# STA 291 Lecture 13, Chap. 6 

- Describing Quantitative Data
- Measures of Central Location
- Measures of Variability (spread)


## Summarizing Data Numerically

- Center of the data
- Mean (average)
- Median
- Mode (...will not cover)
- Spread of the data
- Variance, Standard deviation
- Inter-quartile range
- Range


## Mathematical Notation: Sample Mean

- Sample size $n$
- Observations $x_{1}, x_{2}, \ldots, x_{n}$
- Sample Mean "x-bar" --- a statistic

$$
\begin{aligned}
& \overline{\mathrm{x}}=\left(x_{1}+x_{2}+\ldots+x_{n}\right) / n \\
& =\frac{1}{n} \sum_{i=1}^{n} x_{i}
\end{aligned} \quad \sum=\mathrm{SUM}
$$

## Mathematical Notation: <br> Population Mean for a finite population of size $N$

- Population size (finite) $N$
- Observations $x_{1}, x_{2}, \ldots, x_{N}$
- Population Mean "mu" --- a Parameter

$$
\begin{array}{ll}
\mu=\left(x_{1}+x_{2}+\ldots+x_{N}\right) / N \\
= & \frac{1}{N} \sum_{i=1}^{N} x_{i}
\end{array} \quad \sum=\mathrm{SUM}
$$

## Percentiles

- The pth percentile is a number such that $p \%$ of the observations take values below it, and (100-p)\% take values above it
- $50^{\text {th }}$ percentile $=$ median
- $25^{\text {th }}$ percentile $=$ lower quartile
- $75^{\text {th }}$ percentile $=$ upper quartile


## Quartiles

- $25^{\text {th }}$ percentile $=$ lower quartile
= Q1
- $75^{\text {th }}$ percentile $=$ upper quartile
= Q3

Interquartile range = Q3- Q1
(a measurement of variability in the data)

## SAT Math scores

- Nationally $(\min =210 \quad \max =800)$

$$
\begin{array}{lr}
\text { Q1 }= & 440 \\
\text { Median }=\text { Q2 }=520 \\
\text { Q3 }= & 610 \quad(- \text { you are }
\end{array}
$$

better than $75 \%$ of all test takers)

- Mean $=518 \quad(\mathrm{SD}=115$ what is that?)


## SAT Percentile Ranks

Critical Reading, Mathematics, and Writing

| Score | Critical Reading | Mathematics | Writing |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & 800 \\ & 790 \\ & 780 \\ & 770 \\ & \hline \end{aligned}$ | $\begin{aligned} & 99 \\ & 99 \\ & 99 \\ & 99 \\ & \hline \end{aligned}$ | $\begin{aligned} & 99 \\ & 99 \\ & 99 \\ & 99 \\ & \hline \end{aligned}$ | $\begin{gathered} 99+ \\ 99+ \\ 99 \\ 99 \\ \hline \end{gathered}$ |
| 760 | 99 | 98 | 99 |
| 750 | 98 | 98 | 99 |
| 740 | 98 | 97 | 98 |
| 730 | 97 | 97 | 98 |
| 720 | 96 | 96 | 97 |
| 710 | 96 | 95 | 97 |
| 700 | 95 | 93 | 96 |
| 690 | 94 | 92 | 95 |
| 680 | 93 | 91 | 94 |
| 670 | 92 | 89 | 93 |
| 660 | 90 | 88 | 92 |
| 650 | 89 | 86 | 90 |
| 640 | 87 | 83 | 89 |
| 630 | 85 | 81 | 87 |
| 620 | 83 | 79 | 85 |
| 610 | 82 | 76 | 83 |
| 600 | 79 | 74 | 81 |
| 590 | 77 | 71 | 79 |
| 580 | 74 | 68 | 76 |
| 570 | 71 | 66 | 73 |
| 560 | 68 | 63 | 71 |
| 550 | 65 | 60 | 68 |
| 540 | 62 | 56 | 64 |
| 530 | 58 | 53 | 62 |
| 520 | 55 | 50 | 58 |
| 510 | 51 | 47 | 54 |
| 500 | 48 | 43 | 51 |
| 490 | 44 | 40 | 47 |
| 480 | 41 | 36 | 44 |
| 470 | 37 | 33 | 40 |
| 460 | 34 | 30 | 37 |

