STA 291 Lecture 14, Chap 9

Sampling Distributions
- Sampling Distribution of a sample statistic like the (sample) Proportion

- Population has a distribution, which is fixed, usually unknown. (but we want to know)
- Sample proportion changes from sample to sample (that's sampling variation). Sampling distribution describes this variation.
- Suppose we flip a coin 50 times and calculate the success rate or proportion.
- same as asking John to shoot 50 free throws (biased coin).
- Each time we will get a slightly different rate, due to random fluctuations.
- More we flip (say 500 times), less the fluctuation
- How to describe this fluctuation?
- First, use computer to simulate......
- Repeatedly draw a sample of 25 , etc
- Applet:

Sampling distribution of proportion

Sampling distribution: $\mathrm{n}=25$

Sampling distribution: $\mathrm{n}=100$

- Larger the n , less the fluctuation.
- Shape is (more or less) symmetric, bell curve.

Population distribution vs. sampling distribution

- For example, when population distribution is discrete, the sampling distribution might be (more or less) continuous.
- Number of kids per family is a discrete random variable (discrete population), but the sample mean can take values like 2.5 (sampling distribution is continuous).

Sampling Distribution: Example

 Details- Flip a fair coin, with 0.5 probability of success (H). Flip the same coin 4 times.
- We can take a simple random sample of size 4 from all sta291 students.
- find if the student is AS/BE major.
- Define a variable X where
$X=1$ if the student is in AS/BE, (or success) and $\mathrm{X}=0$ otherwise
- Use the number "1" to denote success
- Use the number " 0 " to denote failure

Sampling Distribution:

 Example (contd.)- If we take a sample of size $n=4$, the following 16 samples are possible:
(1,1,1,1); (1,1,1,0); (1,1,0,1); (1,0,1,1);
(0,1,1,1); (1,1,0,0); (1,0,1,0); (1,0,0,1);
(0,1,1,0); (0,1,0,1); (0,0,1,1); (1,0,0,0);
(0,1,0,0); (0,0,1,0); (0,0,0,1); (0,0,0,0)
- Each of these 16 samples is equally likely (SRS!) because the probability of being in AS/BE is 50% in all 291 students

Sampling Distribution:

 Example (contd.)- We want to find the sampling distribution of the statistic "sample proportion of students in AS/BE"
- Note that the "sample proportion" is a special case of the "sample mean"
- The possible sample proportions are $0 / 4=0,1 / 4=0.25,2 / 4=0.5,3 / 4=0.75,4 / 4=1$
- How likely are these different proportions?
- This is the sampling distribution of the statistic "sample proportion"

Sampling Distribution: Example (contd.)

Sample Proportion of Students from ASE	Probability
0.00	$1 / 16=0.0625$
0.25	$4 / 16=0.25$
0.50	$6 / 16=0.375$
0.75	$4 / 16=0.25$
1.00	$1 / 16=0.0625$

- This is the sampling distribution of a sample proportion with sample size $n=4$ and $P(X=1)=0.5$

3 key features

- The shape getting closer to "bell-shaped", almost continuous - become "Normal"
- The center is always at 0.5 - (the population mean)
- The variance or SD reduces as sample size n gets larger.

Sample proportion

\hat{p}

Mean of sampling distribution

- FACT:

Mean/center of the sampling
distribution for sample mean or sample proportion always equal to the same for all n , and is also equal to the population mean/proportion.

$$
\mu_{\hat{p}}=p
$$

Reduce Sampling Variability

- The larger the sample size n , the smaller the variability of the sampling distribution
- The SD of the sample mean or sample proportion is called Standard Error
- Standard Error $=$ SD of population $/ \sqrt{n}$

Normal shape

- Shape becomes normal type. -- Central Limit Theorem

Interpretation

- If you take samples of size $n=4$, it may happen that nobody in the sample is in AS/BE
- If you take larger samples ($n=25$), it is highly unlikely that nobody in the sample is in AS/BE
- The sampling distribution is more concentrated around its mean
- The mean of the sampling distribution is the population mean: In this case, it is 0.5
- The standard deviation of the sampling distribution of the mean is called "standard error" to distinguish it from the population standard deviation

