STA 291 Lecture 17

- Chap. 10 Estimation
- Estimating the Population Proportion p
- We are not predicting the next outcome (which is random), but is estimating a fixed number --- the population parameter.

Review: Population Distribution, and Sampling Distribution

- Population

Distribution

- Unknown, distribution from which we select the sample
- Want to make inference about its parameter, like p
- Sampling Distribution
- Probability distribution of a statistic (for example, sample mean/proportion)
- Used to determine the probability that a statistic falls within a certain distance of the population parameter
- For large n, the sampling distribution of the sample mean/proportion looks more and more like a normal distribution

Chapter 10

- Estimation: Confidence interval
- Inferential statistical methods provide estimates about characteristics of a population, based on information in a sample drawn from that population
- For quantitative variables, we usually estimate the population mean (for example, mean household income) + (SD)
- For qualitative variables, we usually estimate population proportions (for example, proportion of people voting for candidate A)

Two Types of Estimators

- Point Estimate
- A single number that is the best guess for the (unknown) parameter
- For example, the sample proportion/mean is usually a good guess for the population proportion/mean
- Interval Estimate
- A range of numbers around the point estimate
- To give an idea about the precision of the estimator
- For example, "the proportion of people voting for A is between 67% and 73% "

Point Estimator

- A point estimator of a parameter is a sample statistic that estimates the value of that parameter
- A good estimator is
- Unbiased: Centered around the true parameter - Consistent. Gets closer to the true parameter as the sample size n gets larger
- Efficient. Has a standard error that is as small as possible
- Sample proportion, \hat{p}, is unbiased as an estimator of the population proportion p.

It is also consistent and efficient.

New: Confidence Interval

- An inferential statement about a parameter should always provide the accuracy of the estimate (error bound)
- How close is the estimate likely to fall to the true parameter value?
- Within 1 unit? 2 units? 10 units?
- This can be determined using the sampling distribution of the estimator/sample statistic
- In particular, we need the standard error to make a statement about accuracy of the estimator
- How close?
- How likely?

New: Confidence Interval

- Example: interview 1023 persons, selected by SRS from the entire USA population.
- Out of the 1023 only 153 say "YES" to the question "economic condition in US is getting better"
- Sample size $\mathrm{n}=1023$,
$\hat{p}=153 / 1023=0.15$
- The sampling distribution of \hat{p} is (very close to) normal, since we used SRS in selection of people to interview, and 1023 is large enough.
- The sampling distribution has mean $=p$,
- and $\mathrm{SD}=\frac{\sqrt{p(1-p)}}{\sqrt{n}}=\frac{\sqrt{0.15(1-0.15)}}{\sqrt{1023}}=0.011$
- The 95% confidence interval for the unknown p is
- [$0.15-2 \times 0.011,0.15+2 \times 0.011]$
- Or [0.128, 0.172]
- Or " 15% with 95% margin of error 2.2\%"

Confidence Interval

- A confidence interval for a parameter is a range of numbers that is likely to cover (or capture) the true parameter.
- The probability that the confidence interval captures the true parameter is called the confidence coefficient/confidence level.
- The confidence level is a chosen number close to 1 , usually $95 \%, 90 \%$ or 99%

Confidence Interval

- To calculate the confidence interval, we used the Central Limit Theorem
- Therefore, we need sample sizes of at least moderately large, usually we require both $n p>10$ and $n(1-p)>10$
- Also, we need a $Z_{\alpha / 2}$ that is determined by the confidence level
- Let's choose confidence level 0.95 , then $Z_{\alpha / 2}$ $=1.96$ (the refined version of " 2 ")
- confidence level $0.90, \longleftrightarrow \quad Z_{\alpha / 2}=1.645$
- confidence level $0.95 \longleftrightarrow$
$\begin{array}{ll}z_{\alpha / 2} & =1.96 \\ z_{\alpha / 2} & =2.575\end{array}$

Confidence Interval

- So, the random interval between
$\hat{p}-1.96 \frac{\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{n}}$ and $\hat{p}+1.96 \frac{\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{n}}$
Will capture the population proportion p with 95% probability
- This is a confidence statement, and the interval is called a 95% confidence interval

Confidence Interval: Interpretation

- "Probability" means that "in the long run, 95\% of these intervals would contain the parameter"
- If we repeatedly took random samples using the same method, then, in the long run, in 95\% of the cases, the confidence interval will cover the true unknown parameter
- For one given sample, we do not know whether the confidence interval covers the true parameter or not.
- The 95% probability only refers to the method that we use, but not to this individual sample

Confidence Interval: Interpretation

- To avoid the misleading word "probability", we say: "We are 95% confident that the true population p is within this interval"
- Wrong statements:
- 95% of the p's are going to be within 12.8% and 17.2%

Statements

- 15% of all US population thought "YES".
- It is probably true that 15% of US population thought "YES"
- We do not know exactly, but we know it is between 12.8\% and 17.2\%
- We do not know, but it is probably within 12.8% and 17.2\%
- We are 95% confident that the true proportion (of the US population thought "YES") is between 12.8\% and 17.2\%
- You are never 100\% sure, but 95\% or 99% sureis quite close.

