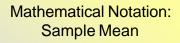


- First Midterm Exam a week from today,
- Feb. 23 5-7pm
- Cover up to mean and median of a sample (begin of chapter 6). But not any measure of spread (i.e. standard deviation, inter-quartile range etc)

STA 291 - Lecture 10


2

3

Summarizing Data Numerically

- Center of the data
 - Mean (average)
 - Median
 - Mode (...will not cover)
- Spread of the data
 - Variance, Standard deviation
 - Inter-quartile range
 - Range

STA 291 - Lecture 10

- Sample size *n*
- Observations x₁, x₂,..., x_n
- Sample Mean "x-bar" --- a statistic

$$\overline{\mathbf{x}} = (x_1 + x_2 + \dots + x_n) / n$$

= $\frac{1}{n} \sum_{i=1}^n x_i$ $\sum_{i=1}^n \sum_{j=1}^n x_j$

STA 291 - Lecture 10

4

5

6

Mathematical Notation:
Population Mean for a
finite population of size N
Population size (finite) N
Observations
$$x_1, x_2, ..., x_N$$

Population Mean "mu" – a Parameter
 $\mathbf{m} = (x_1 + x_2 + ... + x_N) / N$
 $= \frac{1}{N} \sum_{i=1}^{N} x_i$

STA 291 - Lecture 10

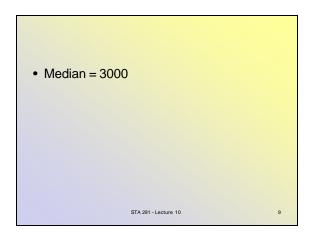
Infinite populations

- Imagine the population mean for an infinite population.
- Also denoted by mu or
- Cannot compute it (since infinite population size) but such a number exist in the limit.

STA 291 - Lecture 10

• Carry the same information.

Infinite population

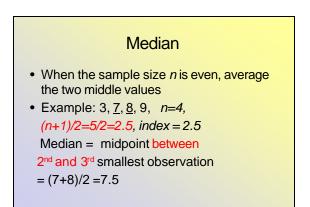

- When the population consists of values that can be ordered
- Median for a population also make sense: it is the number in the middle...half of the population values will be below, half will be above.

STA 291 - Lecture 10

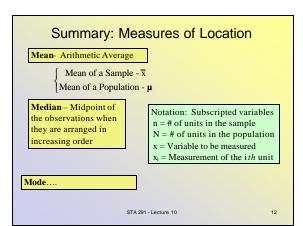
Mean

- If the distribution is highly skewed, then the mean is not representative of a typical observation
- Example: Monthly income for five persons 1,000 2,000 3,000 4,000 100,000
- Average monthly income: = 22,000
- Not representative of a typical observation.

STA 291 - Lecture 10


Median

- The median is the measurement that falls in the middle of the *ordered* sample
- When the sample size *n* is odd, there is a middle value
- It has the ordered index (n+1)/2
- Example: 1.1, 2.3, <u>4.6</u>, 7.9, 8.1
 n=5, (n+1)/2=6/2=3, so index = 3, Median = 3rd smallest observation = 4.6


STA 291 - Lecture 10

10

11

STA 291 - Lecture 10

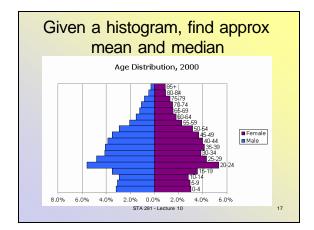
Me	an vs. Medi	an
Observations	Median	Mean
1, 2, 3, 4, 5	3	3
1, 2, 3, 4, 100	3	22
3, 3, 3, 3, 3	3	3
1, 2, 3, 100, 100	3	41.2
	STA 291 - Lecture 10	13

