#### STA 291 Lecture 15

#### Normal Distributions (Bell curve)

#### Exam 1 score



- Mean = 80.98
- Median = 82
- SD = 13.6

• Five number summary:

46 74 82 92 100

• There are many different shapes of continuous probability distributions...

 We focus on one type – the Normal distribution, also known as Gaussian distribution or bell curve.

#### Carl F. Gauss



#### Bell curve



#### Normal distributions/densities

 Again, this is a whole family of distributions, indexed by mean and SD. (location and scale)

#### **Different Normal Distributions**



8



STA 291 - Lecture 15

#### The Normal Probability Distribution

- Normal distribution is perfectly symmetric and bell-shaped
- Characterized by two parameters: mean µ and standard deviation s
- The 68%-95%-99.7% rule applies to the normal distribution.
- That is, the probability concentrated within 1 standard deviation of the mean is always 68% within 2 SD is 95%; within 3 SD is 99.7% etc.

• It is very common.

 The sampling distribution of many common statistics are approximately Normally shaped, when the sample size n gets large.

### **Central Limit Theorem**

- In particular:
- Sample proportion

- Sample mean X
- The sampling distribution of both will be approximately Normal, for large n

STA 291 - Lecture 15

### **Standard Normal Distribution**

The standard normal distribution is the normal distribution with mean µ=0 and standard deviation

**s** =1



#### Non-standard normal distribution

- Either mean  $m \neq 0$
- Or the SD  $S \neq 1$
- Or both.
- In real life the normal distribution are often nonstandard.

# Examples of normal random variables

 Public demand of gas/water/electricity in a city.

- Amount of Rain fall in a season.
- Weight/height of a randomly selected adult female.

# Examples of normal random variables – cont.

• Soup sold in a restaurant in a day.

• Stock index value tomorrow.

# Example of *non-normal* probability distributions

#### Income of a randomly selected family. (skewed, only positive)

Price of a randomly selected house. (skewed, only positive) Example of non-normal probability distributions

Number of accidents in a week. (discrete)

Waiting time for a traffic light. (has a discrete value at 0, and only with positive values, and no more than 3min, etc)

### **Central Limit Theorem**

 Even the incomes are not normally distributed, the *average* income of many randomly selected families *is* approximately normally distributed.

 Average does the magic of making things normal! (transform to normal)

#### Table 3 is for standard normal

Convert non-standard to standard.

Denote by X -- non-standard normal

Denote by Z -- standard normal

### **Standard Normal Distribution**

- When values from an arbitrary normal distribution are converted to z-scores, then they have a standard normal distribution
- The conversion is done by subtracting the mean µ, and then dividing by the standard deviation s

$$z = \frac{x - m}{s}$$

#### Example

Find the probability that a randomly selected female adult height is between the interval 161cm and 170cm. Recall

$$m = 165, s = 8$$

$$\frac{161 - 165}{8} = -0.5;$$
$$\frac{170 - 165}{8} = 0.625$$

#### Example -cont.

 Therefore the probability is the same as a standard normal random variable Z between the interval -0.5 and 0.625

#### P(161 < X < 170) = P(-0.5 < Z < 0.625)

### Use table or use Applet?

 Applet 1: <u>http://bcs.whfreeman.com/scc/content/cat\_0</u> <u>40/spt/normalcurve/normalcurve.html</u>

- Applet 2:
- http://psych-

www.colorado.edu/~mcclella/java/normal/ha ndleNormal.html

### **Online Tool**

- Normal Density Curve
- Use it to verify graphically the empirical rule, find probabilities, find percentiles and z-values for one- and two-tailed probabilities