Confidence Interval

- If we change the confidence level from 0.95 to 0.99 , the confidence interval changes
- Increasing the probability that the interval contains the true parameter requires increasing the length of the interval
- In order to achieve 100% probability to cover the true parameter, we would have to increase the length of the interval to infinite -- that would not be informative
- There is a tradeoff between length of confidence interval and coverage probability. Ideally, we want short length and high coverage probability (high confidence level).

Confidence Interval

- Confidence Interval Applet
- http://bcs.whfreeman.com/scc/content/cat_040 /spt/confidence/confidenceinterval.html

Simpson's Paradox

- Suppose five men and five women apply to two different departments in a graduate school.

Although each department separately has a higher acceptance rate for women, the combined acceptance rate for men is much higher.

Success rate

- Another example: hospital A is more expensive, with the state of the art facility. Hospital B is cheaper.
$\begin{array}{lcc}\text { - } & \text { Hospital A } & \text { hospital B } \\ \text { Ease case } & 99 \text { out of } 100 & 490 \text { out of } 500 \\ \text { Trouble case } & 150 \text { out of } 200 & 30 \text { out of } 60\end{array}$

Hospital A is doing better in each category, but overall worse.

- The reason is that hospital A got the most trouble cases while hospital B got mostly the ease cases.
- Since hospital B is cheaper, when every indication of an ease case, people go to hospital B.

Attendance Survey Question 17

- On a 4"x6" index card
-Please write down your name and section number
-Today's Question:
-Can a hospital do better in both subcategories, but overall do worse than a competitor?
-Enjoy Spring Break

Review: Population, Sample, and Sampling Distribution

Population distribution

Sampling Distribution for the sample mean for $n=4$
-The population distribution is $P(0)=0.5, P(1)=0.5$.
-The sampling distribution for the sample mean in a sample of size $n=4$ takes the values $0,0.25,0.5,0.75,1$ with different probabilities.

Example: Three Estimators

- Suppose we want to estimate the proportion of UK students voting for candidate A
- We take a random sample of size $n=100$
- The sample is denoted $X_{1}, X_{2}, \ldots, X_{n}$, where $X_{i}=1$ if the ith student in the sample votes for $\mathrm{A}, X_{i}=0$ otherwise

Example: Three Estimators

- Estimator 1 = the sample mean (sample proportion)
- Estimator 2 = the answer from the first student in the sample $\left(X_{1}\right)$
- Estimator $3=0.3$
- Which estimator is unbiased?
- Which estimator is consistent?
- Which estimator has high precision (small standard error)?

Point Estimators of the Mean and Standard Deviation

- The sample mean, X-bar, is unbiased, consistent, and often (relatively) efficient
- The sample standard deviation is slightly biased for estimating population SD
- It is also consistent (and often relatively efficient)

Estimation of SD

-Why not use an unbiased estimator of SD?

- We do not know how to find one......
- The sample variance (one divide with $\mathrm{n}-1$) is unbiased for population Variance though......
- The square root destroy the unbias.
- The bias is usually small, and goes to zero (become unbiased) as sample size grows.

Confidence Interval

- Example from last lecture (application of central limit theorem):
- If the sample size is $n=49$, then with 95% probability, the sample mean falls between
$\mu-1.96 \frac{\sigma}{\sqrt{n}}=\mu-\frac{1.96}{7} \sigma=\mu-0.28 \sigma$
and $\mu+1.96 \frac{\sigma}{\sqrt{n}}=\mu+\frac{1.96}{7} \sigma=\mu+0.28 \sigma$
($\mu=$ population mean, $\sigma=$ population standard deviation)

Confidence Interval, again

- With 95% probability, the following interval will contain sample mean, X-bar

$$
\begin{aligned}
& \mu-1.96 \frac{\sigma}{\sqrt{n}} \text { and } \mu+1.96 \frac{\sigma}{\sqrt{n}} \\
& (\mu=\text { population mean, } \sigma=\text { population standard deviation })
\end{aligned}
$$

- Whenever the sample mean falls within this interval, the distance between X-bar and mu is less than

$$
1.96 \frac{\sigma}{\sqrt{n}}
$$

When sigma is known

- Another way to say this: with 95% probability, the distance between mu and X -bar is less than 0.28 sigma
- If we use X-bar to estimate mu, the error is going to be less than 0.28 sigma with 95% probability.

Confidence Interval

- The sampling distribution of the sample mean \bar{X} has mean μ and standard error

$$
\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}
$$

- If n is large enough, then the sampling distribution of \bar{X} is approximately normal/bell-shaped
(Central Limit Theorem)