Mean vs. Median

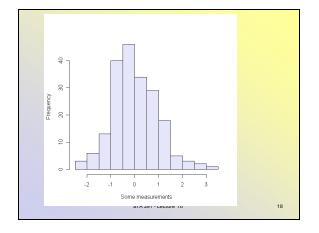
- If the distribution is symmetric, then Mean=Median
- If the distribution is skewed, then the mean lies more toward the direction of skew
- Mean and Median Online Applet

STA 291 - Lecture 10

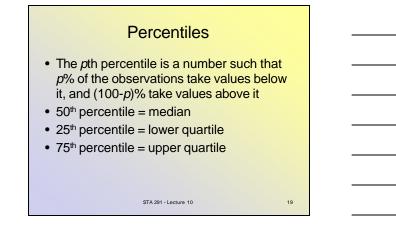
Why not always Median?

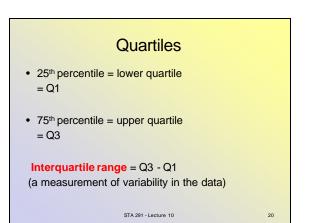

- Disadvantage: Insensitive to changes within the lower or upper half of the data
- Example: 1, 2, 3, 4, 5, 6, 7 vs. 1, 2, 3, 4, 100,100,100
- For symmetric, bell shaped distributions, mean is more informative.
- Mean is easy to work with. Ordering can take a long time
- Sometimes, the mean is more informative even when the distribution is slightly skewed

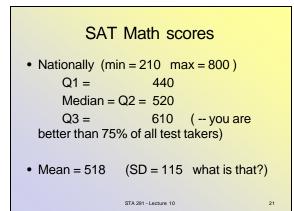
STA 291 - Lecture 10


15

Census Data	Lexington	Fayette County	Kentucky	United States
Population	261,545	261,545	4,069,734	281,422,131
Area in square miles	306	306	40,131	3,554,141
People per sq. mi.	853	853	101	79
Median Age	35	34	36	36
Median Family Income	\$42,500	\$39,500	\$32,101	\$40,591
Real Estate Market Data	Lexington	Fayette County	Kentucky	United States
Total Housing Units	54,587	54,587	806,524	115,904,743
Average Home Price	\$151,776	\$151,776	\$115,545	\$173,585
Median Rental Price	\$383	\$383	\$257	\$471
Owner Occupied	52%	52%	64%	60%
	STA 29	91 - Lecture 10		16



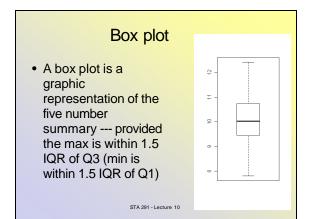




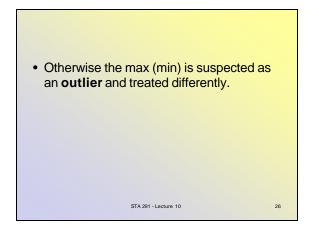
Critical Reading, Mathematics, and Writing				
Score	Critical Reading	Mathematics	Writing	
800	99	99	99+	
790	99	99	99+	
780	99	99	99	
770	99	99	99	
760	99	98	99	
750	98	98	99	
740	98	97	98	
730	97	97	98	
720	96	96	97	
710	96	95	97	
700	95	93	96	
690	94	92	95	
680	93	91	94	
670	92	89	93	
660	90	88	92	
650	89	86	90	
640	87	83	89	
630	85	81	87	
620	83	79	85	
610	82	76	83	
600	79	74	81	
590	77	71	79	
580	74	68	76	
570	71	66	73	
5.60	68	63	71	
550	65	60	68	
540	62	56	64	
530	58	53	62	
520	55	50	58	
510	51	47	54	
500	48	43	51	
490	44	40	47	
480	41	36	44	
470	37	33	40	
460	34	30	37	