| Table Z (cont.)                   |     | Second decimal place in <i>z</i> |               |         |         |                  |        |        |        |        |                  |
|-----------------------------------|-----|----------------------------------|---------------|---------|---------|------------------|--------|--------|--------|--------|------------------|
| nder the standard<br>Normal curve | z   | 0.00                             | 0.01          | 0.02    | 0.03    | 0.04             | 0.05   | 0.06   | 0.07   | 0.08   | 0.09             |
| $\frown$                          | 0.0 | 0.5000                           | 0.5040        | 0.5080  | 0.5120  | 0.5160           | 0.5199 | 0.5239 | 0.5279 | 0.5319 | 0.5359           |
|                                   | 0.1 | 0.5398                           | 0.5438        | 0.5478  | 0.5517  | 0.5557           | 0.5596 | 0.5636 | 0.5675 | 0.5714 | 0.5753           |
|                                   | 0.2 | 0.5793                           | 0.5832        | 0.5871  | 0.5910  | 0.5948           | 0.5987 | 0.6026 | 0.6064 | 0.6103 | 0.6141           |
|                                   | 0.3 | 0.6179                           | 0.6217        | 0.6255  | 0.6293  | 0.6331           | 0.6368 | 0.6406 | 0.6443 | 0.6480 | 0.6517           |
| 0 <i>z</i> .                      | 0.4 | 0.6554                           | 0.6591        | 0.6628  | 0.6664  | 0.6700           | 0.6736 | 0.6772 | 0.6808 | 0.6844 | 0.6879           |
|                                   | 0.5 | 0.6915                           | 0.6950        | 0.6985  | 0.7019  | 0.7054           | 0.7088 | 0.7123 | 0.7157 | 0.7190 | 0.7224           |
| _                                 | 0.6 | 0.7257                           | 0.7291        | 0.7324  | 0.7357  | 0.7389           | 0.7422 | 0.7454 | 0.7486 | 0.7517 | 0.7549           |
|                                   | 0.7 | 0.7580                           | 0.7611        | 0.7642  | 0.7673  | 0.7704           | 0.7734 | 0.7764 | 0.7794 | 0.7823 | 0.7852           |
|                                   | 0.8 | 0.7881                           | 0.7910        | 0.7939  | 0.7967  | 0.7995           | 0.8023 | 0.8051 | 0.8078 | 0.8106 | 0.8133           |
| ¥                                 | 0.9 | 0.8159                           | 0.8186        | 0.8212  | 0.8238  | 0.8264           | 0.8289 | 0.8315 | 0.8340 | 0.8365 | 0.8389           |
|                                   | 1.0 | 0.8413                           | 0.8438        | 0.8461  | 0.8485  | 0.8508           | 0.8531 | 0.8554 | 0.8577 | 0.8599 | 0.8621           |
|                                   | 1.1 | 0.8643                           | 0.8665        | 0.8686  | 0.8708  | 0.8729           | 0.8749 | 0.8770 | 0.8790 | 0.8810 | 0.8830           |
|                                   | 1.2 | 0.8849                           | 0.8869        | 0.8888  | 0.8907  | 0.8925           | 0.8944 | 0.8962 | 0.8980 | 0.8997 | 0.9015           |
|                                   | 1.3 | 0.9032                           | 0.9049        | 0.9066  | 0.9082  | 0.9099           | 0.9115 | 0.9131 | 0.9147 | 0.9162 | 0.9177           |
|                                   | 1.4 | 0.9192                           | 0.9207        | 0.9222  | 0.9236  | 0.9251           | 0.9265 | 0.9279 | 0.9292 | 0.9306 | 0.9319           |
|                                   | 1.5 | 0.9332                           | 0.9345        | 0.9357  | 0.9370  | 0.9382           | 0.9394 | 0.9406 | 0.9418 | 0.9429 | 0.9441           |
|                                   | 1.6 | 0.9452                           | 0.9463        | 0.9474  | 0.9484  | 0.9495           | 0.9505 | 0.9515 | 0.9525 | 0.9535 | 0.9545           |
|                                   | 1.7 | 0.9554                           | 0.9564        | 0.9573  | 0.9582  | 0.9591           | 0.9599 | 0.9608 | 0.9616 | 0.9625 | 0.9633           |
|                                   | 1.8 | 0.9641                           | 0.9649        | 0.9656  | 0.9664  | 0.9671           | 0.9678 | 0.9686 | 0.9693 | 0.9699 | 0.9706           |
|                                   | 1.9 | 0.9713                           | 0.9719        | 0.9726  | 0.9732  | 0.9738           | 0.9744 | 0.9750 | 0.9756 | 0.9761 | 0.9767           |
|                                   | 2.0 | 0.9772                           | 0.9778        | 0.9783  | 0.9788  | 0.9793           | 0.9798 | 0.9803 | 0.9808 | 0.9812 | 0.9817           |
|                                   | 2.1 | 0.9821                           | 0.9826        | 0.9830  | 0.9834  | 0.9838           | 0.9842 | 0.9846 | 0.9850 | 0.9854 | 0.9857           |
|                                   | 2.2 | 0.9861                           | 0.9864        | 0.9868  | 0.9871  | 0.9875           | 0.9878 | 0.9881 | 0.9884 | 0.9887 | 0.9890           |
|                                   | 2.3 | 0.9893                           | 0.9896        | 0.9898  | 0.9901  | 0.9904           | 0.9906 | 0.9909 | 0.9911 | 0.9913 | 0.9916           |
|                                   | 2.4 | 0.9918                           | 0.9920        | 0.9922  | 0.9925  | 0.9927           | 0.9929 | 0.9931 | 0.9932 | 0.9934 | 0.9936           |
|                                   | 2.5 | 0.9938                           | 0.9940        | 0.9941  | 0.9943  | 0.9945           | 0.9946 | 0.9948 | 0.9949 | 0.9951 | 0.9952           |
|                                   | 2.6 | 0.9953                           | 0.9 <b>ST</b> | A 22936 | Leoture | <b>a 1.5</b> 959 | 0.9960 | 0.9961 | 0.9962 | 0.9963 | 0.9964 <b>26</b> |
|                                   | 2.7 | 0.9965                           | 0.9966        | 0.9967  | 0.9968  | 0.9969           | 0.9970 | 0.9971 | 0.9972 | 0.9973 | 0.9974           |
|                                   | 2.8 | 0.9974                           | 0.9975        | 0.9976  | 0.9977  | 0.9977           | 0.9978 | 0.9979 | 0.9979 | 0.9980 | 0.9981           |
|                                   |     | 1 0 0001                         | 0.0000        | 0.0000  | 0.0000  | 0.0004           | 0.0004 | 0.0085 | 0 0085 | 0 9986 | 0 9986           |



