X
tj>ti;j�n1

�F̂ (tj)

1 + �h(tj)

3
5

+
X

�i=2;i�n1

log
X

tj<ti;j�n1

�F̂ (tj)

1 + �h(tj)
:

Now we are ready to take derivative with respect to �,

@ logL1

@�
= �n1

C
0

(�)

C(�)
�

X
�i=1;i�n1

h(ti)

1 + �h(ti)

+
X

�i=0;i�n1

1��
�
C

0

(�) �
P

tj>ti

�F̂ (tj)h(tj)
[1+�h(tj)]2

1��
�
C(�) +

P
tj>ti

�F̂ (tj)
1+�h(tj)

�
X

�i=2;i�n1

P
tj<ti

�F̂ (tj)h(ti)
[1+�h(tj)]2P

tj<ti

�F̂ (tj)
1+�h(tj )

:

If we set � = 0, the above can be simpli�ed to

@ logL1

@�
j�=0 =

n1

�

n1X
i=1

�F̂ (ti)h(ti)�
X

�i=1;i�n1

h(ti)�
X

�i=0;i�n1

1��
�

Pn1
i=1�F̂ (ti)h(ti)

(1� �) +
P

tj>ti
�F̂ (tj)

�
X

�i=0;i�n1

P
tj>ti

�F̂ (tj)h(tj)

(1� �) +
P

tj>ti
�F̂ (tj)

�
X

�i=2;i�n1

P
tj<ti

�F̂ (tj)h(tj)P
tj<ti

�F̂ (tj)
:

This derivative must be zero since F̂ is the NPMLE.
Thus we get

n1X
i=1

�F̂ (ti)h(ti) =
�

n1

8<
:

X
�i=1;i�n1

h(ti) +
X

�i=0;i�n1

1��
�

Pn1
i=1�F̂ (ti)h(ti)

1� F (ti)

+
X

�i=0;i�n1

P
tj>ti

�F̂ (tj)h(tj)

1� F (ti)
+

X
�i=2;i�n1

P
tj<ti

�F̂ (tj)h(tj)

F̂ (ti�)

9=
; (A:�)

If we take h(ti) = I[ti � u], for u � T (A:�) becomes equation (2.5).

Derivation of the Self-consistent Equation After Time T

Similarly we can obtain the constrained self-consistent equation for F̂ when u > T .
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(b) The log likelihood function after time T is

logL2 =
X

�i=1;i�n2

log(vi) +
X

�i=0;i�n2

log[1� F (si)] +
X

�i=2;i�n2

log[F (si�)]

=
X

�i=1;i�n2

log(vi) +
X

�i=0;i�n2

log(
X

sj>si;j�n2

vj) +
X

�i=2;i�n2

log(� +
X

sj<si;j�n2

vj)

Again substituting vi(�) as in (2.4),

logL2 =
X

�i=1;i�n2

log
�F̂ (si)

1 + �h(si)

1� �

D(�)
+

X
�i=0;i�n2

log
X
sj>si

�F̂ (sj)

1 + �h(sj )

1� �

D(�)

+
X

�i=2;i�n2

log

2
4� + X

sj<si

�F̂ (sj)

1 + �h(sj)

1� �

D(�)

3
5

=
X

�i=1;i�n2

log
1� �

D(�)
+

X
�i=1;i�n2

log
�F̂ (si)

1 + �h(si)
+

X
�i=0;i�n2

log
1� �

D(�)

+
X

�i=0;i�n2

log
X
sj>si

�F̂ (sj)

1 + �h(sj)
+

X
�i=2;i�n2

log
1� �

D(�)

+
X

�i=2;i�n2

log

2
4 �

1� �
D(�) +

X
sj<si

�F̂ (sj)

1 + �h(sj)

3
5

= n2 log
1� �

D(�)
+

X
�i=1;i�n2

log
�F̂ (si)

1 + �h(si)
+

X
�i=0;i�n2

log
X
sj>si

�F̂ (sj)

1 + �h(sj)

+
X

�i=2;i�n2

log

2
4 �

1� �
D(�) +

X
sj<si

�F̂ (sj)

1 + �h(sj)

3
5 :

Taking derivative with respect to �, it follows:

@ logL2

@�
= �n2

D
0

(�)

D(�)
�

X
�i=1;i�n2

h(si)

[1 + �h(si)]2

�
X

�i=0;i�n2

P
sj>si

�F̂ (sj )h(sj)
[1+�h(sj )]2P

sj>si

�F̂ (sj)
1+�h(sj)