## Five-Number Summary

- Maximum, Upper Quartile, Median, Lower Quartile, Minimum
- Statistical Software SAS output (Murder Rate Data)

| Quantile | Estimate |
| :--- | :---: |
| 100\% Max | 20.30 |
| $75 \%$ Q3 | 10.30 |
| $50 \%$ Median | 6.70 |
| $25 \%$ Q1 | 3.90 |
| $0 \% \mathrm{Min}$ | 1.60 |
|  | STA 291 -Lecture 13 |

## Five-Number Summary

- Maximum, Upper Quartile, Median, Lower Quartile, Minimum
- Example: The five-number summary for a data set is $\mathrm{min}=4, \mathrm{Q} 1=256$, median $=530$, Q3=1105, $\max =320,000$.
- What does this suggest about the shape of the distribution?


## Box plot

- A box plot is a graphic
representation of the
five number
summary --- provided the max is within 1.5
IQR of Q3 ( min is within 1.5 IQR of Q1)

- Otherwise the max (min) is suspected as an outlier and treated differently.


## Web Hits for wuw.sas.com/rnd/app (Early 1999) <br> Boxstyle = SCHEMATICID



- Box plot is most useful when compare several populations


## Measures of Variation

- Mean and Median only describe the central location, but not the spread of the data
- Two distributions may have the same mean, but different variability
- Statistics that describe variability are called measures of spread/variation


## Measures of Variation

- Range: = max - min

Difference between maximum and minimum value

- Variance: $s^{2}=\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n-1}$
- Standard Deviation: $s=\sqrt{s^{2}}=\sqrt{\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n-1}}$
- Inter-quartile Range: = Q3 - Q1

Difference between upper and lower quartile of the data

## Deviations: Example

- Sample Data: 1, 7, 4, 3, 10
- Mean (x-bar): $(1+7+4+3+10) / 5=25 / 5=5$

| data | Deviation | Dev. square |
| :---: | :---: | :---: |
| 1 | $(1-5)=-4$ | 16 |
| 3 | $(3-5)=-2$ | 4 |
| 4 | $(4-5)=-1$ | 1 |
| 7 | $(7-5)=2$ | 4 |
| 10 | $(10-5)=5$ | 25 |
| Sum $=25$ | Sum $=0$ | sum $=50$ |

STA 291-Lecture 13

## Sample Variance

$$
s^{2}=\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n-1}
$$

The variance of $n$ observations is the sum of the squared deviations, divided by $n-1$.

## Variance: Example

| Observation | Mean | Deviation | Squared <br> Deviation |
| :---: | :---: | :---: | :---: |
| 1 | 5 |  | 16 |
| 3 | 5 |  | 4 |
| 4 | 5 |  | 1 |
| 7 | 5 |  | 4 |
| 10 | 5 |  | 25 |
| Sum of the Squared Deviations |  | 50 |  |
| $n-1$ |  |  | $5-1=4$ |
| Sum of the Squared Deviations / $(n-1)$ | $50 / 4=12.5$ |  |  |

- So, sample variance of the data is 12.5
- Sample standard deviation is 3.53

$$
\sqrt{12.5}=3.53
$$

- Variance/standard deviation is also more susceptible to extreme valued observations.
- We are using x-bar and variance/standard deviation mostly in the rest of this course.


## Population variance/standard deviation

- Notation for Population variance/standard deviation (usually obtain only after a census)
- Sigma-square / sigma

$$
\sigma^{2}
$$

$\sigma$

## standardization

- Describe a value in a sample by
- "how much standard deviation above/below the average"
- The value 6 is one standard deviation above mean -- the value 6 corresponds to a z-score of 1
- May be negative (for below average)


## Attendance Survey Question

- On a 4"x6" index card
- write down your name and section number
-Question: Independent or not?
-Gender of first child and second child from same couple.