~



÷

#### z-Scores

- The z-score for a value x of a random variable is the number of standard deviations that x is above µ
- If x is below µ, then the z-score is negative
- The z-score is used to compare values from different normal distributions

#### Calculating z-Scores

You need to know x, µ, and S
to calculate z



 Applet does the conversion automatically. (recommended)

#### The table 3 gives probability

#### P(0 < Z < z) = ?

#### **Tail Probabilities**

- SAT Scores: Mean=500, SD =100
- The SAT score 700 has a z-score of z=2
- The probability that a score is *beyond* 700 is the tail probability of Z *beyond* 2

#### z-Scores

- The z-score can be used to compare values from different normal distributions
- SAT: µ=500, s=100
- ACT: µ=18, s=6
- Which is better, 650 in the SAT or 26 in the ACT?

$$z_{SAT} = \frac{x - m}{s} = \frac{650 - 500}{100} = 1.5$$
$$z_{ACT} = \frac{x - m}{s} = \frac{26 - 18}{6} = 1.333$$

- Corresponding tail probabilities?
- How many percent of total test scores have better SAT or ACT scores?

# **Typical Questions**

- 1. Probability (right-hand, left-hand, two-sided, middle)
- 2. z-score
- 3. Observation (raw score)
- To find probability, use applet or Table 3.
- In transforming between 2 and 3, you need mean and standard deviation

# Finding z-Values for Percentiles

- For a normal distribution, how many standard deviations from the mean is the 90<sup>th</sup> percentile?
- What is the value of z such that 0.90 probability is less than μ + z s?
- If 0.9 probability is less than μ + z s, then there is 0.4 probability between 0 and μ + z s (because there is 0.5 probability less than 0)
- *z*=1.28
- The 90<sup>th</sup> percentile of a normal distribution is 1.28 standard deviations above the mean

#### **Quartiles of Normal Distributions**

- Median: z=0
  - (0 standard deviations above the mean)
- Upper Quartile: z = 0.67
  - (0.67 standard deviations above the mean)
- Lower Quartile: z = -0.67

(0.67 standard deviations below the mean)

- In fact for any normal probability distributions, the 90<sup>th</sup> percentile is always
- 1.28 SD above the mean

the 95<sup>th</sup> percentile is \_\_\_\_\_ SD above mean

#### Finding *z*-Values for Two-Tail Probabilities

- What is the z-value such that the probability is 0.1 that a normally distributed random variable falls more than z standard deviations above or below the mean
- Symmetry: we need to find the z-value such that the right-tail probability is 0.05 (more than z standard deviations *above* the mean)
- *z*=1.65
- 10% probability for a normally distributed random variable is outside 1.65 standard deviations from the mean, and 90% is within 1.65 standard deviations from the mean

STA 291 - Lecture 15

#### homework online

### **Attendance Survey Question 16**

- On a 4"x6" index card
  - Please write down your name and section number
  - -Today's Question:

\_\_\_\_\_?\_\_\_\_ is also been called bell curve.