+
X

�i=2;i�n2

�
1��D

0

(�) �
P

sj<si

�F̂ (sj)h(si)
[1+�h(sj )]2

�
1��D(�) +

P
sj<si

�F̂ (sj)
1+�h(sj)

:

If we set � = 0 and the derivative must be zero, thus

n2X
i=1

�F̂ (si)h(si) =
1� �

n2

8<
:

X
�i=1;i�n2

h(si) +
X

�i=0;i�n2

P
sj>si

�F̂ (sj)h(sj)P
sj>si

�F̂ (sj)

+
X

�i=2;i�n2

�
1��

Pn2
i=1�F̂ (sj)h(sj)

� +
P

sj<si
�F̂ (sj )

+
X

�i=2;i�n2

P
sj<si

�F̂ (sj )h(sj)

� +
P

sj<si
�F̂ (sj)

9=
; :

If we take h(si) = I[si � u] for u > T , the above equation becomes (2.6).
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Appendix B

Proof of Theorem 2.2

Taking the second derivative of log likelihood function logL1 with respect to � and setting � = 0 and
h(ti) = I[ti�u], we can simplify the derivative as follows:

@2 logL1

@�2
j�=0 = �

2n1
�
F̂ (u) +

n1

�2
[F̂ (u)]2 +

X
�i=1;i�n1

I[ti�u]

+2
X

�i=0;i�n1

1��
�
F̂ (u)

1� F̂ (ti)
+ 2

X
�i=0;i�n1

F̂ (u)� F̂ (ti)

1� F̂ (ti)
I[ti�u]

�
X

�i=0;i�n1

n
1��
�
F̂ (u) + [F̂ (u)� F̂ (ti)]I[ti�u]

o2
[1� F̂ (ti)]2

+2
X

�i=2;i�n1

F̂ (min(u; ti�)

F̂ (ti�)
�

X
�i=2;i�n1

(
F̂ (min(u; ti�)

F̂ (ti�)

)2

:

Substituting F̂ (u) as in (2.5),

@2 logL1

@�2
j�=0 = �

X
�i=1;i�n1

I[ti�u] +
n1

�2
[F̂ (u)]2

�
X

�i=0;i�n1

n
1��
�
F̂ (u) + [F̂ (u)� F̂ (ti)]I[ti�u]

o2
[1� F̂ (ti)]2

�
X

�i=2;i�n1

"
F̂ (min(u; ti�))

F̂ (ti�)

#2

= �n1

8><
>:

1

n1

2
64 X
�i=1;i�n1

I2[ti�u] +
X

�i=0;i�n1

n
1��
�
F̂ (u) + [F̂ (u)� F̂ (ti)]I[ti�u]

o2
[1� F̂ (ti)]2

+
X

�i=2;i�n1

 
F̂ (min(u; ti�))

F̂ (ti�)

!2
3
5 �

"
F̂ (u)

�

#29=
;

= �n1

8<
: 1

n1

n1X
i=1

a2i �

"
1

n1

n1X
i=1

ai

#29=
;

where

n1X
i=1

a2i =
X

�i=1;i�n1

I2[ti�u] +
X

�i=0;i�n1

n
1��
�
F̂ (u) + [F̂ (u)� F̂ (ti)]I[ti�u]

o2
[1� F̂ (ti)]2

+
X

�i=2;i�n1

"
F̂ (min(u; ti�))

F̂ (ti�)

#2

and
n1X
i=1

ai =
X

�i=1;i�n1

I[ti�u] +
X

�i=0;i�n1

1��
�
F̂ (u) + [F̂ (u)� F̂ (ti)]I[ti�u]

[1� F̂ (ti)]
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+
X

�i=2;i�n1

F̂ (min(u; ti�)

F̂ (ti�)

By (2.5) and Cauchy-Schwartz Inequality, it is clear that the second derivative of logL1 is non-positive.
The second derivative of logL2 is also non-positive by following the similar steps. }

Appendix C

Derivation of the self-consistent Equations Between Time T1 and T2

logL2 =
X

�i=1;i�n2

log(zi) +
X

�i=0;i�n2

log[1� F (xi)] +
X

�i=2;i�n2

log[F (xi�)]

=
X

�i=1;i�n2

log(zi) +
X

�i=0;i�n2

log [1� F (T2) + F (T2)� F (xi)]

+
X

�i=2;i�n2

log [F (xi�) � F (T1) + F (T1)]

=
X

�i=1;i�n2

log(zi) +
X

�i=0;i�n2

log

2
4(1� �2) +

X
xj>xi;i�n2

zj

3
5+ X

�i=2;i�n2

log

2
4 X
xj<xi;i�n2

zj + �1

3
5

Plug zi(�) into logL2 into above equation, we get

logL2 =
X

�i=1;i�n2

log

"
�F̂ (xi)

