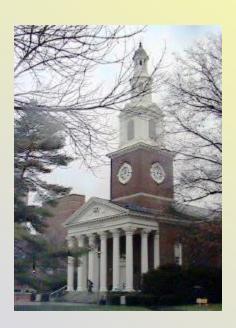
### STA 291 Lecture 11

- Describing Quantitative Data
  - Measures of Central Location

Examples of mean and median

Review of Chapter 5. using the probability rules


You need a Calculator for the exam, but
 no laptop, no cellphone, no blackberry,
 no iphone, etc (anything that can
 transmitting wireless signal is not allowed)

- Location: Memorial Hall,
- Time: Tuesday 5-7pm.

Talk to me if you have a conflict.

 A Formula sheet, with probability rules and sample mean etc will be available.

Memorial Hall



- Feb. 23 5-7pm
- Covers up to mean and median of a sample (beginning of chapter 6). But not any measure of spread (i.e. standard deviation, inter-quartile range etc)

Chapter 1-5, 6(first 3 sections) + 23(first 5 sections)

## Summarizing Data Numerically

- Center of the data
  - Mean (average)
  - Median
  - Mode (...will not cover)
- Spread of the data
  - Variance, Standard deviation
  - Inter-quartile range
  - Range

## Mathematical Notation: Sample Mean

- Sample size n
- Observations x<sub>1</sub>, x<sub>2</sub>,..., x<sub>n</sub>
- Sample Mean "x-bar" --- a statistic

$$\frac{1}{n} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\sum = \text{SUM}$$

# Mathematical Notation: Population Mean for a finite population of size N

- Population size (finite) N
- Observations  $x_1, x_2, ..., x_N$
- Population Mean "mu" --- a Parameter

$$\mathbf{m} = (x_1 + x_2 + \dots + x_N) / N$$

$$= \frac{1}{N} \sum_{i=1}^{N} x_i$$

$$\sum = SUM$$

## Infinite populations

- Imagine the population mean for an infinite population.
- Also denoted by mu or

- Cannot compute it (since infinite population size) but such a number exist in the limit.
- Carry the same information.

## Infinite population

- When the population consists of values that can be ordered
- Median for a population also make sense: it is the number in the middle....half of the population values will be below, half will be above.

#### Mean

- If the distribution is highly skewed, then the mean is not representative of a typical observation
- Example:
  - Monthly income for five persons 1,000 2,000 3,000 4,000 100,000
- Average monthly income: = 22,000
- Not representative of a typical observation.

Median = 3000

#### Median

- The median is the measurement that falls in the middle of the ordered sample
- When the sample size n is odd, there is a middle value
- It has the ordered index (n+1)/2
- Example: 1.1, 2.3, 4.6, 7.9, 8.1 n=5, (n+1)/2=6/2=3, so index = 3, Median =  $3^{rd}$  smallest observation = 4.6

#### Median

- When the sample size n is even, average the two middle values
- Example: 3,  $\frac{7}{8}$ , 9, n=4, (n+1)/2=5/2=2.5, index = 2.5Median = midpoint between 2<sup>nd</sup> and 3<sup>rd</sup> smallest observation = (7+8)/2 = 7.5

#### Summary: Measures of Location

#### Mean- Arithmetic Average

Mean of a Sample -  $\overline{x}$ Mean of a Population -  $\mu$ 

Median – Midpoint of the observations when they are arranged in increasing order

Notation: Subscripted variables n = # of units in the sample N = # of units in the population x = V ariable to be measured  $x_i = M$  easurement of the ith unit

Mode....

### Mean vs. Median

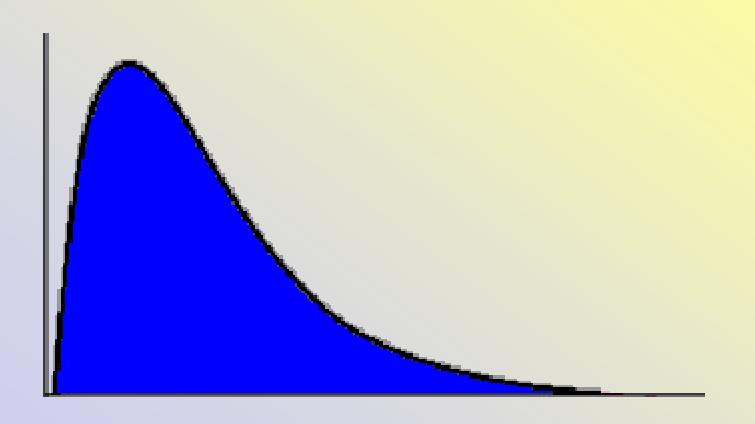
| Observations      | Median | Mean |
|-------------------|--------|------|
| 1, 2, 3, 4, 5     | 3      | 3    |
| 1, 2, 3, 4, 100   | 3      | 22   |
| 3, 3, 3, 3, 3     | 3      | 3    |
| 1, 2, 3, 100, 100 | 3      | 41.2 |

