STA 291

Lecture 11

- Describing Quantitative Data
- Measures of Central Location

Examples of mean and median

- Review of Chapter 5. using the probability rules
- You need a Calculator for the exam, but no laptop, no cellphone, no blackberry, no iphone, etc (anything that can transmitting wireless signal is not allowed)
- Location: Memorial Hall,
- Time: Tuesday 5-7pm.
- Talk to me if you have a conflict.
- A Formula sheet, with probability rules and \qquad sample mean etc will be available.
- Memorial Hall

- Feb. 23 5-7pm
- Covers up to mean and median of a sample (beginning of chapter 6). But not any measure of spread (i.e. standard deviation, inter-quartile range etc)

Chapter 1-5, 6(first 3 sections) +23 (first 5 sections)
\qquad

Summarizing Data Numerically

- Center of the data \qquad
- Mean (average)
- Median
- Mode (...will not cover)

Mathematical Notation:

 Sample Mean- Sample size n
- Observations $x_{1}, x_{2}, \ldots, x_{n}$
- Sample Mean "x-bar" --. a statistic

$$
\begin{array}{ll}
\overline{\mathrm{x}}=\left(x_{1}+x_{2}+\ldots+x_{n}\right) / n & \\
=\frac{1}{n} \sum_{i=1}^{n} x_{i} & \sum=\mathrm{SUM}
\end{array}
$$

> Mathematical Notation: Population Mean for a finite population of size N

- Population size (finite) N
- Observations $x_{1}, x_{2}, \ldots, x_{N}$
- Population Mean "mu" -- a Parameter

$$
\begin{array}{ll}
\mu=\left(x_{1}+x_{2}+\ldots+x_{N}\right) / N & \quad \sum=\mathrm{SUM} \\
=\frac{1}{N} \sum_{i=1}^{N} x_{i} &
\end{array}
$$

Infinite populations

- Imagine the population mean for an infinite \qquad population.
- Also denoted by mu or μ
- Cannot compute it (since infinite population size) but such a number exist in the limit.
- Carry the same information.

Infinite population

- When the population consists of values that can be ordered
- Median for a population also make sense: it is the number in the middle....half of the population values will be below, half will be above.
\qquad

Mean

- If the distribution is highly skewed, then the mean is not representative of a typical observation
- Example:

Monthly income for five persons
1,000 2,000 3,000 4,000 100,000

- Average monthly income: $=22,000$
- Not representative of a typical observation.
- Median = 3000 \qquad
\qquad
\qquad
\qquad
\qquad

Median

- The median is the measurement that falls \qquad in the middle of the ordered sample
- When the sample size n is odd, there is a middle value
- It has the ordered index $(n+1) / 2$
- Example: 1.1, 2.3, 4.6, 7.9, 8.1 $n=5,(n+1) / 2=6 / 2=3$, so index $=3$, Median $=3^{\text {rd }}$ smallest observation $=4.6$

Median

- When the sample size n is even, average the two middle values
- Example: $3, \underline{7}, \underline{8}, 9, \quad n=4$,
$(n+1) / 2=5 / 2=2.5$, index $=2.5$
Median = midpoint between
$2^{\text {nd }}$ and $3^{\text {rd }}$ smallest observation
$=(7+8) / 2=7.5$

Summary: Measures of Location
$\frac{\text { Mean- Arithmetic Average }}{\left\{\begin{array}{c}\text { Mean of a Sample }-\overline{\mathrm{x}} \\ \text { Mean of a Population }-\boldsymbol{\mu}\end{array}\right.}$

Median - Midpoint of the observations when they are arranged in increasing order

Notation: Subscripted variables $\mathrm{n}=$ \# of units in the sample
$\mathrm{N}=$ \# of units in the population $\mathrm{x}=$ Variable to be measured $\mathrm{x}_{\mathrm{i}}=$ Measurement of the $\mathrm{i} t h$ unit
\qquad

Mode.

Mean vs. Median

Observations	Median	Mean
$1,2,3,4,5$	3	3
$1,2,3,4,100$	3	22
$3,3,3,3,3$	3	3
$1,2,3,100,100$	3	41.2

Mean vs. Median

- If the distribution is symmetric, then Mean=Median
- If the distribution is skewed, then the mean lies more toward the direction of skew
- Mean and Median Online Applet

Example

- the sample consist of 5 numbers, 3.6, 4.4, 5.9, 2.1, and the last number is over 10.
(some time we write it as 10+)
- Median = 4.4
- Can we find the mean here? No

Example: Mean and Median

- Example: Weights of forty-year old men

158, 154, 148, 160, 161, 182,
166, 170, 236, 195, 162

- Mean =
- Ordered weights: (order a large dataset can take a long time)
- 148, 154, 158, 160, 161, 162, 166, 170, 182, 195, 236
- Median = 162

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
- Extreme valued observations pulls mean, \qquad but not on median.

For data with a symmetric histogram, mean=median.

Using probability rule

- In a typical week day, a restaurant sells ? Gallons of house soup.
- Given that
$\mathrm{P}($ sell more than 5 gallon $)=0.8$
$P($ sell less than 10 gallon $)=0.7$
- $P($ sell between 5 and 10 gallon $)=0.5$

STA 291 - Lecture 11

Why not always Median?

- Disadvantage: Insensitive to changes within the lower or upper half of the data
- Example: 1, 2, 3, 4, 5, 6, 7 vs.

$$
1,2,3,4,100,100,100
$$

- For symmetric, bell shaped distributions, mean is more informative.
- Mean is easy to work with. Ordering can take a long time
- Sometimes, the mean is more informative even when the distribution is slightly skewed

Census Data	Lexington	Fayette County	Kentucky	United States			
Population	261,545	261,545	$4,069,734$	$281,422,131$			
Area in square miles	306	306	40,131	$3,554,141$			
People per sq. mi.	853	853	101	79			
Median Age	35	34	36	36			
Median Family Income	$\$ 42,500$	$\$ 39,500$	$\$ 32,101$	$\$ 40,591$			
Real Estate Market Data	Lexington	Fayette County	Kentucky	United States			
Total Housing Units	54,587	54,587	806,524	$115,904,743$			
Average Home Price	$\$ 151,776$	$\$ 151,776$	$\$ 115,545$	$\$ 173,585$			
Median Rental Price	$\$ 383$	$\$ 383$	$\$ 257$	$\$ 471$			
Owner Occupied	52%	52%	64%	60%			
	STA $291-$ Lecture 11						

Given a histogram, find approx mean and median

Age Distribution, 2000

Five-Number Summary

- Maximum, Upper Quartile, Median, Lower Quartile, Minimum
- Statistical Software SAS output
(Murder Rate Data)
Quantile Estimate

100\% Max 20.30
75\% Q3 $\quad 10.30$
50% Median 6.70
25% Q1 3.90
0\% Min $\quad 1.60$
STA 291 - Lecture 11

Five-Number Summary

- Maximum, Upper Quartile, Median, \qquad Lower Quartile, Minimum
- Example: The five-number summary for a data set is $\mathrm{min}=4, \mathrm{Q} 1=256$, median $=530$,
\qquad Q3=1105, $\max =320,000$.
- What does this suggest about the shape of the distribution?

Box plot

- A box plot is a graphic representation of the five number summary --- provided the max is within 1.5 IQR of Q3 (min is within 1.5 IQR of Q1)

Attendance Survey Question

- On a 4"x6" index card
-write down your name and section number
-Question:
Pick one: Mean or Median
is a measure more resistant to extreme valued observations in the sample.