1 + �h(xi)

�2 � �1

B(�)

#
+

X
�i=0;i�n2

log

2
4(1� �2) +

X
xj>xi;j�n2

�F̂ (xj)

1 + �h(xj)

�2 � �1

B(�)

3
5

+
X

�i=2;i�n2

log

2
4 X
xj<xi;j�n2

�F̂ (xj)

1 + �h(xj)

�2 � �1

B(�)
+ �1

3
5

=
X

�i=1;i�n2

log
�2 � �1

B(�)
+

X
�i=1;i�n2

log
�F̂ (xi)

1 + �h(xi)

+
X

�i=0;i�n2

log

2
4�2 � �1

B(�)

B(�)

�2 � �1
(1� �2) +

X
xj>xi;j�n2

�F̂ (xj)

1 + �h(xj)

�2 � �1

B(�)

3
5

+
X

�i=2;i�n2

log

2
4�2 � �1

B(�)

X
xj>xi;j�n1

�F̂ (xj)

1 + �h(xj)
+
�2 � �1

B(�)

�1

�2 � �1

3
5

= n2 log
�2 � �1

B(�)
+

X
�i=1;i�n2

log
�F̂ (xi)

1 + �h(xi)

+
X

�i=0;i�n2

log

2
4 1� �2

�2 � �1
B(�) +

X
xj>xi;j�n2

�F̂ (xj)

1 + �h(xj)

3
5

+
X

�i=2;i�n2

log

2
4 X
xj<xi;j�n2

�F̂ (xj)

1 + �h(xj)
+

�1

�2 � �1
B(�)

3
5 :

Taking derivative with respective to �,

@ logL2

@�
= �n2

B
0

(�)

B(�)
�

X
�i=1;i�n1

h(xi)

1 + �h(xi)
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+
X

�i=0;i�n1

1��2
�2��1

B
0

(�) �
P

xj>xi

�F̂ (xj)h(xj )
[1+�h(xj )]2

1��2
�2��1

B(�) +
P

xj>xi

�F̂ (xj)
1+�h(xj )

+
X

�i=2;i�n2

P
xj<xi;j�n2

��F̂ (xj)h(xi)
[1+�h(xj )]2

+ �1
�2��1

B
0

(�)P
xj<xi;j�n2

�F̂ (xj)
1+�h(xj)

+ �1
�2��1

B(�)
:

If we set � = 0, the above equation can be simpli�ed to

@ logL2

@�
j�=0 =

n2

�2 � �1

n2X
i=1

�F̂ (xi)h(xi) �
X

�i=1;i�n2

h(xi)

�
X

�i=0;i�n2

1��2
�2��1

Pn2
i=1�F̂ (xi)h(xi) +

P
xj>xi

�F̂ (xj)h(xj)

(1� �2) +
P

xj>xi
�F̂ (xj)

�
X

�i=2;i�n2

P
xj<xi

�F̂ (xj)h(xj) +
�1

�2��1

Pn2
i=1�F̂ (xi)h(xi)

�1 +
P

xj<xi
�F̂ (xj)

:

Since the derivative is equal to zero, we rearrange the terms and obtain

n2X
i=1

�F̂ (xi)h(xi) =
�2 � �1

n2

8<
:

X
�i=1;i�n2

h(xi)

+
X

�i=0;i�n2

1��2
�2��1

Pn2
i=1�F̂ (xi)h(xi) +

P
xj>xi

�F̂ (xj)h(xj)

(1� �2) +
P

xj>xi
�F̂ (xj)

+
X

�i=2;i�n2

P
xj<xi

�F̂ (xj)h(xj) +
�1

�2��1

Pn2
i=1�F̂ (xi)h(xi)

�1 +
P

xj<xi
�F̂ (xj)

9=
; :

Now we take h(xi) = I[xi�u] for T1 � u � T2, the above equation can be rewritten as (3.1).
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Table 6.6: Marijuana Use In High School Boys

Age Number of Exact Number Who Have Yet Number Who Have Started
Observations to Smoke Marijuana Smoking at an Earlier Age

10 4 0 0

11 12 0 0

12 19 2 0

13 24 15 1

14 20 24 2

15 13 18 3

16 3 14 2

17 1 6 3

18 0 0 1

> 18 4 0 0
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Figure 6.1: Q-Q Plot of �2log-likelihood Ratios vs. �2
(1) Percentiles

For Sample Size = 100
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Figure 6.2: Q-Q Plot of �2loglikelihood Ratios vs. �2
(1) Percentiles

For Sample Size = 25
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