

• You need a Calculator for the exam, but no laptop, no cellphone, no blackberry, no iphone, etc (anything that can transmitting wireless signal is not allowed)

- Location: Memorial Hall,
- Time: Tuesday 5-7pm.
- Talk to me if you have a conflict.

STA 291 - Lecture 11

Memorial Hall

- Feb. 23 5-7pm
- Covers up to mean and median of a sample (beginning of chapter 6). But not any measure of spread (i.e. standard deviation, inter-quartile range etc)

Chapter 1-5, 6(first 3 sections) + 23(first 5 sections)

STA 291 - Lecture 11

4

5

6

Summarizing Data Numerically

- Center of the data
 - Mean (average)
 - Median
 - Mode (...will not cover)
 - Spread of the dat
 - Variance, Standard deviation
 - Inter-quartile range
 - Range

STA 291 - Lecture 11

Mathematical Notation: Sample Mean

- Sample size *n*
- Observations x₁, x₂,..., x_n
- Sample Mean "x-bar" --- a statistic

 $\overline{\mathbf{x}} = (x_1 + x_2 + \dots + x_n)/n$ $= \frac{1}{n} \sum_{i=1}^n x_i \qquad \sum = \text{SUM}$

$$\sum_{i=1}^{N} \frac{1}{N} \sum_{i=1}^{N} x_i$$

7

8

9

Infinite populations

STA 291 - Lecture 11

- Imagine the population mean for an infinite population.
- Also denoted by mu or *M*

= -

• Cannot compute it (since infinite population size) but such a number exist in the limit.

STA 291 - Lecture 11

• Carry the same information.

Infinite population

- When the population consists of values that can be ordered
- Median for a population also make sense: it is the number in the middle....half of the population values will be below, half will be above.

Mean

- If the distribution is highly skewed, then the mean is not representative of a typical observation
- Example: Monthly income for five persons 1,000 2,000 3,000 4,000 100,000
- Average monthly income: = 22,000
- Not representative of a typical observation.

STA 291 - Lecture 11

Median

• When the sample size *n* is even, average the two middle values

STA 291 - Lecture 11

13

• Example: 3, $\underline{7}$, $\underline{8}$, 9, n=4, (n+1)/2=5/2=2.5, index = 2.5 Median = midpoint between 2^{nd} and 3^{rd} smallest observation (7:9)/2=7.5

Mean vs. Median					
Observations	Median	Mean			
1, 2, 3, <mark>4</mark> , 5	3	3			
1, 2, 3, 4, 100	3	22			
3, 3, 3, 3, 3	3	3			
1, 2, 3, 100, 100	3 41.2				
	STA 291 - Lecture 11	15			

Mean vs. Median

- If the distribution is symmetric, then Mean=Median
- If the distribution is skewed, then the mean lies more toward the direction of skew

STA 291 - Lecture 11

16

17

Mean and Median Online Applet

• Extreme valued observations pulls mean, but not on median.

For data with a symmetric histogram, mean=median.

STA 291 - Lecture 11

- In a typical week day, a restaurant sells ? Gallons of house soup.
- Given that
- P(sell more than 5 gallon) = 0.8P(sell less than 10 gallon) = 0.7
- P(sell between 5 and 10 gallon) = 0.5

22

23

Why not always Median?

- Disadvantage: Insensitive to changes within the lower or upper half of the data
- Example: 1, 2, 3, 4, 5, 6, 7 vs. 1, 2, 3, 4, 100,100,100
- For symmetric, bell shaped distributions, mean is more informative.
- Mean is easy to work with. Ordering can take a long time
- Sometimes, the mean is more informative even when the distribution is slightly skewed

Census Data	Lexington	Fayette County	Kentucky	United States
Population	261,545	261,545	4,069,734	281,422,131
Area in square miles	306	306	40,131	3,554,141
People per sq. mi.	853	853	101	79
Median Age	35	34	36	36
Median Family Income	\$42,500	\$39,500	\$32,101	\$40,591
Real Estate Market Data	Lexington	Fayette County	Kentucky	United States
Total Housing Units	54,587	54,587	806,524	115,904,743
Average Home Price	\$151,776	\$151,776	\$115,545	\$173,585
Median Rental Price	\$383	\$383	\$257	\$471
Owner Occupied	52%	52%	64%	60%
	STA 29	1 - Lecture 11		24

Five-Number Summary					
 Maximum, Upper Quartile, Median, Lower Quartile, Minimum 					
 Statistical Software SAS output (Murder Rate Data) 					
Quantile	Estimate				
100% Max 75% Q3 50% Median 25% Q1 0% Min	20.30 10.30 6.70 3.90 1.60				
	STA 291 - Lecture 11				

Five-Number Summary Maximum, Upper Quartile, Median, Lower Quartile, Minimum

28

29

- Example: The five-number summary for a data set is min=4, Q1=256, median=530, Q3=1105, max=320,000.
- What does this suggest about the shape of the distribution?

Attendance Survey Question On a 4"x6" index card write down your name and section number Question: Pick one: Mean or Median

_____ is a measure more resistant to extreme valued observations in the sample.

STA 291 - Lecture 11