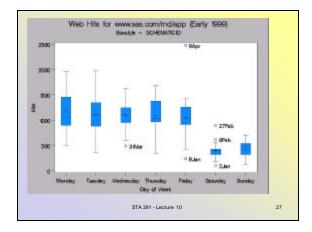
Five-Number Summary Maximum, Upper Quartile, Median, Lower Quartile, Minimum Statistical Software SAS output (Murder Rate Data)

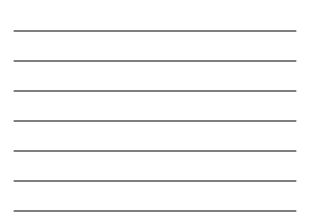
Quantile Estimate

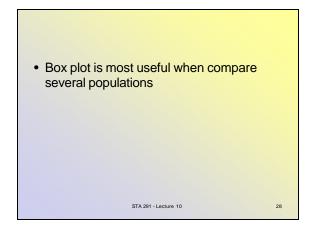

100% Max	20.30	
75% Q3	10.30	
50% Median	6.70	
25% Q1	3.90	
0% Min	1.60	
	STA 291 - Lecture 10	

Five-Number Summary


- Maximum, Upper Quartile, Median, Lower Quartile, Minimum
- Example: The five-number summary for a data set is min=4, Q1=256, median=530, Q3=1105, max=320,000.
- What does this suggest about the shape of the distribution?


STA 291 - Lecture 10


24



Measures of Variation

- Mean and Median only describe the central location, but not the spread of the data
- Two distributions may have the same mean, but different variability
- Statistics that describe variability are called measures of spread/variation

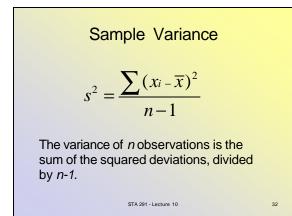
STA 291 - Lecture 10

Measures of Variation

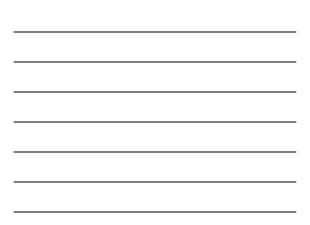
- Range: = max min Difference between maximum and minimum value
- Variance: $s^2 = \frac{\sum (x_i \overline{x})^2}{n-1}$
- ٠
- Standard Deviation: $s = \sqrt{s^2} =$

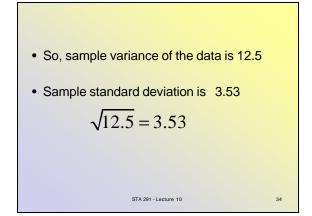
$$\sqrt{\frac{\sum (x_i - \overline{x})^2}{n-1}}$$

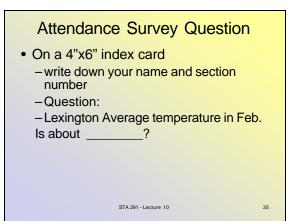

29

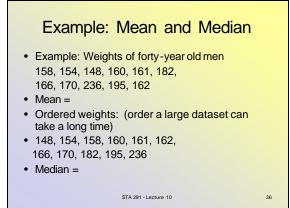

Inter-quartile Range: = Q3 – Q1
 Difference between upper and lower quartile of the data
 STA 291 - Lecture 10
 30

Deviations: Example


- Data: 1, 7, 4, 3, 10
- Mean: (1+7+4+3+10)/5 =25/5=5


(/		
data	Deviation	Dev. square	
1	(1 - 5)= -4	16	
3	(3 - 5)= -2	4	
4	(4 - 5) = -1	1	
7	(7 - 5) = 2	4	
10	(10 - 5) = 5	25	
Sum=25	Sum = 0	sum = 50	
	STA 291 - Lecture 10		3





Observation	Mean	Deviation	Squared
			Deviation
1	5		16
3	5		4
4	5		1
7	5		4
10	5		25
Sum of the Squared Deviations			50
n-1			5-1=4
Sum of the Squared Deviations / (n-1)			50/4=12.5