#### Mean vs. Median

- If the distribution is symmetric, then Mean=Median
- If the distribution is skewed, then the mean lies more toward the direction of skew
- Mean and Median Online Applet

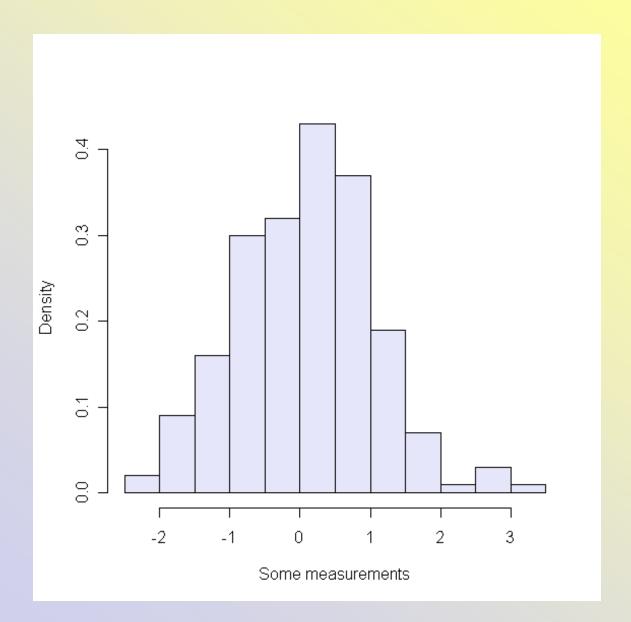
## Example

the sample consist of 5 numbers, 3.6, 4.4, 5.9, 2.1, and the last number is over 10.
(some time we write it as 10+)


Median = 4.4

Can we find the mean here? No

## Example: Mean and Median


- Example: Weights of forty-year old men
  158, 154, 148, 160, 161, 182,
  166, 170, 236, 195, 162
- Mean =
- Ordered weights: (order a large dataset can take a long time)
- 148, 154, 158, 160, 161, 162,
  166, 170, 182, 195, 236
- Median = 162

## Eye ball the plot to find mean/median



 Extreme valued observations pulls mean, but not on median.

For data with a symmetric histogram, mean=median.



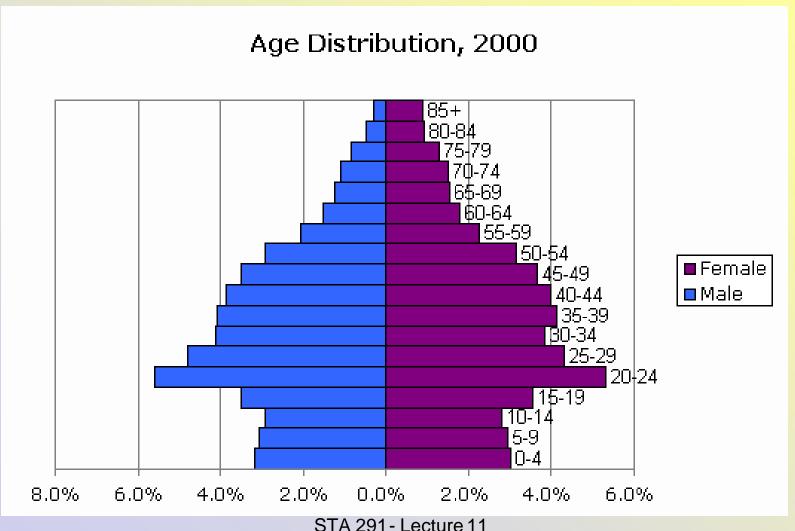
## Using probability rule

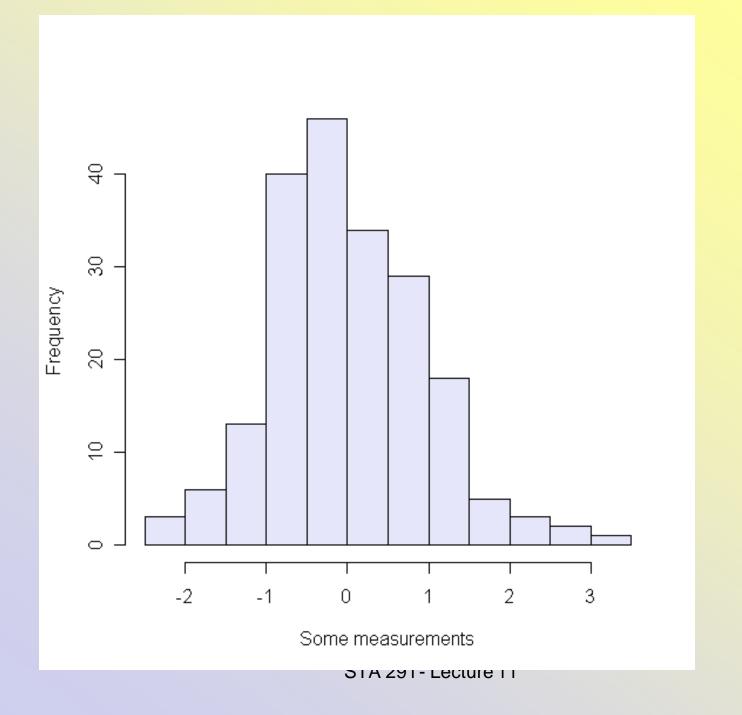
In a typical week day, a restaurant sells ?
 Gallons of house soup.