Standard Error

- Intuitively, larger samples yield more precise estimates
- Example:
- $X=1$ if student is in AS/BE, $X=0$ otherwise
- The population distribution of X has mean $\mathrm{p}=0.5$ and standard deviation

$$
\sqrt{p(1-p)}=0.5
$$

Standard Error

- Example (contd.):
- For a sample of size $n=4$, the standard error of \bar{X} is

$$
\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}=\frac{0.5}{\sqrt{4}}=0.25
$$

- For a sample of size $n=25$,

$$
\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}=\frac{0.5}{\sqrt{25}}=0.1
$$

- Because of the approximately normal shape of the distribution, we would expect \bar{X} to be within 3 standard errors of the mean (with 99.7% probability)

Central Limit Theorem

- For random sampling (SRS), as the sample size n grows, the sampling distribution of the sample mean \bar{X} approaches a normal distribution
- Amazing: This is the case even if the population distribution is discrete or highly skewed
- The Central Limit Theorem can be proved mathematically
- We will verify it experimentally in the lab sessions

Attendance Survey Question

- On a 4"x6" index card
-Please write down your name and section number
-Today's Question:

Do you believe in the "Hot hand" claim?

Extra: March Madness

- Some statistics related to sports: how does a ranking system for basketball team work? Also the ranking of tennis players, chess players, etc.

Theory of "hot hand"

- One theory says, if a player gets hot (hit several 3 point in a row) then he is more likely to hit the next one. Because he has a hot hand......

Effect of Sample Size

- The larger the sample size n, the smaller the standard deviation of the $\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}$
sampling distribution for the sample mean
- Larger sample size = better precision
- As the sample size grows, the sampling distribution of the sample mean approaches a normal distribution
- Usually, for about $n=30$ or above, the sampling distribution is close to normal
- This is called the "Central Limit Theorem"

Using the Sampling Distribution

- In practice, you only take one sample
- The knowledge about the sampling distribution helps to determine whether the result from the sample is reasonable given the population distribution/model.
- For the random variable X we defined
- Sample mean = sample proportion
- For example, our model was

P (randomly selected student is in $\mathrm{AS} / \mathrm{BE}$) $=0.5$

- If the sample mean is very unreasonable given the model, then the model is probably wrong

Sampling Distribution of the Sample Mean

- When we calculate the sample mean \bar{X}, we do not know how close it is to the population mean μ
- Because μ is unknown, in most cases.
- On the other hand, if \boldsymbol{n} is large, \bar{X} ought to be very close to μ since the sampling distribution must getting more concentrated.
- The sampling distribution tells us with which probability the sample mean falls within, say, 2 SD of the sample mean (empirical rule says 95\%)
- How do we get to know SD of the sample mean - standard error?

Parameters of the Sampling Distribution

- If we take random samples of size \boldsymbol{n} from a population with population mean μ and population standard deviation σ, then the sampling distribution of \bar{X}
- has mean

$$
\mu_{\bar{x}}=\mu
$$

- and standard error

$$
\sigma_{\bar{X}}=\frac{\sigma}{\sqrt{n}}
$$

Central Limit Theorem

- Usually, the sampling distribution of \bar{X} is approximately normal for $n 30$ or larger
- In addition, we know that the parameters of the sampling distribution

Central Limit Theorem

- For example:

If the sample size is $n=36$, then with 95% probability, the sample mean falls between
$\mu-2 \frac{\sigma}{\sqrt{n}}=\mu-\frac{2}{6} \sigma=\mu-0.333 \sigma$
and $\mu+2 \frac{\sigma}{\sqrt{n}}=\mu+\frac{2}{6} \sigma=\mu+0.333 \sigma$
($\mu=$ population mean, $\sigma=$ population standard deviation)