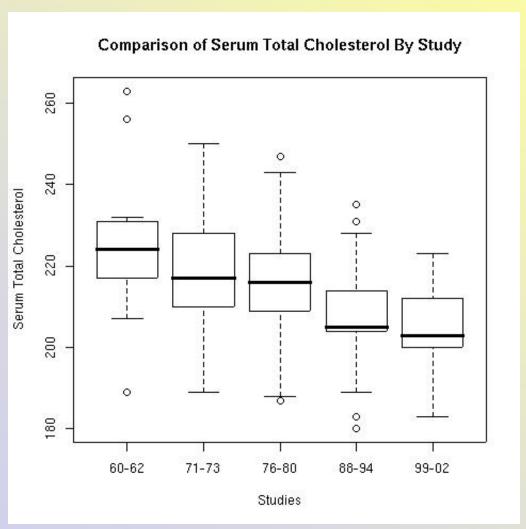
Given that

P( sell more than 5 gallon ) = 0.8

P(sell less than 10 gallon) = 0.7


P( sell between 5 and 10 gallon) = 0.5


## Why not always Median?


- Disadvantage: Insensitive to changes within the lower or upper half of the data
- Example: 1, 2, 3, 4, 5, 6, 7
  1, 2, 3, 4, 100, 100, 100
- For symmetric, bell shaped distributions, mean is more informative.
- Mean is easy to work with. Ordering can take a long time
- Sometimes, the mean is more informative even when the distribution is slightly skewed

| Census Data             | Lexington | Fayette County | Kentucky  | United States |
|-------------------------|-----------|----------------|-----------|---------------|
| Population              | 261,545   | 261,545        | 4,069,734 | 281,422,131   |
| Area in square miles    | 306       | 306            | 40,131    | 3,554,141     |
| People per sq. mi.      | 853       | 853            | 101       | 79            |
| Median Age              | 35        | 34             | 36        | 36            |
| Median Family Income    | \$42,500  | \$39,500       | \$32,101  | \$40,591      |
|                         |           |                |           |               |
| Real Estate Market Data | Lexington | Fayette County | Kentucky  | United States |
| Total Housing Units     | 54,587    | 54,587         | 806,524   | 115,904,743   |
| Average Home Price      | \$151,776 | \$151,776      | \$115,545 | \$173,585     |
| Median Rental Price     | \$383     | \$383          | \$257     | \$471         |
| Owner Occupied          | 52%       | 52%            | 64%       | 60%           |
| STA 291 - Lecture 11    |           |                |           |               |

## Given a histogram, find approx mean and median







STA 291 - Lecture 11

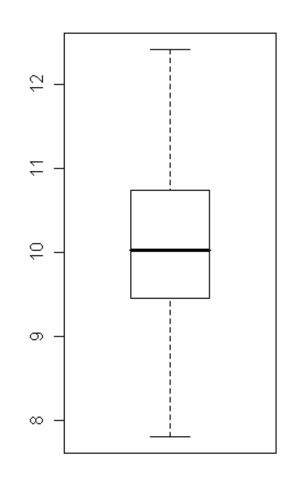
## Five-Number Summary

 Maximum, Upper Quartile, Median, Lower Quartile, Minimum

Ectimate

 Statistical Software SAS output (Murder Rate Data)

| Qualitite  | ESCIMACE |
|------------|----------|
| 100% Max   | 20.30    |
| 75% Q3     | 10.30    |
| 50% Median | 6.70     |
| 25% Q1     | 3.90     |
| 0% Min     | 1.60     |
|            |          |


Oughtila

## Five-Number Summary

- Maximum, Upper Quartile, Median, Lower Quartile, Minimum
- Example: The five-number summary for a data set is min=4, Q1=256, median=530, Q3=1105, max=320,000.
- What does this suggest about the shape of the distribution?

### Box plot

 A box plot is a graphic representation of the five number summary --- provided the max is within 1.5 IQR of Q3 (min is within 1.5 IQR of Q1)



## **Attendance Survey Question**

- On a 4"x6" index card
  - write down your name and section number
  - -Question:

Pick one: Mean or Median

is a measure more resistant to extreme valued observations in the sample.